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Abstract

The Euclidean scattering transform was introduced nearly a decade ago to improve the

mathematical understanding of convolutional neural networks. Inspired by recent interest in

geometric deep learning, which aims to generalize convolutional neural networks to manifold

and graph-structured domains, we define a geometric scattering transform on manifolds. Similar

to the Euclidean scattering transform, the geometric scattering transform is based on a cascade of

wavelet filters and pointwise nonlinearities. It is invariant to local isometries and stable to certain

types of diffeomorphisms. Empirical results demonstrate its utility on several geometric learning

tasks. Our results generalize the deformation stability and local translation invariance of Euclidean

scattering, and demonstrate the importance of linking the used filter structures to the underlying

geometry of the data.
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1. Introduction

In an effort to improve our mathematical understanding of deep convolutional networks and

their learned features, Mallat (2010, 2012) introduced the scattering transform for signals on

ℝd. This transform has an architecture similar to convolutional neural networks (ConvNets),
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based on a cascade of convolutional filters and simple pointwise nonlinearities. However,

unlike many other deep learning methods, this transform uses the complex modulus as its

nonlinearity and does not learn its filters from data, but instead uses designed filters. As

shown in Mallat (2012), with properly chosen wavelet filters, the scattering transform is

provably invariant to the actions of certain Lie groups, such as the translation group, and is

also provably Lipschitz stable to small diffeomorphisms, where the size of a diffeomorphism

is quantified by its deviation from a translation. These notions were applied in Bruna and

Mallat (2011, 2013); Sifre and Mallat (2012, 2013, 2014); Oyallon and Mallat (2015) using

groups of translations, rotations, and scaling operations, with applications in image and

texture classification. Additionally, the scattering transform and its deep filter bank approach

have also proven to be effective in several other fields, such as audio processing (Andén and

Mallat, 2011, 2014; Wolf et al., 2014, 2015; Andén et al., 2019), medical signal processing

(Chudácek et al., 2014), and quantum chemistry (Hirn et al., 2017; Eickenberg et al., 2017,

2018; Brumwell et al., 2018). Mathematical generalizations to non-wavelet filters have also

been studied, including Gabor filters as in the short time Fourier transform (Czaja and Li,

2019) and more general classes of semi-discrete frames (Grohs et al., 2016; Wiatowski and

Bölcskei, 2015, 2018).

However, many data sets of interest have an intrinsically non-Euclidean structure and are

better modeled by graphs or manifolds. Indeed, manifold learning models (e.g., Tenenbaum

et al., 2000; Coifman and Lafon, 2006a; van der Maaten and Hinton, 2008) are commonly

used for representing high-dimensional data in which unsupervised algorithms infer data-

driven geometries to capture intrinsic structure in data. Furthermore, signals supported

on manifolds are becoming increasingly prevalent, for example, in shape matching and

computer graphics. As such, a large body of work has emerged to explore the generalization

of spectral and signal processing notions to manifolds (Coifman and Lafon, 2006b)

and graphs (Shuman et al., 2013a, and references therein). In these settings, functions

are supported on the manifold or the vertices of the graph, and the eigenfunctions of

the Laplace-Beltrami operator, or the eigenvectors of the graph Laplacian, serve as the

Fourier harmonics. This increasing interest in non-Euclidean data geometries has led to

a new research direction known as geometric deep learning, which aims to generalize

convolutional networks to graph and manifold structured data (Bronstein et al., 2017, and

references therein).

Inspired by geometric deep learning, recent works have also proposed an extension of

the scattering transform to graph domains. These mostly focused on finding features that

represent a graph structure (given a fixed set of signals on it) while being stable to graph

perturbations. In Gama et al. (2019b), a cascade of diffusion wavelets from Coifman and

Maggioni (2006) was proposed, and its Lipschitz stability was shown with respect to a

global diffusion-inspired distance between graphs. These results were generalized in Gama

et al. (2019a) to graph wavelets constructed from more general graph shift operators.

A similar construction discussed in Zou and Lerman (2019) was shown to be stable to

permutations of vertex indices, and to small perturbations of edge weights. Gao et al. (2019)

established the viability of graph scattering coefficients as universal graph features for data

analysis tasks (e.g., in social networks and biochemistry data). The wavelets used in Gao

et al. (2019) are similar to those used in Gama et al. (2019b), but are constructed from an
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asymmetric lazy random walk matrix (the wavelets in Gama et al. (2019b) are constructed

from a symmetric matrix). The constructions of Gama et al. (2019b) and Gao et al. (2019)

were unified in Perlmutter et al. (2019), which introduced a large family of graph wavelets,

including both those from Gama et al. (2019b) and Gao et al. (2019) as special cases,

and showed that the resulting scattering transforms enjoyed many of the same theoretical

properties as in Gama et al. (2019b).

In this paper we consider the manifold aspect of geometric deep learning. There are

two basic tasks in this setting: (1) classification of multiple signals over a single, fixed

manifold; and (2) classification of multiple manifolds. Beyond these two tasks, there are

additional problems of interest such as manifold alignment, partial manifold reconstruction,

and generative models. Fundamentally for all of these tasks, both in the approach described

here and in other papers, one needs to process signals over a manifold. Indeed, even in

manifold classification tasks and related problems such as manifold alignment, one often

begins with a set of universal features that can be defined on any manifold, and which are

processed in such a way that allows for comparison of two or more manifolds. In order to

carry out these tasks, a representation of manifold supported signals needs to be stable to

orientations, noise, and deformations over the manifold geometry. Working towards these

goals, we define a scattering transform on compact smooth Riemannian manifolds without

boundary, which we call geometric scattering. Our construction is based on convolutional

filters defined spectrally via the eigendecomposition of the Laplace-Beltrami operator

over the manifold, as discussed in Section 2. We show that these convolutional operators

can be used to construct a wavelet frame similar to the diffusion wavelets constructed

in Coifman and Maggioni (2006). Then, in Section 3, we construct a cascade of these

generalized convolutions and pointwise absolute value operations that is used to map

signals on the manifold to scattering coefficients that encode approximate local invariance

to isometries, which correspond to translations, rotations, and reflections in Euclidean space.

We then show in Section 4 that our scattering coefficients are also stable to the action of

diffeomorphisms with a notion of stability analogous to the Lipschitz stability considered

in Mallat (2012) on Euclidean space. Our results provide a path forward for utilizing the

scattering mathematical framework to analyze and understand geometric deep learning,

while also shedding light on the challenges involved in such generalization to non-Euclidean

domains. Indeed, while these results are analogous to those obtained for the Euclidean

scattering transform, we emphasize that the underlying mathematical techniques are derived

from spectral geometry, which plays no role in the Euclidean analysis. Numerical results in

Section 5 show that geometric scattering coefficients achieve competitive results for signal

classification on a single manifold, and classification of different manifolds. We demonstrate

the geometric scattering method can capture the both local and global features to generate

useful latent representations for various downstream tasks. Proofs of technical results are

provided in the appendices.

1.1. Notation

Let ℳ denote a compact, smooth, connected d-dimensional Riemannian manifold without

boundary contained in ℝn, and let L2(ℳ) denote the set of functions f:ℳ ℝ that are

square integrable with respect to the Riemannian volume dx. Let r(x, x′) denote the
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geodesic distance between two points, and let Δ denote the Laplace-Beltrami operator

on ℳ. Let Isom ℳ, ℳ′  denote the set of all isometries between two manifolds ℳ and

ℳ′, and set Isom(ℳ) = Isom(ℳ, ℳ) to be the isometry group of ℳ. Likewise, we set

Diff(ℳ) = Diff(ℳ, ℳ) to be the diffeomorphism group on ℳ. For ζ ∈ Diff(ℳ), we let

ζ ∞: = supx ∈ ℳr(x, ζ(x)) denote its maximum displacement.

2. Geometric wavelet transforms on manifolds

The Euclidean scattering transform is constructed using wavelet and low-pass filters defined

on ℝd. In Section 2.1, we extend the notion of convolution against a filter (wavelet, low-pass,

or otherwise), to manifolds using notions from spectral geometry. Many of the notions

described in this section are geometric analogues of similar constructions used in graph

signal processing (Shuman et al., 2013b). Section 2.2 utilizes these constructions to define

Littlewood-Paley frames for L2(ℳ), and Section 2.3 describes a specific class of Littlewood-

Paley frames which we call geometric wavelets.

2.1. Convolution on manifolds

On ℝd, the convolution of a signal f ∈ L2 ℝd  with a filter ℎ ∈ L2 ℝd  is defined by

translating h against f; however, translations are not well-defined on generic manifolds.

Nevertheless, convolution can also be characterized using the Fourier convolution theorem,

i.e., f * ℎ(ω) = f(ω)ℎ(ω). Fourier analysis can be defined on ℳ using the spectral

decomposition of −Δ. Since ℳ is compact and connected, −Δ has countably many

eigenvalues which we enumerate as 0 = λ0 < λ1 ≤ λ2 (repeating those with multiplicity

greater than one), and there exists a sequence of eigenfunctions φ0, φ1, φ2, … such that

{φk}k≥0 is an orthonormal basis for L2(ℳ) and −Δφk = λkφk. While one can take each φk

to be real valued, we do not assume this choice of eigenbasis. One can show that φ0 is

constant, which implies, by orthogonality, that φk has mean zero for k ≥ 1. We consider

the eigenfunctions {φk}k≥0 as the Fourier modes of the manifold ℳ, and define the Fourier

series f ∈ ℓ2 of f ∈ L2(ℳ) as

f(k): = f, φk = ∫ℳ
f(y)φk(y)dy .

Since φ0, φ1, φ2, … form an orthonormal basis, we have

f(x) = ∑
k ≥ 0

f, φk φk(x) = ∑
k ≥ 0

f(k)φk(x) = ∑
k ≥ 0

∫
ℳ

f(y)φk(y)dy φk(x) . (1)

For f, ℎ ∈ L2(ℳ), we define the convolution ∗ over ℳ between f and h as

f * ℎ(x): = ∑
k ≥ 0

f(k)ℎ(k)φk(x) . (2)
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We let Tℎ:L2(ℳ) L2(ℳ) be the corresponding operator Thf(x) := f ∗ h(x) and note that we

may write

Tℎf(x) = f * ℎ(x) = ∫ℳ
∑

k ≥ 0
ℎ(k)φk(x)φk(y) f(y)dy = ∫ℳ

Kℎ(x, y)f(y)dy,

where

Kℎ(x, y): = ∑
k ≥ 0

ℎ(k)φk(x)φk(y) .

It is well known that convolution on ℝd commutes with translations. This equivariance

property is fundamental to Euclidean ConvNets, and has spurred the development of

equivariant neural networks on other spaces, e.g., Cohen and Welling (2016); Kondor and

Trivedi (2018); Thomas et al. (2018); Kondor et al. (2018a); Cohen et al. (2018); Kondor et

al. (2018b); Weiler et al. (2018). Since translations are not well-defined on ℳ, we instead

seek to construct a family of operators which commute with isometries. Towards this end,

we say a filter ℎ ∈ L2(ℳ) is a spectral filter if λk = λℓ implies ℎ(k) = ℎ( ℓ ). In this case, there

exists a function H:[0, ∞) ℝ, which we refer to as the spectral function of h, such that

H λk = ℎ(k), for all k ≥ 0 .

In the proofs of our theorems, it will be convenient to group together eigenfunctions

belonging to the same eigenspace. This motivates us to define

Λ: = λ ∈ ℝ: there exists φ ∈ L2(ℳ) such that − Δφ = λφ

as the set of all eigenvalues of −Δ, and to let

K(λ)(x, y): = ∑
λk = λ

φk(x)φk(y)
(3)

for each λ ∈ Λ. We note that if h is a spectral filter, then we may write

Kℎ(x, y) = ∑
k ≥ 0

H λk φk(x)φk(y) = ∑
λ ∈ Λ

H(λ)K(λ)(x, y) . (4)

For a diffeomorphism ζ ∈ Diff(ℳ) we define the operator V ζ :L2(ℳ) L2(ℳ) as

V ζf(x): = f ζ−1(x) .

The operator Vζ deforms the function f ∈ L2(ℳ) according to the diffeomorphism ζ of the

underlying manifold ℳ. The following theorem shows that Th and Vζ commute if ζ is an
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isometry and h is a spectral filter. We note the assumption that h is a spectral filter is critical

and in general Th does not commute with isometries if h is not a spectral filter. The proof is

in Appendix A.

Theorem 2.1—For every spectral filter ℎ ∈ L2(ℳ) and for every f ∈ L2(ℳ),

TℎV ζf = V ζTℎf, ∀ζ ∈ Isom(ℳ) .

2.2. Littlewood-Paley frames over manifolds

A family of spectral filters {hγ : γ ∈ Γ} (with Γ countable), is called a Littlewood-Paley
frame if it satisfies the following condition which implies that the hγ cover the frequencies

of ℳ evenly:

∑
γ ∈ Γ

ℎγ(k) 2 = 1, ∀k ≥ 0. (5)

We define the corresponding frame analysis operator, ℋ:L2(ℳ) ℓ2 L2(ℳ) , by

ℋf: = f * ℎγ:γ ∈ Γ .

The following proposition shows that if (5) holds, then ℋf preserves the energy of f.

Proposition 2.2—If {hγ : γ ∈ Γ} satisfies (5), then ℋ:L2(ℳ) ℓ2 L2(ℳ)  is an

isometry, i.e.,

‖ℋf‖2, 2
2 : = ∑

γ ∈ Γ
‖f ∗ ℎγ‖2

2 = f‖2
2, ∀f ∈ L2(ℳ) .

The proof of Proposition 2.2 is nearly identical to the corresponding result in the Euclidean

case. For the sake of completeness, we provide full details in Appendix B. Since the

operator ℋ is linear, Proposition 2.2 also shows the operator ℋ is non-expansive, i.e.,

ℋf1 − ℋf2 2, 2 ≤ f1 − f2 2. This property is directly related to the L2 stability of a

ConvNet of the form σm ℋm σm − 1 ℋm − 1⋯σ1 ℋ1f , where the σℓ are nonlinear functions.

Indeed, if all the frame analysis operators ℋℓ and all the nonlinear operators σℓ are non-

expansive, then the entire network is non-expansive as well.

2.3. Geometric wavelet transforms on manifolds

The geometric wavelet transform is a special type of Littlewood-Paley frame analysis

operator in which the filters group the frequencies of ℳ into dyadic packets. A spectral filter

ϕ ∈ L2(ℳ) is said to be a low-pass filter if ϕ(0) = 1 and ϕ(k)  is non-increasing with respect

to k. Typically, ϕ(k)  decays rapidly as k grows large. Thus, a low-pass filtering, Tϕf :=

f ∗ ϕ, retains the low frequencies of f while suppressing the high frequencies. A wavelet
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ψ ∈ L2(ℳ) is a spectral filter such that ψ(0) = 0. Unlike low-pass filters, wavelets have no

frequency response at k = 0, but are generally well localized in the frequency domain away

from k = 0.

We shall define a family of low-pass and a wavelet filters, using the difference between

low-pass filters at consecutive dyadic scales, in a manner which mimics standard wavelet

constructions (see, e.g., Meyer, 1993). Let G:[0, ∞) ℝ be a non-negative, non-increasing

function with G(0) = 1. Define a low-pass spectral filter ϕ and its dilation at scale 2j for

j ∈ ℤ by:

ϕ(k): = G λk and ϕj(k): = G 2jλk .

Given the dilated low-pass filters, ϕj j ∈ ℤ, we defined our wavelet filters by

ψj(k): = ϕj − 1(k) 2 − ϕj(k) 2 1/2
. (6)

For J ∈ ℤ, we let AJf := f ∗ ϕJ and Ψjf := f ∗ ψj. We then define the geometric wavelet
transform as

W Jf: = AJf, Ψjf: j ≤ J = f ∗ ϕJ, f ∗ ψj: j ≤ J .

The geometric wavelet transform extracts the low frequency, slow transitions of f over ℳ
through AJf, and groups the high frequency, sharp transitions of f over ℳ into different

dyadic frequency bands via the collection {Ψjf : j ≤ J}. The following proposition can be

proved by observing that {ϕJ , ψj : j ≤ J} forms a Littlewood-Paley frame and applying

Proposition 2.2. The proof is nearly identical to the corresponding result in the Euclidean

case; however, we provide full details in Appendix C in order to help keep this paper

self-contained.

Proposition 2.3—For any J ∈ ℤ, W J :L2(ℳ) ℓ2 L2(ℳ)  is an isometry, i.e.,

W Jf 2, 2 = f 2, ∀f ∈ L2(ℳ) .

An important example is G(λ) = e−λ. In this case the low-pass kernel KϕJ is the heat

kernel on M at diffusion time t = 2J, and the wavelet operators Ψj are similar to the

diffusion wavelets introduced in Coifman and Maggioni (2006). We also note that wavelet

constructions similar to ours were used in Hammond et al. (2011) and Dong (2017). Figure

1 depicts these wavelets over manifolds from the FAUST data set (Bogo et al., 2014). Unlike

many wavelets commonly used in computer vision, our wavelets are not directional. Indeed,

on a generic manifold the concept of directional wavelets is not well-defined since the

isometry group cannot be decomposed into translations, rotations, and reflections. Instead,

our wavelets have a donut-like shape which is somewhat similar to the wavelet obtained by

applying the Laplacian operator on ℝd to a d-dimensional Gaussian.
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3. The geometric wavelet scattering transform

The geometric wavelet scattering transform is a type of geometric ConvNet, constructed in

a manner analogous to the Euclidean scattering transform (Mallat, 2012) as an alternating

cascade of geometric wavelet transforms (defined in Section 2.3) and nonlinearities. As

we shall show in Sections 3.3, 3.4, and 4, this transformation enjoys several desirable

properties for processing data consisting of signals defined on a fixed manifold ℳ, in

addition to tasks in which each data point is a different manifold and one is required to

compare and classify manifolds. Tasks of the latter form are approachable due to the use

of geometric wavelets that are derived from a universal frequency function G:[0, ∞) ℝ
that is defined independent of ℳ. Motivation for these invariance and stability properties is

given in Section 3.1, and the geometric wavelet scattering transform is defined in Section

3.2. We note that much of our analysis remains valid when our wavelets are replaced with

a general Littlewood-Paley frame. However, we will focus on the wavelet case for the ease

of exposition and to to emphasize the connections between the manifold scattering transform

and its Euclidean analogue.

3.1. The role of invariance and stability

Invariance and stability play a fundamental role in many machine learning tasks, particularly

in computer vision. For classification and regression, one often wants to consider two signals

f1, f2 ∈ L2(ℳ), or two manifolds ℳ and ℳ′, to be equivalent if they differ by the action

of a global isometry. Similarly, it is desirable that the action of small diffeomorphisms

on f ∈ L2(ℳ), or on the underlying manifold ℳ, should not have a large impact on the

representation of the input signal.

Thus, we seek to construct a family of representations, (Θt)t∈(0,∞), which are invariant to

isometric transformations up to the scale t. In the case of analyzing multiple signals on a

fixed manifold, such a representation should satisfy a condition of the form:

Θt(f) − Θt V ζf 2, 2 ≤ α(ζ)β(t) f 2, ∀f ∈ L2(ℳ), ζ ∈ Isom(ℳ), (7)

where α(ζ) measures the size of the isometry with α(id) = 0, and β(t) decreases to

zero as the scale t grows to infinity. For diffeomorphisms, invariance is too strong of a

property since we are often interested in non-isometric differences between signals on a

fixed manifold, or geometric differences between multiple manifolds, not just topological

differences, e.g., we often wish to classify a doughnut differently than a coffee mug, even

though they are both topologically a 2-torus. Instead, we want a family of representations

that is stable to diffeomorphism actions, but not invariant. Combining this requirement with

the isometry invariance condition (7) leads us to seek, for the case of a fixed manifold ℳ, a

condition of the form:

Θt(f) − Θt V ζf 2, 2 ≤ [α(ζ)β(t) + A(ζ)] f 2, ∀t ∈ (0, ∞), f ∈ L2(ℳ), ζ
∈ Diff(ℳ),

(8)
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where A(ζ) measures how much ζ differs from being an isometry, with A(ζ) = 0 if

ζ ∈ Isom(ℳ) and A(ζ) > 0 if ζ ∉ Isom(ℳ). We also develop analogous conditions for

isometries in the case of multiple manifolds in Section 3.4.

At the same time, the representations (Θt)t∈(0,∞) should not be trivial. Different classes or

types of signals are often distinguished by their high-frequency content, i.e., f(k) for large k.
The same may also be true of two manifolds ℳ and ℳ′, in that differences between them are

only readily apparent when comparing the high frequency eigenfunctions of their respective

Laplace-Beltrami operators. Our problem is thus to find a family of representations for data

defined on a manifold that is stable to diffeomorphisms, allows one to control the scale of

isometric invariance, and discriminates between different types of signals, in both high and

low frequencies. The wavelet scattering transform of Mallat (2012) achieves goals analogous

to the ones presented here, but for Euclidean supported signals. We seek to construct a

geometric version of the scattering transform, using filters corresponding to the spectral

geometry of ℳ, and to show it has similar properties.

3.2. Defining the geometric wavelet scattering transform

The geometric wavelet scattering transform is a nonlinear operator SJ :L2(ℳ) ℓ2 L2(ℳ)

constructed through an alternating cascade of geometric wavelet transforms WJ and

nonlinearities. Its construction is motivated by the desire to obtain localized isometry

invariance and stability to diffeomorphisms, as formulated in Section 3.1.

A simple way to obtain a locally isometry invariant representation of a signal is to apply the

low-pass averaging operator AJ. If G(λ) ≤ e−λ, then one can use Theorem 2.1 to show that

AJf − AJV ζf 2 ≤ C(ℳ)2−dJ ζ ∞ f 2, ∀f ∈ L2(ℳ), ∀ζ ∈ Isom(ℳ), (9)

In other words, the L2 difference between f ∗ ϕJ and Vζf ∗ ϕJ for a unit energy signal f (i.e.,

||f||2 = 1), is no more than the size of the isometry ||ζ||∞ depressed by a factor of 2dJ, up to

some universal constant that depends only on ℳ. Thus, the parameter J controls the degree

of invariance.

However, by definition AJf = f * ϕJ = ∑k ≥ 0f(k)ϕJ(k)φk, and so if ϕJ(k) ≤ e−2Jλk, we see

the high-frequency content of f is lost in the representation AJf. The high frequencies of f
are recovered with the wavelet coefficients {Ψjf = f ∗ ψj : j ≤ J}, which are guaranteed

to capture the remaining frequency content of f. However, the wavelet coefficients Ψjf are

not isometry invariant and thus do not satisfy any bound analogous to (9). If we apply the

averaging operator in addition to the wavelet coefficient operator, we obtain:

AJΨjf = f ∗ ψj ∗ ϕJ = ∑
k ≥ 0

f(k)ψj(k)ϕJ(k)φk,

but by design the sequences ϕJ and ψj have small overlapping support in order to satisfy

the Littlewood-Paley condition (5), particularly in their largest responses, and thus f ∗
ψj ∗ ϕJ ≈ 0. In order to obtain a non-trivial invariant that also retains some of the high-
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frequency information in the signal f, we need to apply a nonlinear operator. Because it

is non-expansive and commutes with isometries, we choose the absolute value (complex

modulus) function as our non-linearity, and let

UJ[j]f : = f ∗ ψj , j ≤ J .

We then convolve the UJ[j]f with the low-pass ϕj to obtain locally invariant descriptions of f,
which we refer to as the first-order scattering coefficients:

SJ[j]f : = f ∗ ψj ∗ ϕJ, j ≤ J . (10)

The collection of all such coefficients can be written as

AJUJ
1f: = AJUJ[j]f : j ≤ J = f ∗ ψj ∗ ϕJ : j ≤ J ,

where

UJ
1f: = UJ[j]f : j ≤ J = f * ψj : j ≤ J .

These coefficients satisfy a local invariance bound similar to (9), but encode multiscale

characteristics of f over the manifold geometry, which are not contained in AJf.

Nevertheless, the geometric scattering representation SJ
1f: = AJf, AJUJ

1f  still loses

information contained in the signal f. Indeed, even with the absolute value, the

functions |f ∗ψj| have frequency information not captured by the low-pass ϕJ.

Iterating the geometric wavelet transform WJ recovers this information by computing

W JUJ
1f = f ∗ ψj1 ∗ ϕJ, f ∗ ψj1 ∗ ψj2: j1, j2 ≤ J , which contains the first order invariants

(10) but also retains the high frequencies of UJ
1f. We then obtain second-order geometric

wavelet scattering coefficients given by

SJ j1, j2 f: = AJUJ j1 UJ j2 f = f ∗ ψj1 ∗ ψj2 ∗ ϕJ,

the collection of which can be written as AJUJ
1UJ

1f. The corresponding geometric scattering

transform up to order m = 2 computes SJ
2f: = AJf, AJUJ

1f, AJUJ
1UJ

1f , which can be

thought of as a three-layer geometric ConvNet that extracts invariant representations of

the input signal at each layer. Second order coefficients, in particular, decompose the

interference patterns in |f ∗ ψj1| into dyadic frequency bands via a second wavelet transform.

This second order transform has the effect of coupling two scales 2j1 and 2j2 over the

geometry of the manifold ℳ.

The general geometric scattering transform iterates the wavelet transform and absolute value

(complex modulus) operators up to an arbitrary depth. Formally, for J ∈ ℤ and j1, …, jm ≤ J
we let
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UJ j1, …, jm : = UJ jm …UJ j1 f = f ∗ ψj1 ∗ ψj2 ∗ ⋯ ∗ ψjm

when m ≥ 1, and we let UJ[∅]f = f when m = 0. Likewise, we define

SJ j1, …, jm : = AJUJ jm …UJ j1 f = f ∗ ψj1 ∗ ψj2 ∗ ⋯ ∗ ψjm ∗ ϕJ,

and let SJ[∅]f = f ∗ ϕJ. We then consider the maps UJ :L2(ℳ) ℓ2 L2(ℳ)  and

SJ:L2(ℳ) ℓ2 L2(ℳ)  given by

UJf = UJ j1, …, jm f:m ≥ 0, ji ≤ J ∀1 ≤ i ≤ m ,

and

SJf = SJ j1, …, jm f:m ≥ 0, ji ≤ J ∀1 ≤ i ≤ m .

An illustration of the map SJ, which we refer to as the geometric scattering transform at

scale 2J, is given by Figure 2. In practice, one only uses finitely many layers, which motives

us to also consider the L-layer versions of UJ and SJ defined for L ≥ 0 by

UJ
Lf: = UJ j1, …, jm f:0 ≤ m ≤ L, ji ≤ J ∀1 ≤ i ≤ m

and

SJ
Lf: = SJ j1, …, jm f:0 ≤ m ≤ L, ji ≤ J ∀1 ≤ i ≤ m .

The invariance properties of SJ and SJ
L are described in Sections 3.3 and 3.4, whereas their

diffeomorphism stability properties are described in Section 4. The following proposition

shows that both SJ and SJ
L are non-expansive.

Proposition 3.1—Both the finite-layer and infinite-layer geometric wavelet scattering

transforms are nonexpansive. Specifically,

SJ
Lf1 − SJ

Lf2 2, 2 ≤ SJf1 − SJf2 2, 2 ≤ f1 − f2 , ∀f1, f2 ∈ L2(ℳ) .

The first inequality is trivial. The proof of the second inequality is nearly identical to Mallat

(2012, Proposition 2.5), and is thus omitted.

3.3. Isometric invariance

The geometric wavelet scattering transform is invariant to the action of the isometry group

on the input signal f up to a factor that depends upon the frequency decay of the low-pass
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spectral filter ϕJ. In particular, the following theorem establishes isometric invariance up

to the scale 2J under the assumption that ϕ(k) = G λk ≤ e−λk. The proof of Theorem 3.2 is

given in Appendix D.

Theorem 3.2—Let ζ ∈ Isom(ℳ) and suppose G(λ) ≤ e−λ. Then there is a constant

C(ℳ) < ∞ such that for all f ∈ L2(ℳ),

SJf − SJV ζf 2, 2 ≤ C(ℳ)2−dJ ζ ∞ UJf 2, 2, (11)

and

SJ
Lf − SJ

LV ζf 2, 2 ≤ C(ℳ)(L + 1)1/22−dJ ζ ∞ f 2 . (12)

The factor ||UJf||2,2 for an infinite depth network is hard to bound in terms of ||f||2, which

is also true for the Euclidean scattering transform (Mallat, 2012). However, for finite depth

networks, a simple argument shows that UJ
Lf 2, 2 ≤ (L + 1)1/2 f 2, which yields (12).

For manifold classification (or any task requiring rigid invariance), we take J → ∞. This

limit is equivalent to replacing the low-pass operator AJ with an integration over ℳ, since

for any x ∈ ℳ,

lim
J ∞

SJ j1, …, jm f(x) = 1
vol(ℳ) ∫

ℳ
‖f ∗ ψj1 ∗ ψj2 ∗ ⋯ ∗ ψjm x′ dx′

= vol ℳ −1/2‖‖f ∗ ψj1 ∗ ψj2 ∗ ⋯ ∗ ψjm‖1 .
(13)

Equation (13) motivates the definition of a non-windowed geometric scattering transform,

Sf: = Sf j1, …, jm :m ≥ 0, ji ∈ ℤ∀1 ≤ i ≤ m
Sf j1, …, jm : = f ∗ ψj1 ∗ ψj2 ∗ ⋯ ∗ ψjm 1 .

We also define SLf as the L-layer version of Sf, analogous to SJ
Lf defined in (3.2). Unlike

Sf ∈ ℓ2 L2(ℳ) , which consists of a countable collection of functions, Sf consists of a

countable collections of scalar values. Theorem 3.2 and (13) show that these values are

invariant to global isometries ζ ∈ Isom(ℳ) acting on f. The following proposition shows they

form a sequence in ℓ2. We give a proof in Appendix E.

Theorem 3.3—Iff ∈ L2(ℳ), then Sf ∈ ℓ2when Sf 2 ≤ f 2 .

3.4. Isometric invariance between different manifolds

Let ℳ and ℳ′ be isometric manifolds. For shape matching tasks in which ℳ and ℳ′ should

be identified as the same shape, it is appropriate to let J → ∞, and, inspired by (13), use

the S representation to carry out the computation; see Section 5.2 for numerical results along

these lines. In such tasks, one selects a signal f that it is defined intrinsically in terms of
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the geometry ℳ, i.e., one that is chosen in such a way that given f on ℳ, one can compute

a corresponding signal f′ = Vζf on ℳ′ without explicit knowledge of ζ ∈ Isom ℳ, ℳ′ . For

example, if ℳ is a two-dimensional surface embedded in ℝ3, and ℳ′ is a three-dimensional

rotation of ℳ by ζ ∈ SO(3), then the coordinate function is such a function. Indeed, let

x = x1, x2, x3 ∈ ℳ ⊂ ℝ3 and suppose f(x) = xi is the coordinate function on ℳ for a fixed

coordinate 1 ≤ i ≤ 3. Then the coordinate function f′ x′ = xi′ on ℳ′ is given by f′ = Vζf.

More sophisticated examples include the SHOT features of Tombari et al. (2010); Prakhya et

al. (2015). The following proposition shows that the geometric scattering transform produces

a representation that is invariant to isometries ζ ∈ Isom ℳ, ℳ′ . We give a proof in Appendix

F.

Proposition 3.4—Let ζ ∈ Isom ℳ, ℳ′ , let f ∈ L2(ℳ), and let f′ := Vζf be the
corresponding signal defined on ℳ′. Then Sf = S′f′.

In other tasks, one may wish to have local isometric invariance between ℳ and ℳ′. We thus

extend Theorem 3.2 in the following way. If ζ1 ∈ Isom ℳ, ℳ′ , then the operator V ζ1 maps

L2(ℳ) into L2 ℳ′ . We wish to estimate how much (SJ)′ Vζf differs from SJf, where (SJ)′
denotes the geometric wavelet scattering transform on ℳ′. However, the difference SJf−(SJ)′
Vζf is not well-defined since SJf is a countable collection of functions defined on ℳ and

(SJ)′ Vζf is a collection of functions defined on ℳ′. Therefore, in Theorem 3.5 we let ζ2 be

a second isometry from ℳ to ℳ′ and estimate SJf − V ζ2
−1 SJ ′V ζ1f 2, 2; see Appendix G

for the proof.

Theorem 3.5—Let ζ1, ζ2 ∈ Isom ℳ, ℳ′  and assume that G(λ) ≤ e−λ. Then there is a

constant C(ℳ) < ∞ such that

SJf − V ζ2
−1 SJ ′V ζ1f 2, 2 ≤ C(ℳ)2−dJ ζ2

−1 ∘ ζ1 ∞ UJf 2, ∀f ∈ L2(ℳ) . (14)

and

SJ
Lf − V ζ2

−1 SJ
L ′V ζ1f 2, 2 ≤ C(ℳ)(L + 1)1/22−dJ ζ2

−1 ∘ ζ1 ∞ f 2, ∀f ∈ L2

(ℳ) .
(15)

It is worthwhile to contrast Proposition 3.4 and Theorem 3.5 with Theorem 3.2 stated in

Section 3.3. As mentioned in the introduction, two of the basic tasks we condsider are

the classification of multiple signals over a single, fixed manifold and the classification

of multiple manifolds. Since Theorem 3.2 considers an isometry ζ:ℳ ℳ, it shows that

the manifold scattering transform is well-suited for the former task. Proposition 3.4 and

Theorem 3.5, on the other hand, assume that ζ is an isometry from one manifold ℳ
to another manifold ℳ′, and therefore indicate that the manifold scattering transform is

well-suited to the latter task as well.
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4. Stability to Diffeomorphisms

In this section we show the scattering transform is stable to the action of diffeomorphisms on

a signal f ∈ L2(ℳ). In Section 4.1, we show that when restricted to bandlimited functions,

the geometric scattering transform is stable to diffeomorphisms. In Section 4.2, we show that

under certain assumptions on ℳ, that spectral filters are stable to diffeomorphisms (even if

f is not bandlimited). As a consequence, it follows that finite width (i.e., a finite number of

wavelets per layer) scattering networks are stable to diffeomorphisms on these manifolds.

4.1. Stability for bandlimited functions

Analogously to the Lipschitz diffeomorphism stability in Mallat (2012, Section 2.5), we

wish to show the geometric scattering coefficients are stable to diffeomorphisms that are

close to being an isometry. Similarly to Wiatowski and Bölcskei (2015); Czaja and Li

(2019), we will assume the input signal f is λ- bandlimited for some λ > 0. That is,

f(k) = f, φk = 0 whenever λk > λ.

Theorem 4.1—Let ζ ∈ Diff(ℳ), and assume G(λ) ≤ e−λ. Then there is a constant
C(ℳ) < ∞ such that if ζ = ζ1 ∘ ζ2 for some isometry ζ1 ∈ Isom(ℳ) and diffeomorphism

ζ2 ∈ Diff(ℳ), then

SJf − SJV ζf 2, 2 ≤ C(ℳ) 2−dJ ζ1 ∞ UJf 2 + λd ζ2 ∞ f 2 , (16)

and

SJ
Lf − SJ

LV ζf 2, 2 ≤ C(ℳ) (L + 1)1/22−dJ ζ1 ∞ + λd ζ2 ∞ f 2, (17)

for all functions f ∈ L2(ℳ) such that f(k) = f, φk = 0 whenever λk > λ.

Theorem 4.1 achieves the goal set forth by (8), with two exceptions: (i) we restrict to

bandlimited functions; and (ii) the infinite depth network has the term ||UJf||2,2 in the upper

bound. We leave the vast majority of the work in resolving these issues to future work,

although Section 4.2 takes some initial steps in resolving (i). We also leave for future work

the case of quantifying Sf − S′f 2 for two diffeomorphic manifolds ℳ and ℳ′. When ζ
is an isometry, it reduces to Theorem 3.2, since in this case we may choose ζ = ζ1, ζ2 =

id and note that ||id||∞ = 0. For a general diffeomorphism ζ, taking the infimum of ||ζ2||∞
over all factorizations ζ = ζ1 ∘ ζ2 leads to a bound where the first term depends on the

scale of the isometric invariance and the second term depends on the distance from ζ to

the isometry group Isom(ℳ) in the uniform norm. Letting J → ∞, we may also prove an

analogous theorem for the non-windowed scattering transform.

Theorem 4.2—Let ζ ∈ Diff(ℳ), and assume G(λ) ≤ e−λ. Then there is a constant
C(ℳ) < ∞ such that if ζ = ζ1 ∘ ζ2 for some isometry ζ1 ∈ Isom(ℳ) and diffeomorphism

ζ2 ∈ Diff(ℳ), then
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Sf − SV ζf 2 ≤ λd ζ2 ∞ f 2, (18)

for all functions f ∈ L2(ℳ) such that f(k) = f, φk = 0 whenever λk > λ.

The proofs of Theorems 4.1 and 4.2 are given in Appendix H.

4.2. Single-Filter Stability

Theorems 4.1 and 4.2 prove diffeomorphism stability for the geometric wavelet scattering

transform, but their proof techniques rely on f being bandlimited. In this section we discuss a

possible approach to proving a stability result for all f ∈ L2(ℳ).

As stated in Theorem 2.1, spectral integral operators are equivariant to the action of

isometries. This fact is crucial to proving Theorem 3.2 because it allows us to estimate

SJf − V ζSJf 2, 2 (19)

instead of

SJf − SJV ζf 2, 2 . (20)

In Mallat (2012), it is shown that the Euclidean scattering transform SEuc is stable to the

action of certain diffeomorphisms which are close to being translations. A key step in the

proof is a bound on the commutator norm ||[SEuc,Vζ]||, which then allows the author to

bound a quantity analogous to (19) instead of bounding (20) directly. This motivates us to

study the commutator of spectral integral operators with Vζ for diffeomorphisms which are

close to being isometries.

For technical reasons, we will assume that ℳ is two-point homogeneous, that is, for

any two pairs of points, (x1, x2), (y1, y2) such that r(x1, x2) = r(y1, y2), there exists an

isometry ζ ∈ Isom(ℳ) such that ζ(x1) = y1 and ζ(x2) = y2. In order to quantify how far a

diffeomorphism ζ ∈ Diff(ℳ) differs from being an isometry we will consider two quantities:

A1(ζ) = sup
x, y ∈ ℳ

x ≠ y

r(ζ(x), ζ(y)) − r(x, y)
r(x, y) ,

(21)

and

A2(ζ) = sup
x ∈ ℳ

| det[Dζ(x)] | − 1 sup
x ∈ ℳ

det Dζ−1(x) . (22)

Intuitively, A1 is a measure of how much ζ distorts distances, and A2 is a measure of how

much ζ distorts volumes. We let A(ζ) = max{A1(ζ),A2(ζ)} and note that if ζ is an isometry,

then A(ζ) = 0. We remark that A(ζ) defined here differs from the notion of diffeomorphism

size used in Theorems 4.1 and 4.2. It is an interesting research direction to understand the

differences between these formulations, and to understand more generally which definitions
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of diffeomorphism size geometric deep networks are stable to. The following theorem,

which is proved in Appendix I, bounds the operator norm of [Th, Vζ] in terms of A(ζ) and a

quantity depending upon h.

Theorem 4.3—Assume that ℳ is two-point homogeneous, and let ℎ ∈ L2(ℳ) be a spectral
filter. Then there exists a constant C(ℳ) > 0 such that for any diffeomorphism ζ ∈ Diff(ℳ),

Tℎ, V ζ ≤ C(ℳ)A(ζ)B(ℎ)

where

B(ℎ) = max ∑
k ∈ ℕ

ℎ(k)λk
(d + 1)/4, ∑

k ∈ ℕ
ℎ(k)2

1
2 .

Theorem 4.3 leads to the following corollary, which we prove in Appendix J

Corollary 4.4—Assume that ℳ is two-point homogeneous and that G(λ) ≤ e−λ, then

Ψj, V ζ ≤ C(ℳ)A(ζ)B ψj

where,

B ψj = max 2−(d + 1/2)(j − 1), 2−dj/4 .

In practice, the wavelet transform is implemented using finitely many wavelets. By the

triangle inequality, Corollary 4.4 leads to a commutator estimate for the finite wavelet

transform. Therefore, by the arguments used in the proof of Theorem 2.12 in Mallat (2012),

it follows that the geometric scattering transform is stable to diffeomorphisms on two-point

homogeneous manifolds when implemented with finitely many wavelets at each layer.

We do note however, that B(ψj) increases exponentially as j decreases to −∞. Therefore,

this argument only applies to a finite-wavelet implementation of the geometric scattering

transform. Mallat (2012) overcomes this difficulty using an almost orthogonality argument.

In the future, one might seek to adapt these techniques to the manifold setting. However,

there are numerous technical difficulties which are not present in the Euclidean setting.

5. Numerical results

In this section, we describe two numerical experiments to illustrate the utility of the

geometric wavelet scattering transform. We consider both traditional geometric learning

tasks, in which we compare to other geometric deep learning methods, as well as limited

training tasks in which the unsupervised nature of the transform is particularly useful. In

the former set of tasks, empirical results are not state-of-the-art, but they show that the

geometric scattering model is a good mathematical model for geometric deep learning.
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Specifically, in Section 5.1 we classify signals, corresponding to digits, on a fixed manifold,

the two-dimensional sphere. Then, in Section 5.2 we classify different manifolds which

correspond to ten different people whose bodies are positioned in ten different ways. The

back-end classifier for all experiments is an RBF kernel SVM.

In order to carry out our numerical experiments, it was necessary to discretize our manifolds

and represent them as graphs. We use triangle meshes for all manifolds in this paper, which

allows us to approximate the Laplace-Beltrami operator and integration on each manifold

via the approach described in Solomon et al. (2014). We emaphasize that this approximation

of the Laplace-Beletrami operator is not the standard graph Laplacian of the triangular mesh,

and thus the discretized geometric scattering transform is not the the same as the versions of

the graph scattering transform reported in Zou and Lerman (2019); Gama et al. (2019b,a);

Gao et al. (2019).

5.1. Spherical MNIST

In the first experiment, we project the MNIST dataset from Euclidean space onto a two-

dimensional sphere using a triangle mesh with 642 vertices. During the projection, we

generate two datasets consisting of not rotated (NR) and randomly rotated (R) digits. Using

the NR spherical MNIST database, we first investigate in Figure 3(a)subfigure the power

of the globally invariant wavelet scattering coefficients for different network depths L and

with J → ∞, which is equivalent to using the SL f representation defined in Section 3.3.

Here f is the projection of the digit onto the sphere. We observe increasing accuracy but

with diminishing returns across the range 0 ≤ L ≤ 3. Then on both the NR and R spherical

MNIST datasets, we calculate the geometric scattering coefficients SJ
Lf for J = −2 and

L = 2. Other values of J are also reported in Appendix K, in addition to further details

on how the spherical MNIST classification experiments were conducted. From Theorem

4.1, we know the scattering transform is stable to randomly generated rotations and Figure

3(b)subfigure shows the scattering coefficients capture enough rotational information to

correctly classify the digits.

5.2. FAUST

The FAUST dataset (Bogo et al., 2014) contains ten poses from ten people resulting in a

total of 100 manifolds represented by triangle meshes. We first consider the problem of

classifying poses. This task requires globally invariant features, and thus we compute the

globally invariant geometric wavelet scattering transform SLf of Section 3.3. Following the

common practice of other geometric deep learning methods (see, e.g., Litany et al., 2017;

Lim et al., 2019), we use 352 SHOT features (Tombari et al., 2010; Prakhya et al., 2015)

as initial node features f. We used 5-fold cross validation for the classification tests with

nested cross validation to tune the hyper-parameters of the RBF kernel SVM, as well as

the network depth L. We remark that tuning the network depth of the geometric scattering

transform is relatively simple as compared to fully learned geometric deep networks, since

the filters are predefined geometric wavelets. This is particularly important for smaller data

sets such as FAUST where there is a limited amount of training data. As indicated in Figure

3, we achieve 95% overall accuracy using the geometric scattering features, compared to
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92% accuracy achieved using only the integrals of SHOT features (i.e., restricting to L = 0).

We note that Masci et al. (2015) also considered pose classification, but the authors used a

different training/test split (50% for training and 50% for test in a leave-one-out fashion), so

our results are not directly comparable.

As a second task, we attempt to classify the people. This task is even more challenging

than classifying the poses since some of the people are very similar to each other. We

again performed 5-fold cross-validation, with each fold containing two poses from each

person to ensure the folds are evenly distributed. As shown in Table 1, we achieved 76%

accuracy on this task compared to the 61% accuracy using only integrals of SHOT features.

In order to further emphasize the difference between the discretized geometric scattering

transform and the graph scattering transform, we also attempted this task using the graph

scattering transform derived from the graph Laplacian of the manifold mesh, applied to

the SHOT features of each manifold. For this approach, which is representative of the

aforementioned graph scattering papers, we obtained 58% accuracy. This result is similar

to the 61% accuracy obtained by the baseline SHOT feature approach and empirically

indicates the importance of encoding geometric information into the scattering transform for

manifold-based tasks. More details regarding both tasks are in Appendix K.

6. Conclusion

We have constructed a geometric version of the scattering transform on a large class of

Riemannian manifolds and shown this transform is non-expansive, invariant to isometries,

and stable to diffeomorphisms. Our construction uses the spectral decomposition of the

Laplace-Beltrami operator to construct a class of spectral filtering operators that generalize

convolution on Euclidean space. While our numerical examples demonstrate geometric

scattering on two-dimensional manifolds, our theory remains valid for manifolds of any

dimension d, and therefore can be naturally extended and applied to higher-dimensional

manifolds in future work. Finally, our construction provides a mathematical framework that

enables future analysis and understanding of geometric deep learning.
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Appendix A.: Proof of Theorem 2.1

Theorem 2.1

For every spectral filter ℎ ∈ L2(ℳ) and for every f ∈ L2(ℳ),

TℎV ζf = V ζTℎf, ∀ζ ∈ Isom(ℳ) .
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We will prove a result that generalizes Theorem 2.1 to isometries between different

manifolds. This more general result will be needed to prove Theorem 3.5.

Before stating our more general result, we introduce some notation. Let ℳ and ℳ′ be

smooth compact connected Riemannian manifolds without boundary, and let ζ:ℳ ℳ′ be

an isometry. Since ℳ and ℳ′ are and isometric, their Laplace Beltrami operators Δ and Δ′
have the same eigenvalues, and we enumerate the eigenvalues of −Δ (and also of −Δ′) in
increasing order (repeating those with multiplicity greater than one) as 0 = λ0 < λ1 ≤ λ2

≤ … Recall that if ℎ ∈ L2(ℳ) is a spectral filter, then by definition, there exists a function

H:[0, ∞) ℝ such that

H λk : = ℎ(k), for all k ≥ 0,

and that

Kℎ(x, y) = ∑
k ≥ 0

ℎ(k)φk(x)φk(y) = ∑
k ≥ 0

H λk φk(x)φk(y) .

Therefore, we may define an operator Tℎ′ , on L2 ℳ′ , which we consider the analogue of Th,

as integration against the kernel

Kℎ′ (x, y): = ∑
k ≥ 0

H λk φk′ (x)φk′ (y),

where φ0′ , φ1′ , …, is an orthonormal basis of eigenfunction on L2 ℳ′  with −Δ′φk′ = λkφk′ .

With this notation, we may now state a generalized version of Theorem 2.1 (to recover

Theorem 2.1, we set ℳ′ = ℳ ).

Theorem A.1

Let ζ:ℳ ℳ′ be an isometry. Then for every spectral filter h and every f ∈ L2(ℳ),

Tℎ′ V ζ(f) = V ζTℎf .

Proof

For λ ∈ Λ, let πλ be the operator which projects a function f ∈ L2(ℳ) onto the

corresponding eigenspace Eλ, and let πλ′  be the analogous operator defined on L2 ℳ′ . Since

φk λk = λ forms an orthonormal basis for Eλ, we may write write πλ as integration against

the kernel K(λ)(x, y) defined in (3), i.e.,

πλf(x) = ∫ℳ
K(λ)(x, y)f(y)dy .
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Recalling from (4) that

Kℎ(x, y) = ∑
λ ∈ Λ

H(λ)K(λ)(x, y),

we see that

Tℎf = ∑
λ ∈ Λ

H(λ)πλf,

and likewise,

Tℎ′ f = ∑
λ ∈ Λ

H(λ)πλ′ f .

Therefore, by the linearity of Vζ, it suffices to show that

πλ′ V ζf = V ζπλf

for all f ∈ L2(ℳ) and all λ ∈ Λ. Let f ∈ L2(ℳ) and write

f = f1 + f2,

where f1 ∈ Eλ, f2 ∈ Eλ
⊥. Since ζ is an isometry, we have V ζf1 ∈ Eλ′  and V ζf2 ∈ Eλ′

⊥.

Therefore,

πλ′ V ζf = πλ′ V ζf1 + πλ′ V ζf2 = V ζf1 = V ζπλf

as desired. ■

Appendix B.: Proof of Proposition 2.2

Proposition 2.2

If {hγ : γ ∈ Γ} satisfies (5), then ℋ:L2(ℳ) ℓ2 L2(ℳ)  is an isometry, i.e.,

ℋf
2, 2

2 : = ∑
γ ∈ Γ

f * ℎγ 2
2 = f

2

2, ∀f ∈ L2(ℳ) .

Proof

Analogously to Parseval’s theorem, it follows from the Fourier inversion formula (1) and the

fact that {φk}k≥0 is an orthonormal basis, that

Perlmutter et al. Page 20

Proc Mach Learn Res. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



f
2

2 = ∑
k ≥ 0

f(k)
2

.

Similarly, it follows from (2) that

f * ℎγ 2
2 = ∑

k ≥ 0
ℎγ(k) 2 f(k)

2
.

Therefore, using the Littlewood Paley condition (5), we see

ℋf
2, 2

2
= ∑

γ ∈ Γ
f * ℎγ 2

2

= ∑
γ ∈ Γ

∑
k ≥ 0

ℎγ(k) 2 f(k)
2

= ∑
k ≥ 0

f(k)
2

∑
γ ∈ Γ

ℎγ(k) 2

= ∑
k ≥ 0

f(k)
2

= f
2

2
.

■

Appendix C.: Proof of Proposition 2.3

Proposition 2.3

For any J ∈ ℤ, W J :L2(ℳ) ℓ2 L2(ℳ)  is an isometry, i.e.,

W Jf 2, 2 = f 2, ∀f ∈ L2(ℳ) .

Proof

We will show that the frame {ϕJ , ψj : j ≤ J} satisfies the Littlewood Paley condition (5), i.e.

that

ϕJ(k) 2 + ∑
j ≤ J

ψj(k) 2 = 1, ∀k ≥ 0.

The result will then follow from Proposition 2.2. Recall that ϕJ is defined by ϕJ(k) = G 2Jλk

for some non-negative, non-increasing function G such that G(0) = 1. Therefore, from (6),

we see that that
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ψj(k) 2 = ϕj − 1(k) 2 − ϕj(k) 2 = G 2j − 1λk
2 − G 2jλk

2,

and so,

ϕJ(k) 2 + ∑
j ≤ J

ψj(k) 2 = G 2Jλk
2 + ∑

j ≤ J
G 2j − 1λk

2 − G 2jλk
2

= lim
j − ∞

G 2jλk
2

= G(0)
2

= 1, ∀k ≥ 0.

■

Appendix D.: The Proof of Theorem 3.2

Theorem 3.2

Let ζ ∈ Isom(ℳ) and suppose G(λ) ≤ e−λ. Then there is a constant C(ℳ) < ∞ such that for

all f ∈ L2(ℳ),

SJf − SJV ζf 2, 2 ≤ C(ℳ)2−dJ ζ ∞ UJf 2, 2, (11)

and

SJ
Lf − SJ

LV ζf 2, 2 ≤ C(ℳ)(L + 1)1/22−dJ ζ ∞ f 2 . (12)

The proof of Theorem 3.2 relies on the following two lemmas.

Lemma D.1

There exists a constant C(ℳ) > 0 such that for every spectral filter h and for every
ζ ∈ Diff(ℳ),

Tℎf − V ζTℎf 2 ≤ C(ℳ) ∑
k ≥ 0

ℎ(k)λk
d/2 ζ

∞
f

2
, ∀f ∈ L2(ℳ) .

Moreover, if |ℎ(k) | ≤ e−2Jλk, then there exists a constant C(ℳ) > 0 such that for any

ζ ∈ Diff(ℳ)

Tℎf − V ζTℎf 2 ≤ C(ℳ)2−dJ ζ ∞ f 2, ∀f ∈ L2(ℳ) .
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Lemma D.2

For any f ∈ L2(ℳ),

UJ
Lf 2, 2 ≤ (L + 1)1/2 f 2 .

Proof

[The Proof of Theorem 3.2] Theorem 2.1 proves that spectral filter convolution operators

commute with isometries. Since the absolute value operator does as well, it follows that

V ζSJ
L = SJ

LV ζ, and therefore

SJ
Lf − SJ

LV ζf 2, 2 = SJ
Lf − V ζSJ

Lf 2, 2 .

Since SJ
L = AJUJ

L, we see that

SJ
Lf − V ζSJ

Lf 2, 2 = AJUJ
Lf − V ζAJUJ

Lf 2, 2 ≤ AJ − V ζAJ UJ
Lf 2, 2 . (23)

Since AJ = TϕJ and ϕJ(k) ≤ e−2Jλk, Lemma D.1 shows that

AJ − V ζAJ ≤ C(ℳ)2−Jd ζ ∞ .

Equation (12) follows from Lemma D.2, and (11) follows by letting L increase to infinity in

(23). Therefore, the proof is complete pending the proof of Lemmas D.1 and D.2. ■

Proof

[The Proof of Lemma D.2] Let

UJ
Lf: = UJ

L j1, …, jL f: ji ≤ J ∀1 ≤ i ≤ L
= f ∗ ψj1 ∗ ψj2 ∗ ⋯ ∗ ψjL : ji ≤ J ∀1 ≤ i ≤ L .

Then, by construction,

UJ
Lf 2, 2

2 = ∑
ℓ = 0

L
UJ

ℓf 2, 2
2

(24)

where we adopt the convention that UJ
0f = f . Since the wavelet transform and the

absolute value operator are both non-expansive, it follows that UJ
1  is non-expansive as well.

Therefore, since UJ
L = UJ

1UJ
L − 1, we see
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UJ
Lf 2, 2 ≤ UJ

L − 1f 2, 2 ≤ … ≤ UJ
1f 2, 2 ≤ f 2 .

Therefore, (24) implies

UJ
L 2, 2

2 = ∑
ℓ = 0

L
UJ

ℓ
2, 2
2

≤ (L + 1) f
2

2

as desired. ■

In order to prove Lemma D.1, we will first prove the following lemma.

Lemma D.3

For λ ∈ Λ, let K(λ) be the kernel defined as in (3), and let m(λ) be the multiplicity of λ.
Then, there exists a constant C(ℳ) > 0 such that

∇K(λ)
∞ ≤ C(ℳ)m(λ)λd/2, ∀λ ∈ Λ . (25)

As a consequence, if Kh is a spectral kernel, then

∇Kℎ ∞ ≤ C(ℳ) ∑
λ ∈ Λ

H(λ)m(λ)λd/2 = C(ℳ) ∑
k ≥ 0

ℎ(k)λk
d/2 . (26)

Furthermore, if ℳ is homogeneous, i.e., if for all x, y ∈ ℳ, there exists an isometry mapping
x to y, then

∇K(λ)
∞ ≤ C(ℳ)m(λ)λ(d + 1)/4 (27)

and thus,

∇Kℎ ∞ ≤ C(ℳ) ∑
λ ∈ Λ

H(λ)m(λ)λ(d + 1)/4 = C(ℳ) ∑
k ∈ ℕ

ℎ(k)λk
(d + 1)/4 . (28)

Proof

For any k such that λk = λ, it is a consequence of Hörmander’s local Weyl law (Hörmander

(1968); see also Shi and Xu (2010)) that

φk ∞ ≤ C(ℳ)λ(d − 1)/4 .

Theorem 1 of Shi and Xu (2010) shows that

∇φk ∞ ≤ C(ℳ) λ φk ∞ .

Perlmutter et al. Page 24

Proc Mach Learn Res. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Therefore,

∇K(λ)(x, y) 2 = ∑
k:λk = λ

∇φk(x)φk(y)
2

≤ ∑
k:λk = λ

∇φk(x) 2 ∑
k:λk = λ

φk(y) 2

≤ C(ℳ)m(λ)λ(d − 1)/2 ∑
k:λk = λ

∇φk(x) 2

≤ C(ℳ)m(λ)λ(d + 1)/2 ∑
k:λk = λ

φk ∞
2

≤ C(ℳ)m λ 2λd .

This implies (25). Now, if we assume that ℳ is homogeneous, then Theorem 3.2 of Evariste

(1975) shows that

∑
k:λk = λ

φk(y) 2 = C(ℳ)m(λ) .

Substituting this into the above string of inequalities yields (27). Equations (26) and (28)

follow by recalling from (4) that

Kℎ(x, y) = ∑
λ ∈ Λ

H(λ)K(λ)(x, y),

and applying the triangle inequality. ■

Now we may prove Lemma D.1.

Proof [The Proof of Lemma D.1] Let Kh be the kernel of Th. Then by the Cauchy-Schwartz

inequality and the fact that V ζf(x) = f ζ−1(x) ,

Tℎf(x) − V ζTℎf(x) = ∫ℳ
Kℎ(x, y) − Kℎ ζ−1(x), y f(y)dy

≤ ‖f‖2 ∫ℳ
Kℎ(x, y) − Kℎ ζ−1(x), y 2dy

1/2

≤ ‖f‖2‖∇Kℎ‖∞ ∫ℳ
r x, ζ−1(x) 2dy

1/2

≤ ‖f‖2 vol(ℳ)‖∇Kℎ‖∞‖ζ‖∞ .

It follows that

Tℎf − V ζTℎf 2 ≤ vol(ℳ) ∇Kℎ ∞ ζ ∞ . (29)

Lemma D.3 shows
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∇Kℎ ∞ ≤ C(ℳ) ∑
k ≥ 0

ℎ(k)λk
d/2 .

and therefore

Tℎf − V ζTℎf 2 ≤ C(ℳ) ∑
k ≥ 0

ℎ(k)λk
d/2 ζ

∞
.

Now suppose that G(λ) ≤ e−λ. Theorem 2.4 of Bérard et al. (1994) proves that for any

x ∈ ℳ, α ≥ 0, and t > 0,

∑
k ≥ 1

λk
αe−tλk φk(x) 2 ≤ C(ℳ)(α + 1)t−(d + 2α)/2 . (30)

Integrating both sides over M yields:

∑
k ≥ 1

λk
αe−tλk ≤ C(ℳ)(α + 1)t−(d + 2α)/2 . (31)

Using the assumption that that |ℎ(k) | ≤ e−2Jλk, (29) and (31) with α = d/2 and t = 2J, we see

Tℎf − V ζTℎf 2 ≤ C(ℳ) ∑
k ≥ 1

λk
d/2e−2Jλk ζ

∞

≤ C(ℳ)2−dJ ζ
∞

.

■

Appendix E.: The Proof of Theorem 3.3

Theorem 3.3

Iff ∈ L2(ℳ), then Sf ∈ ℓ2 when Sf 2 ≤ f 2 .

Proof

Let p = ∅ or p = (j1, …, jm) denote a scattering path, and let

P: = ∅ ∪ j1, …, jm :m ≥ 1, ji ∈ ℤ∀1 ≤ i ≤ m (32)

denote the set of all scattering paths. Denote by PJ the set of all paths with scales no larger

than J,

PJ : = ∅ ∪ j1, …, jm :m ≥ 1, ji ≤ J ∀1 ≤ i ≤ m .
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Using (13), Fatou’s Lemma implies that for any x ∈ ℳ,

vol(ℳ)−1‖Sf‖2
2 = 1

vol(ℳ) ∑
p ∈ P

|Sf(p) |2 = ∑
p ∈ P

lim
J ∞

SJ[p]f(x) 2

≤ lim
J ∞

∑
p ∈ PJ

SJ[p]f(x) 2 .
(33)

We now integrate both sides of (33) over ℳ, and apply Fatou’s Lemma and Tonelli’s

Theorem to obtain

Sf
2

2
= ∫ℳ

lim
J ∞

∑
p ∈ PJ

SJ[p]f(x) 2dx ≤ lim
J ∞

∑
p ∈ PJ

∫ℳ
SJ[p]f(x) 2dx

= lim
J ∞

∑
p ∈ PJ

SJ[p]f 2
2 = lim

J ∞
SJf 2, 2

2 ≤ f
2

2
,

where the last inequality follows from Proposition 3.1 by setting f1 = f and f2 = 0. ■

Appendix F.: The Proof of Proposition 3.4

Proposition 3.4

Let ζ ∈ Isom ℳ, ℳ′ , let f ∈ L2(ℳ), and let f′ := Vζf be the corresponding signal defined on
ℳ′. Then Sf = S′f′.

Proof

Recall the set P of all scattering paths from (32). We need to prove S[p]f = S′V ζf[p]
for all p ∈ P. If p = ∅ then Sf( ∅ ) = f L1(ℳ) = V ζf L1 ℳ′ = S′V ζf( ∅ ) since ζ is an

isometry. Theorem A.1, stated in Appendix A, proves that Tℎ′ V ζf = V ζTℎf for any spectral

filter ℎ ∈ L2(ℳ), where Tℎ′  is the analogue of Th on L2 ℳ′  (defined precisely in Appendix

A). Since the modulus operator also commutes with isometries, it follows that U′[p]Vζf =
VζU[p]f for any p ∈ P. Thus, since ζ is an isometry,

S′V ζf(p) = U′[p]V ζf L1 ℳ′ = V ζU[p]f L1 ℳ′ = U[p]f L1(ℳ) = Sf(p) .

■

Appendix G.: The Proof of Theorem 3.5

Theorem 3.5

Let ζ1, ζ2 ∈ Isom ℳ, ℳ′  and assume that G(λ) ≤ e−λ. Then there is a constant C(ℳ) < ∞
such that
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SJf − V ζ2
−1 SJ ′V ζ1f 2, 2 ≤ C(ℳ)2−dJ ζ2

−1 ∘ ζ1 ∞ UJf 2, ∀f ∈ L2(ℳ) . (14)

and

SJ
Lf − V ζ2

−1 SJ
L ′V ζ1f 2, 2 ≤ C(ℳ)(L + 1)1/22−dJ ζ2

−1 ∘ ζ1 ∞ f 2, ∀f ∈ L2

(ℳ) .
(15)

Proof

As in the proof of Theorem 3.2, we observe that since spectral filter convolution

operators and the absolute value operator both commute with isometries, it follows that

SJ
L ′V ζ1 = V ζ1SJ

L.

Therefore

SJ
Lf − V ζ2

−1 SJ
L ′V ζ1f 2, 2 = SJ

Lf − V ζ2
−1V ζ1SJ

Lf 2, 2 = SJ
Lf − V ζ2

−1 ∘ ζ1SJ
Lf 2, 2 .

Equation (15) now follows by applying (12). The proof of (14) is similar and follows by

applying (11). ■

Appendix H.: The Proof of Theorems 4.1 and 4.2

Theorem 4.1

Let ζ ∈ Diff(ℳ), and assume G(λ) ≤ e−λ. Then there is a constant C(ℳ) < ∞ such that if ζ =

ζ1 ∘ ζ2 for some isometry ζ1 ∈ Isom(ℳ) and diffeomorphism ζ2 ∈ Diff(ℳ), then

SJf − SJV ζf 2, 2 ≤ C(ℳ) 2−dJ ζ1 ∞ UJf 2 + λd ζ2 ∞ f 2 , (16)

and

SJ
Lf − SJ

LV ζf 2, 2 ≤ C(ℳ) (L + 1)1/22−dJ ζ1 ∞ + λd ζ2 ∞ f 2, (17)

for all functions f ∈ L2(ℳ) such that f(k) = f, φk = 0 whenever λk > λ.

Theorem 4.2

Let ζ ∈ Diff(ℳ), and assume G(λ) ≤ e−λ. Then there is a constant C(ℳ) < ∞ such that if ζ =

ζ1 ∘ ζ2 for some isometry ζ1 ∈ Isom(ℳ) and diffeomorphism ζ2 ∈ Diff(ℳ), then

Sf − SV ζf 2 ≤ λd ζ2 ∞ f 2, (18)

for all functions f ∈ L2(ℳ) such that f(k) = f, φk = 0 whenever λk > λ.
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In order to prove Theorem 4.1, we will need the following lemma.

Lemma H.1

If f ∈ L2(ℳ) is λ-bandlimited, i.e., hf,ϕki = 0 whenever λk > λ, then there exists a constant
C(ℳ) < ∞ such that

f − V ζf 2 ≤ C(ℳ)λd ζ ∞ f 2

for all ζ ∈ Diff(ℳ).

Proof

As in the proof of Theorem A.1, let Λ denote the set of unique eigenvalues of −Δ, and let πλ

be the operator that projects a function f ∈ L2(ℳ) onto the eigenspace Eλ. Let

Pλ: = ∑
λ ≤ λ

πλ,

be the operator which projects a function f ∈ L2(ℳ) onto all eigenspaces with eigenvalues

less than or equal to λ. Note that Pλ can be written as integration against the kernel

K(x, y) = ∑
λk ≤ λ

φk(x)φk(y) = ∑
λ ≤ λ

K(λ)(x, y),

where K(λ) is defined as in (3). If f is any λ-bandlimited function in L2(ℳ), then Pλf = f,
and so similarly to the proof of Lemma D.1, we see that

f(x) − V ζf(x) = Pλf(x) − V ζPλf(x)

= ∫ℳ
K(x, y)f(y)dy − ∫ℳ

K ζ−1(x), y f(y)dy

≤ f
2 ∫ℳ

K(x, y) − K ζ−1(x), y 2dy
1/2

≤ f
2

ζ
∞

vol(ℳ) ∇K
∞

,

which implies

f − V ζf 2 ≤ vol(ℳ) ∇K ∞ ζ ∞ f 2 .

Lemma D.3 shows that for all λ

∇K(λ) ∞ ≤ C(ℳ)m(λ)λd/2 .

Therefore,
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∇K
∞

≤ C(ℳ) ∑
λk ≤ λ

λk
d/2 ≤ C(ℳ)N(λ)λd/2,

where N(λ) is the number of eigenvalues less than or equal to λ. Weyl’s law (see for

example Ivrii (2016)) implies that

N(λ) ≤ C(ℳ)λd/2,

and so

∇K ∞ ≤ C(ℳ)λd .

■

Proof [The Proof of Theorem 4.1]

Let ζ = ζ2 ∘ ζ1 be a factorization of ζ such that ζ1 is an isometry and ζ2 is a

diffeomorphism. Then since Vζf = f ∘ ζ−1, we see that Vζ = Vζ2Vζ1. Therefore, for all

λ-bandlimited functions f

SJ
Lf − SJ

LV ζf 2, 2 ≤ SJ
Lf − SJ

LV ζ1f 2, 2 + SJ
LV ζ1f − SJ

LV ζ2V ζ1f 2, 2 .

By (12), we have that

SJ
Lf − SJ

LV ζ1f 2, 2 ≤ C(ℳ)2−Jd ζ1 ∞(L + 1)1/2 f 2,

and by Proposition 3.1 and Lemma H.1 we see

SJ
LV ζ1f − SJ

LV ζ2V ζ1f 2, 2 ≤ V ζ1f − V ζ2V ζ1f 2 ≤ C(ℳ)λd ζ2 ∞ V ζ1f 2 .

Since ζ1 is an isometry, we observe that ||Vζ1f||2 = ||f||2. Combining this with the two

inequalities above completes the proof of (17). The proof of (16) is similar, but uses (11)

instead of (12). ■

Proof [The Proof of Theorem 4.2]

Repeating the proof of Proposition 3.4 we see that

Sf − SV ζf 2, 2 ≤ lim
J ∞

SJf − SJV ζf 2, 2 .

Therefore, the result follows from Theorem 4.1 by taking J → ∞ on the right hand side of

(16). ■
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Appendix I.: The Proof of Theorem 4.3

Theorem 4.3 Assume that ℳ is two-point homogeneous, and let ℎ ∈ L2(ℳ) be a spectral
filter. Then there exists a constant C(ℳ) > 0 such that for any diffeomorphism ζ ∈ Diff(ℳ),

Tℎ, V ζ ≤ C(ℳ)A(ζ)B(ℎ)

where

B(ℎ) = max ∑
k ∈ ℕ

ℎ(k)λk
(d + 1)/4, ∑

k ∈ ℕ
ℎ(k)2

1
2 .

In order to prove Theorem 4.3, we will need the an auxiliary result, which provides a

commutator estimate for operators with radial kernels. We will say that a kernel operator

Tf(x) = ∫ℳ
K(x, y)f(y)dy

is radial if

K(x, y) = κ(r(x, y))

for some κ: [0, ∞) ℂ. The following theorem establishes a commutator estimate for

operators with radial kernels.

Theorem I.1

Let T be a kernel integral operator with a radial kernel K(x, y) = κ(r(x, y)) for some

κ ∈ C1(ℝ). Then there exists constants C1(ℳ, K) and C2(ℳ, K) such that

T , V ζ f 2 ≤ f 2 C1(ℳ, K)A1(ζ) + C2(ℳ, K)A2(ζ) .

Here A1(ζ) and A2(ζ) are defined as in (21) and (22) respectively,

C1(ℳ, K) = ∇K ∞diam(ℳ)vol(ℳ),

and

C2(ℳ, K) = K L2(ℳ × ℳ) .

Proof We first compute
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T, V ζ f(x) = ∫ℳ
K(x, y)f ζ−1(y) dy − ∫ℳ

K ζ−1(x), y f(y)dy

= ∫ℳ
K(x, ζ(y))f(y) det[Dζ(y)] dy − ∫ℳ

K ζ−1(x), y f(y)dy

= ∫ℳ
f(y) K(x, ζ(y)) det[Dζ(y)] − K ζ−1(x), y dy

≤ ∣ ∫ℳ
f(y) K(x, ζ(y))[ det[Dζ(y)] − 1]dy + ∫ℳ

f(y) K(x, ζ(y)) − K ζ−1(x), y dy ∣

≤ det[Dζ(y)] − 1
∞ ∫ℳ

f(y)K(x, ζ(y))dy + ∫ℳ
f(y) K(x, ζ(y)) − K ζ−1(x), y dy .

Therefore, by the Cauchy-Schwartz inequality,

‖ T , V ζ f‖2 ≤ ‖f‖2 ‖ ∣ det[Dζ(y)] ∣ − 1‖∞ ∫ℳ∫ℳ
K(x, ζ(y))

2
dydx

1
2

+ ∫ℳ∫ℳ
K(x, ζ(y)) − K ζ−1(x), y 2dydx

1
2 .

We may bound the first integral by observing

∫ℳ∫ℳ
K(x, ζ(y))

2
dydx ≤ det Dζ−1(y) ∞

2 ∫ℳ∫ℳ
K(x, y)

2
dydx .

To bound the second integral observe, that by the mean value theorem and the assumption

that K is radial, we have

∫ℳ∫ℳ
K(x, ζ(y)) − K ζ−1(x), y 2dydx

= ∫ℳ∫ℳ
κ(r(x, ζ(y))) − κ r ζ−1(x), y 2dydx

≤ κ′ ∞
2 ∫ℳ∫ℳ

r(x, ζ(y)) − r ζ−1(x), y 2dydx

≤ κ′ ∞A1(ζ) 2∫ℳ∫ℳ
r(x, ζ(y))

2
dydx

≤ κ′ ∞A1(ζ)diam(ℳ)vol(ℳ) 2 .

Lastly, since K(x, y) = κ(r(x, y)), we see that

∇K ∞ = κ′ ∞,

which completes the proof. ■

Proof

[The Proof of Theorem 4.3] We write T = Th and K = Kh. If ℳ is two-point homogeneous

and r(x,y) = r(x′, y′), then by the definition of two-point homogeneity there exists an

isometry ζ mapping x ⟼ x′ and y ⟼ y′. Therefore, we may use the proof of Theorem
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2.1 to see that K(x′, y′) = K(x, y). It follows that K(x, y) is radial and so we may write K(x,
y) = κ(r(x, y)) for some κ ∈ C1.

Applying Theorem I.1, we see that

T, V ζ ≤ C(ℳ) ∇K ∞A1(ζ) + K L2(ℳ × ℳ)A2(ζ) .

Lemma D.3 implies that

∇K
∞

≤ C(ℳ) ∑
k ∈ ℕ

H λk λk
(d + 1)/4,

and since φk k = 0
∞  forms an orthonormal basis for L2(ℳ), it can be checked that

K
L2(ℳ × ℳ)

= ∑
k = 0

∞
H λk

2
1/2

.

Therefore, the proof is complete since

A(ζ) = max A1(ζ), A2(ζ)

and

B(ℎ) = max ∑
k ∈ ℕ

H λk λk
(d + 1)/4, ∑

k ∈ ℕ
H λk

2
1
2 .

■

Appendix J.: The Proof of Corollary 4.4

Corollary 4.4

Assume that ℳ is two-point homogeneous and that G(λ) ≤ e−λ, then

Ψj, V ζ ≤ C(ℳ)A(ζ)B ψj

where,

B ψj = max 2−(d + 1/2)(j − 1), 2−dj/4 .

Proof

By the definition of ψj and the assumption that G(λ) ≤ e−λ, we have that ψj(0) = 0 and
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ψj(k) ≤ ϕj − 1(k) ≤ e−2j − 1λk

for k ≥ 1. Therefore, by Theorem 4.3,

Ψj, V ζ ≤ C(ℳ)A(ζ)B ψj

where,

B ψj = max ∑
k ≥ 1

e−2j − 1λkλk
(d + 1)/4, ∑

k ≥ 1
e−2jλk

1
2 .

Equation (30) implies that

∑
k ≥ 1

e−2j − 1λkλk
(d + 1)/4 ≤ C(ℳ)2−(d + 1/2)(j − 1)

and that

∑
k ≥ 1

e−2jλk ≤ C(ℳ)2−dj/2

thus completing the proof. ■

Appendix K.: Additional details of classification experiments

K.1. Spherical MNIST

For all spherical MNIST experiments, including those reported in Section 5.1, we used the

following procedure. Since the digits six and nine are impossible to distinguish in spherical

MNIST, we removed the digit six from the dataset. The mesh on the sphere consisted of 642

vertices, and to construct the wavelets on the sphere, all 642 eigenvalues and eigenfunctions

of the approximate Laplace-Beltrami operator were used. For the range of scales we chose

−8 ≤ j ≤ min(0, J). Training and testing were conducted using the standard MNIST training

set of 60,000 digits and the standard testing set of 10,000 digits, projected onto the sphere.

The training set was randomly divided into five folds, of which four were used to train the

RBF kernel SVM, taking as input the relevant geometric scattering representation of each

spherically projected digit, and one was used to validate the hyper-parameters of the RBF

kernel SVM (see Appendix K.3).

On both the non-rotated and randomly rotated spherical MNIST datasets, we calculated the

geometric scattering coefficients SJ
Lf and downsampled the resulting scattering coefficient

functions (e.g., f ∗ ϕJ(x) and |f ∗ ψj| ∗ ϕJ(x)). For J → ∞ we selected one coefficient since
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they are all the same (recall (13)). With J = 0, we selected 4 coefficients per function; with

J = −1, we selected 16 coefficients; with J = −2, we selected 64 coefficients. The selected

coefficients were determined by finding 4, 16,and 64 nearly equidistant points x on the

sphere. Classification results on the test set for a fixed network depth of L = 2 and for the

different values of J are reported in Table 2 below. Figure 3(a)subfigure reports classification

results for J → ∞ and for 0 ≤ L ≤ 3.

K.2. FAUST

The FAUST dataset Bogo et al. (2014) consists of 100 manifolds corresponding to ten

distinct people in ten distinct poses. Each manifold is approximated by a mesh with

6890 vertices. We used the 512 smallest eigenvalues and corresponding eigenfunctions to

construct the geometric wavelets. During cross validation, in addition to cross validating the

SVM parameters (see Section K.3 below), we also cross validated the depth of the scattering

network for 0 ≤ L ≤ 2. For the classification test, we performed 5 fold cross validation

with a training/validation/test split of 70%/10%/20% for both pose classification and person

classification. The range of j is chosen as −11 ≤ j ≤ 0.

We report the frequency of each network depth L selected during the hyperparameter cross

validation stage. Since there are five test folds and eight validation folds, the depth is

selected 40 times per task. For pose classification, L = 0 was selected 19 times, L = 1 was

selected 11 times, and L = 2 was selected 10 times. For person classification, L = 0 was

selected 5 times, L = 1 was selected 29 times, and L = 2 was selected 6 times. The results

indicate the importance of avoiding overfitting with needlessly deep scattering networks,

while at the same time highlighting the task dependent nature of the network depth (compare

as well to the MNIST results reported above and in the main text).

K.3. Parameters for RBF kernel SVM

We used RBF kernel SVM for all classification tasks and cross validated the

hyperparameters. In the two FAUST classification tasks of Section 5.2, for the kernel width

γ, we chose from {0.001, 0.005, 0.01, 0.02, 0.04}, while for the penalty C we chose from

{50, 100, 250, 400, 500}. For the spherical MNIST classification task of Section 5.1, for γ
we chose from {0.00001, 0.0001, 0.001} and for C we chose from {25, 100, 250, 500}.
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Figure 1:
Geometric wavelets on the FAUST mesh with G(λ) = e−λ. From left to right j =
−1,−3,−5,−7,−9. Positive values are colored red, while negative values are dark blue.
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Figure 2:

The geometric wavelet scattering transform SJ
L, illustrated for L = 2.
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Figure 3:
Spherical MNIST classificaion results.
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Table 1:

Manifold classification on FAUST dataset with two tasks.

Task/Model SHOT only Geometric scattering

Pose classification 0.92 0.95

Person classification 0.61 0.76
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Table 2:

Geometric wavelet scattering classification results with with network depth L = 2 for different J on non-rotated

and rotated spherical MNIST

J NR R

J → ∞ 0.91 0.91

J = 0 0.94 0.94

J = −1 0.95 0.95

J = −2 0.95 0.95
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