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Summary

The “omnigenic” model of the genetic architecture of complex traits proposed two categories of 

causal genes, core and peripheral. Core genes are hypothesized to directly regulate disease and 

may serve as therapeutic targets. Using a cell-type and timepoint-specific gene co-expression 

network for mineralizing osteoblasts, we identify a co-expression module enriched for genes 

implicated by bone mineral density (BMD) GWAS, correlated with in vitro osteoblast 

mineralization, and associated with skeletal phenotypes in human monogenic disease and mouse 

knockouts. Four genes from this module (B4GALNT3, CADM1, DOCK9, and GPR133) are 

located within BMD GWAS loci with colocalizing expression quantitative trait loci (eQTL) and 

exhibit altered BMD in mouse knockouts, suggesting that they are causal genetic drivers of BMD 

in humans. Our network-based approach identifies a “core” module for BMD and provides a 

resource for expanding our understanding of the genetics of bone mass.

Keywords

osteoporosis; co-expression network; GWAS; bone mineral density; core genes

Lead Contact:Charles R. Farber, crf2s@virginia.edu, Center for Public Health Genomics, University of Virginia, P.O. Box 800717, 
Charlottesville, VA 22908, USA, Tel. 434-243-8584.
Present Address for Dr. Cheryl Ackert-Bicknell: Department of Orthopedics, University of Colorado Hospital, Aurora, CO, USA
Present Address for Dr. Olivia Sabik: Data Science Group, Integral Health, Boston, MA, USA
Author Contributions
Conceptualization, O.L.S., C.L.A-B., C.R.F.; Methodology, G.M.C., O.L.S; Investigation, G.M.C, O.L.S; Formal Analysis, O.L.S, 
E.T.; Writing – Original Draft, O.L.S.; Writing – Review & Editing, O.L.S., C.L.A-B., C.R.F.; Visualization, O.L.S.; Supervision, 
C.R.F; Funding Acquisition, C.L.A-B., C.R.F.

Declaration of Interests
The authors declare no competing interests.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2021 August 06.

Published in final edited form as:
Cell Rep. 2020 September 15; 32(11): 108145. doi:10.1016/j.celrep.2020.108145.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Osteoporosis is a disease characterized by low bone mineral density (BMD) and an 

increased risk of fracture (Black and Rosen, 2016). Worldwide, it is one of the most 

common diseases, affecting over 200 million individuals and causing 8.9 million fractures 

annually (Johnell and Kanis, 2006). Although osteoporosis is a multifactorial disease 

influenced by both environmental and genetic variation, fracture-related traits are 

influenced, in large part, by genetics (h2>0.5) (Ralston and de Crombrugghe, 2006; Ralston 

and Uitterlinden, 2010; Zheng et al., 2011). Over the last decade large-scale genome wide 

association studies (GWASs) have begun to dissect the genetics basis of bone traits with a 

primary focus on BMD (Hsu et al., 2020; Sabik and Farber, 2016) . These studies have been 

tremendously successful, identifying over 1100 independent BMD associations (Estrada et 

al., 2012; Kemp et al., 2017; Morris et al., 2018). However, despite the wealth of genetic 

signals, the genes and mechanisms through which these associations impact bone remain 

largely unknown (Hsu et al., 2020; Sabik and Farber, 2016).

Recently, the “omnigenic model” was proposed as a framework for understanding the 

genetic architecture of complex traits, such as BMD (Boyle et al., 2017a; Liu et al., 2019). 

The model posits that all genes expressed in disease-relevant cell-types have the potential to 

contribute to disease variation. One of the key concepts of the omnigenic model is the 

classification of causal genes as either “core” or “peripheral”. Core genes are predicted to 

directly modulate traits; whereas, peripheral genes are expected to impact traits via their 

effects on networks of core genes (Liu et al., 2019). The distinction between core and 

peripheral genes is logical given the evidence demonstrating that the contributions of genes 

to a disease or phenotype are not equal. As an example, RUNX2 is a transcription factor and 

master regulator of osteoblast activity and bone formation that initiates a transcriptional 

program absolutely required for the formation of a mineralized skeleton (Komori, 2009). In 

contrast, hundreds of genes have been identified participating in myriad pathways whose 

absence has subtle, often context-dependent (such as age and sex), effects on bone (Estrada 

et al., 2012; Kemp et al., 2017; Morris et al., 2019). Furthermore, we know the same 

distinction lies in biological processes, some of which play an intimate role in the regulation 

of a trait, while others play minor accessory roles. Thus, the identification of causal genes 

from GWAS data and the labeling of such genes as core or peripheral has the potential to 

highlight previously undiscovered key regulatory genes for specific trait-related biological 

processes, which may be more ideal therapeutic targets.

There are two main challenges in the identification of core genes. The first is how to 

precisely define them (Boyle et al., 2017b; Cox, 2017; Liu et al., 2019; Wray et al., 2018). In 

the omnigenic model, a gene is defined as a “core” gene “if and only if the gene product 

(protein, or RNA for a noncoding gene) has a direct effect—not mediated through regulation 

of another gene—on cellular and organismal processes leading to a change in the expected 

value of a particular phenotype” (Boyle et al., 2017a; Liu et al., 2019). This statistical 

definition is convenient for explaining the omnigenic model, but difficult to utilize for the 

identification of core genes in practice. It is also very strict; e.g. is RUNX2, as described 

above, a core gene for BMD? Instead we propose to use a set of biologically motivated 

criteria to distinguish genes with core-like properties from those that are likely peripheral by 
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leveraging known pathways and processes that are essential to a disease-associated trait. For 

example, we would expect the expression of genes with core-like properties operating in 

pathways of critical importance in the regulation of BMD to be correlated with BMD and 

their severe perturbation to have a substantial impact on BMD (e.g., monogenic disease 

genes).

The second challenge is designing a strategy to identify genes with core-like properties, 

since GWAS alone is incapable of determining whether a locus is driven by a core or 

peripheral gene. One of the primary tenets of the omnigenic model is that peripheral genes 

account for a substantial component of the heritability of a trait because their effects are 

amplified by interactions with networks of co-expressed core genes (Liu et al., 2019). If one 

expects core genes to be co-expressed then integrating the results of GWAS with co-

expression networks, which reflect the transcriptional programs associated with the trait of 

interest, is a logical approach to identify modules of genes with core-like properties. A 

number of studies have already successfully used co-expression networks to inform GWAS, 

however this approach has not been used in the context of the omnigenic model (Civelek and 

Lusis, 2014; Eising et al., 2016; Kogelman et al., 2014; Mäkinen et al., 2014; Rau et al., 

2017).

Here, we combine weighted gene co-expression network analysis (WGCNA) and BMD 

GWAS data to identify genes that are causal genetic drivers of BMD with core-like 

properties. Our approach used a co-expression network for mature, mineralizing osteoblasts 

which we hypothesized would allow us to identify core genes specific for the process of 

mineralization. We first identified network modules enriched for genes implicated by GWAS 

and partitioned BMD heritability and then used the following biologically motivated filters 

to identify modules enriched for genes with core-like properties (i.e. “core” modules): (1) 

correlation with in vitro mineralization (a process of fundamental importance to BMD), (2) 

enrichment for genes that, when knocked-out in mice, alter BMD, and (3) enrichment for 

monogenic skeletal disease genes. Our analysis identified a single module (referred to as the 

“purple” module) fulfilling all the proposed criteria of a core module. As would be expected 

of a core module for mineralization, the purple module was enriched for genes with well-

known roles in osteoblast activity and bone formation. Furthermore, we identified two 

submodules of genes within the purple module that followed distinct patterns of expression 

across osteoblast differentiation, the early and the late differentiation submodule (EDS and 

LDS). We found that the LDS, relative to the EDS, was more enriched for genes with core-

like properties. Supporting the hypothesis that many LDS genes are causal genetic drivers, 

we observed that lead BMD SNPs located in GWAS loci harboring an LDS gene were more 

likely to overlap active regulatory elements in osteoblasts. Further characterization of the 

LDS identified four genes (B4GALNT3, CADM1, DOCK9, and GPR133) located within 

BMD GWAS loci that had colocalizing human eQTL and altered BMD in mouse knockout 

studies. We anticipate that this integrative approach will aid in the search for genes with 

core-like properties and pathways underlying BMD and risk of fracture.
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Results

I. Construction of a co-expression network reflecting transcriptional programs in 
mineralizing osteoblasts

The goal of this work was to use a cell- and stage-specific co-expression network to identify 

genes with core-like properties that are causal for BMD GWAS associations. We chose to 

focus on generating a co-expression network using transcriptomic data from a single cell-

type at a single-time point during differentiation: mature, mineralizing osteoblasts. We 

hypothesized this would allow us to focus on genes with core-like properties in the context 

of mineralization, a process critical in the regulation of BMD. We began by using WGCNA 

to construct a co-expression network using transcriptomic profiles generated from 

mineralizing primary calvarial osteoblasts from 42 strains of Collaborative Cross (CC) mice 

(Churchill et al., 2004). The CC is a panel of genetically diverse recombinant inbred strains. 

The resulting network consisted of 65 modules of transcripts, with an average of 292 

transcripts representing 266 unique genes per module (Figure 1 and Table S2). Each co-

expression module was distinguished by its assigned color (e.g., the purple module).

To confirm that modules of transcripts produced by the co-expression analysis represented 

transcriptional programs reflecting specific biological processes, we assessed whether 

modules were enriched for genes associated with specific gene ontology (GO) terms (van 

Dam et al., 2018). Most network modules were enriched for general biological processes, 

such as the immune response (Padj = 6.6 x 10−36) in the blue module, mRNA metabolism 

(Padj = 7.8 x 10−9) in the darkolivegreen module, and chromatin remodeling (Padj = 1.9 x 

10−4) in the grey60 module (Figure 1 and Table S3). However, as would be expected, there 

were a subset of modules enriched for genes involved in the activity of osteoblasts. For 

example, the cyan module was enriched for members of the Wnt signaling pathway (a key 

regulator of osteoblast activity) (Padj = 2.3 x 10−4), the turquoise module was enriched for 

genes encoding extracellular matrix proteins (Padj = 3.5 x 10−25) (such as genes encoding for 

collagens (Padj = 0.4 x 10−10)), and the purple module was enriched for genes involved in 

skeletal system development (Padj = 2.3 x 10−10) and osteoblast differentiation (Padj = 2.0 x 

10−6) (Figure 1 and Table S2). Given that network modules represented distinct biological 

processes, including those involved in mineralization and osteoblast activity, we were 

confident it would provide a platform for identifying core genes related to mineralization 

that potentially underlie BMD GWAS associations.

II. Identification of co-expression modules enriched for genes implicated by GWAS

To identify modules of co-expressed genes informative for GWAS, we first determined if 

any of the 65 modules were enriched for genes that overlapped GWAS associations. Using 

data from the two largest GWASs performed at the time, one study of Dual Energy X-

Absorptiometry (DEXA) derived areal BMD measures at the lumbar spine and femoral neck 

(Estrada et al., 2012) (“Estrada et al. GWAS”; N=32,961) and one study of ultrasound 

determined heel estimated BMD (eBMD) (Kemp et al., 2017) (“Kemp et al. GWAS”, 

N=142,487), we developed a list of 789 human genes (NEstrada = 179, NKemp = 701, (91 

shared genes)) intersecting BMD GWAS loci. A total of 723 (92%) of these had mouse 

homologs in the network (Table S4). Of the 65 modules in the network, 13 were enriched for 
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mouse homologs of human genes implicated by BMD GWAS (Fisher’s exact test, Padj < 

0.05) (Table S5 and Figure 2A). Additionally, we performed stratified LD score regression 

by calculating the BMD heritability partitioned by SNPs surrounding genes in each module 

using the Kemp et al. GWAS (Finucane et al., 2015; Kemp et al., 2017). We found 16 

modules enriched for partitioned BMD heritability, including nine of the 13 enriched for 

BMD GWAS implicated genes (Figure 2B and Table S5).

III. The purple module is enriched for genes with core-like properties

Next, we focused on identifying which of the 13 modules identified above were enriched for 

genes with core-like properties. To accomplish this, we selected modules using biologically 

motivated criteria which likely reflected the properties of core genes. First, we compared the 

13 module eigengenes with in vitro mineralization using osteogenic cultures from the same 

42 CC strains used in the construction of the co-expression network (Figure S1). Only one, 

the purple module, had a pattern of expression that was significantly correlated with 

mineralization (r = 0.49, Padj = 0.012), suggesting the purple module was enriched for genes 

with a direct role in mineralization (Figure 2C and Figure S2).

Core genes have been broadly defined as those that directly influence a disease-relevant 

biological processes (Boyle et al., 2017a; Liu et al., 2019). Thus, severe perturbation of a 

core gene is more likely to result in a significant impact on a phenotype, as in the case of a 

mouse knockout or human monogenic disease. We identified all gene knockouts that 

produced a bone phenotype, defined as either a change in BMD, bone mineral content 

(BMC), abnormal bone morphology, or abnormal bone cell activity, by utilizing mouse 

knockout phenotype data from several databases (Bolser, 2004; Dyment et al., 2016; 

Freudenthal et al., 2016; Koscielny et al., 2014) (Table S6). Of the 13 modules enriched for 

BMD GWAS genes, two were enriched for genes whose deficiency impacted bone in mice 

(Figure 2D). The purple module was the most significantly enriched (OR=5.4, Padj = 1.6 x 

10−34). We also compiled a list of 35 known drivers of monogenic bone diseases associated 

with osteoblast dysfunction, including osteogenesis imperfecta, hyperostosis, and 

osteosclerosis (Table S5) (Boudin and Van Hul, 2017; Johnson, 2016; Marini and Brandi, 

2010; Robinson and Rauch, 2019; Rocha-Braz and Ferraz-de-Souza, 2016). Again, the 

purple module, containing 11 of 35 (31.4%) monogenic disease genes, was the most 

significantly enriched (OR = 21.3, Padj = 6.9 x 10−9) (Figure 2E). Together, these 

independent lines of evidence suggested the purple module was enriched for genes with 

core-like properties.

IV. New BMD GWAS associations further support the purple module as a core gene 
module

While we were analyzing the Kemp et al. GWAS data, an extension of this study, with a 

significantly increased eBMD sample size, was published (“Morris et al. GWAS”) (Morris et 

al., 2019). The Estrada et al. (N=32,961) and Kemp et al. (N=142,487) GWASs identified 56 

and 307 conditionally independent associations, respectively (Estrada et al., 2012; Kemp et 

al., 2017). In comparison, the Morris et al. GWAS (N=426,824) identified 1103 eBMD 

associations; an increase of over 3.5-fold (Morris et al., 2019). The associations identified in 

the Morris et al. GWAS overlapped 1581 genes, as compared to 789 in the Estrada et al. and 
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Kemp et al. GWASs (Table S3). Assuming the genetic architecture of BMD is consistent 

with the omnigenic model, we expected the inclusion of the Morris et al. GWAS data to 

increase the number of modules enriched for GWAS implicated genes. Consistent with this 

hypothesis, the number of modules enriched for GWAS-implicated genes doubled (NKemp = 

13, NMorris = 26) using the Morris et al. GWAS (Figure 3A and Table S5). As observed in 

the first analysis, most (18/26, 69%) of the new modules enriched for GWAS-implicated 

genes were also enriched for partitioned BMD heritability (Table S5 and Figure 3C). These 

new modules were enriched for genes involved in general biological processes such as RNA 

splicing (brown module, Padj = 4.0 x 10−11), cell junctions (floralwhite module, Padj = 6.2 x 

10−3), cell motor activity (orange, Padj = 6.6 x 10−3), the cell cycle (lightgreen, Padj = 3.2 x 

10−4), ER to Golgi trafficking (salmon, Padj = 1.8 x 10−2), and the glycolytic process (red, 

Padj = 1.1 x 10−13), and not processes specific to osteoblast activity and/or mineralization 

(Table S3).

Similar to the analysis of the Kemp et al. data, the purple module was among the most 

enriched for GWAS implicated genes (OR = 2.67, Padj = 3.4 x 10−11) (Figures 3A) and 

BMD heritability captured (OR = 5.8, Padj = 4.7 x 10−6) (Figures 3B). Using the Estrada et 
al. and Kemp et al. GWAS, the purple module contained 45 genes implicated by GWAS (OR 

= 3.15, Padj = 2.3 x 10−8) (5.7% of GWAS-implicated genes; 8.9% of purple module genes) 

and explained 26% +/− 4% of the SNP-heritability (hg
2) in the study. Using the Morris et al. 

GWAS, the number of purple module genes implicated by GWAS increased to 77 (OR = 2.7, 

Padj = 3.4 x 1011) (4.9% of GWAS-implicated genes; 15.2% of purple module genes) 

explaining 25% +/− 4% of the hg
2. Additionally, the purple module was still the only one 

correlated with in vitro mineralization (Figure 3C), the most significantly enriched for genes 

eliciting a bone phenotype when knocked-out in mice (Figure 3D), and human monogenic 

bone disease genes (Figure 3E). These data indicate that even with a significant increase in 

the number of GWAS-implicated genes included in the analysis, the purple module is the 

only one enriched for genes with core like properties.

V. The purple module contains genes belonging to one of two distinct transcriptional 
programs across osteoblast differentiation

The purple module was enriched for GO categories important for the function of osteoblasts. 

Consistent with this observation, it contained many genes known to play key roles in 

osteoblast differentiation and mineralization, including Runx2 (Komori, 2009), Sp7 
(Yoshida et al., 2012), Sost (Atkins et al., 2011; Semënov et al., 2005), Bglap (Nakamura et 

al., 2009), Alpl (Golub and Boesze-Battaglia, 2007), among many others (Table S7). Thus, 

to further investigate the purple module, we evaluated the expression of its genes with 

regards to osteoblast differentiation. To do this, we utilized transcriptomic profiles collected 

from purified osteoblasts at multiple time points across differentiation (GSE54461). Using 

k-means clustering, we found that the genes within the purple module clearly partitioned 

into two distinct transcriptional profiles with regards to differentiation (Figure 4A,B). We 

have termed these groups the Early Differentiation Submodule (EDS; high expression early 

and low expression late) (N=192 transcripts; 175 unique genes) and the Late Differentiation 

Submodule (LDS; low expression early and high expression late) (N=423 transcripts; 323 

unique genes).

Sabik et al. Page 6

Cell Rep. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We assessed whether there were differences between the EDS and the LDS with regard to 

network parameters and their enrichment for functional annotations seen in the purple 

module. We first looked at intramodular connectivity, measured by module membership 

(correlation between the expression of each gene and the module eigengene). On average, 

LDS genes had higher module membership scores than EDS genes (P = 3.0 x 10−4) (Figure 

4C), suggesting they may play more critical roles in the context of overall module behavior. 

Additionally, the LDS was more significantly enriched for genes implicated by GWAS (OR 

= 3.0, Padj = 5.2 x 10−10), osteoblast relevant GO terms (e.g. “ossification“ (Padj = 

3.24x10−14), skeletal development” (Padj = 9.6 x 10−11), “osteoblast differentiation” (Padj = 

1.4 x 10−4), and “biomineral tissue development” (Padj = 4.1x10−6), genes that when 

knocked-out result in a bone phenotype (OR = 7.3, Padj = 1.1 x 10−33) and monogenic bone 

disease genes (OR = 33.2, Padj = 8.4 x 10−11) (Figure 4D). As one would expect based on 

their higher expression later in differentiation, many of the most well-known regulators of 

mineralization, such as Phospho1 (Roberts et al., 2007), Bglap (Neve et al., 2013), Fam20c 
(Liu et al., 2018), Mepe (Cho and Ryoo, 2008), Phex (Quarles and Darryl Quarles, 2003), to 

name a few, were members of the LDS (Table S6). These observations, together with the fact 

that LDS genes are expressed at high levels during late differentiation, coincident with when 

the osteoblasts are actively mineralizing, suggest that LDS contains genes with core-like 

properties specific for the process of mineralization. For all downstream analyses we 

focused on the LDS.

VI. LDS genes CADM1, B4GALNT3, DOCK9, and GPR133 are novel genetic determinants 
of BMD

The overarching goal of this study was to identify causal genes from a module enriched for 

genes with core-like properties underlying BMD GWAS associations. As described above, 

48 (14.9%) LDS genes overlapped an eBMD GWAS association from the Morris et al. study 

and these SNPs were also enriched in regions of the osteoblast genome marked as promoter 

and enhancers and depleted in repressed regions, supporting their potential role as causal 

genes for BMD (Table S7 and Figure S3). To further identify those with strong evidence of 

being causal, we utilized expression quantitative trait locus (eQTL) data from the Gene 

Tissue Expression (GTEx) project to identify local eQTL colocalizing with BMD 

associations (GTEx Consortium et al., 2017). We also used total body BMD data on LDS 

gene knockouts collected as part of the International Mouse Phenotyping Consortium 

(IMPC) (Koscielny et al., 2014). Together, these data allowed us to directly link BMD 

associated variants to LDS genes and LDS genes to pathways regulating BMD. We 

performed a colocalization analysis for each eQTL/BMD association pair for all 48 genes in 

48 GTEx tissues and identified 12 LDS genes with colocalizing eQTL (PP4>0.7) (Table S6 

and Figures 5A, B, C, and D). We also queried each of 12 LDS genes with a colocalizing 

eQTL and found that BMD had been measured by the IMPC in 5 mutants. Of these, four 

genes (Cadm1, B4galnt3, Dock9, and Gpr133) had significantly altered total body BMD 

(Padj < 0.05) (Table S1 and Figures 5E, F, G and H). For Cadm1 and Dock9 the direction of 

effect inferred from the eQTL/BMD association matched the direction of the effect observed 

in the mouse knockout; however, for B4galnt3 and Gpr133 the directions did not match 

(Table S1).
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Lastly, we evaluated network parameters of Cadm1, B4galnt3, Dock9 and Adgrd1. Given 

prior work that has established a connection between high network connectivity and 

functional importance to disease, we evaluated the inter-module connectivity of the genes in 

the LDS (Carlson et al., 2006; Farber, 2010; Langfelder et al., 2013). We observed that 

Cadm1 and B4galnt3 were ranked in the top 20 based on LDS connectivity (Table S7). In 

fact, Cadm1 was the 2nd most highly connected gene. Together, the four genes had, on 

average, higher module membership than the average LDS gene (0.72 vs. 0.52; P = 0.002). 

In support of the importance of connectivity in the LDS, we observed that more highly 

connected LDS genes were more likely (P=0.008) to overlap a BMD GWAS locus (Figure 

S4A) and there was a strong positive correlation between connectivity and in vitro 
mineralization for all LDS genes (r = 0.71, P< 2.2 x 10−16) (Figure S4B). These data suggest 

that connectivity is an important feature of the LDS and a strong proxy for biological 

importance. Furthermore, these data strongly support CADM1, B4GALNT3, DOCK9 and 

GPR133 as genetic drivers of BMD in humans.

Discussion

Osteoporosis is an increasingly common disease associated with reduced BMD and negative 

health outcomes, namely fracture (Black and Rosen, 2016). Despite its significant genetic 

component, we do not fully understand the genes and mechanisms that influence 

osteoporosis and its determinants, such as BMD. Moreover, current therapeutics for 

osteoporosis have been associated with rare side effects, leading to decreased compliance 

(Kolata, 2016). Identification of the causal genes with core-like properties that regulate 

BMD will help us to further understand the etiology of osteoporosis and lead to the 

development of novel therapeutics. In this study, we identified the LDS, a co-expression 

submodule enriched for genes with core-like properties influencing BMD, by integrating a 

cell- and timepoint-specific co-expression network with the results of BMD GWAS. We then 

used this information to identify four LDS genes that overlapped GWAS loci, had 

colocalizing eQTL, and altered BMD in knockouts, suggesting they are causal for their 

respective BMD GWAS association.

In this work, we hypothesized that the genes underlying BMD GWAS associations are not 

created equal with respect to “biological importance” or membership in pathways with 

direct impacts on bone mass. Substantial prior evidence supports this prediction 

(International Schizophrenia Consortium et al., 2009; Manolio et al., 2009)and it is one of 

the primary tenets of the omnigenic model (Boyle et al., 2017a; Liu et al., 2019). 

Identification of genes whose activity or function is more proximal to BMD is important for 

a number of reasons. First, the identification of genes with core-like properties has the 

potential to identify critical new players in pathways known to directly impact bone and to 

uncover new processes essential to skeletal growth and maintenance. Second, it provides a 

way to prioritize hundreds of BMD GWAS loci for further investigation. Third, based on 

their central role in the regulation of BMD, it is logical to use the concept of a core gene as a 

way to prioritize gene discovery in the context of selecting promising new therapeutic 

targets for evaluation.
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The omnigenic model uses a strict statistical definition to define core genes and many have 

debated the utility of this designation(Boyle et al., 2017a, 2017b; Cox, 2017; Wray et al., 

2018). Some have argued that focusing on core genes underestimates the complexity of 

complex traits, attributing biologically nuanced diseases to a small set of genes 13. Others 

have argued that the focus should not be on thoroughly defining core genes, but instead on 

identifying the underlying biological pathways and mechanisms 14. In practice, it is likely 

that the designation of core genes follows a spectrum rather than a discrete classification. If 

so, then it should be possible to rank genes based on their continuous “core” attributes, 

which would be analogous to ranking genes based on their proximity to a disease or 

phenotype. In essence, that is what we have done in the current study with the goal of 

identifying genes on the end of the “core” attribute distribution for mineralization. 

Importantly, it is not likely that all genes in the LDS are causal genetic drivers or, if they are 

causal, it is possible that several will have few core attributes. However, based on our 

analysis and results, it is likely that many are causal genes that participate in “core” 

pathways and processes that directly impact mineralization, bone formation, and BMD.

As we have previously demonstrated (Calabrese et al., 2017; Farber, 2010), there are a 

number of advantages to using co-expression networks to inform GWAS. First, it allowed us 

to group genes across the genome based on function and pathway membership and then 

identify groups of functionally similar genes that had core-like properties. Second, it allowed 

us to predict the function of potentially casual genetic drivers of BMD. Based on the strong 

GO enrichments and membership of genes with well-known roles in bone formation and 

mineralization, it is likely that many LDS genes, including those with no known function, 

impact mineralization in some manner. The idea of the LDS playing a central role in bone 

formation was further supported by the strong overlap observed between lead BMD GWAS 

SNPs for associations containing LDS genes regulatory elements in osteoblasts. Third, it 

begins to provide a systems-level context for causal genetic drivers. Once genes underlying 

GWAS loci are identified it is then important to begin to understand their role in complicated 

cellular networks, defining how a set of genetic variants may converge on multiple genes all 

involved in a particular process. We can use the LDS to begin to identify sets of variants that 

all work to influence genes which impact mineralization and the hierarchy of relationships 

between these genes.

This work extends our use of co-expression networks to inform GWAS. Previously, we used 

a network generated using cortical bone expression profiles from the Hybrid Mouse 

Diversity Panel to identify two “osteoblast” modules (enriched for genes involved in 

osteoblast differentiation and function) enriched for genes implicated by BMD GWAS. We 

used these modules to identify 35 genes potentially causal for GWAS loci, including two 

(MARK3 and SPTBN1) that we experimentally validated their involvement in BMD. 

Comparing the two modules to the LDS we observed a modest overlap (96 of 323 genes; 

29.7%), even though they both demonstrated a strong “osteoblast” enrichment signature. 

While a number of differences (microarray vs. RNA-seq transcriptomic data, different 

mouse populations, etc.) confound the interpretation of the seemingly low overlap, it is 

likely due in large part to our use of osteoblast-specific network capturing the transcriptome 

at peak mineralization instead of the whole bone tissue representing a small number of 

osteoblasts.
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We provided strong supporting evidence that four LDS genes (CADM1, B4GALNT3, 

DOCK9 and GPR133) are novel regulators of BMD and causal for their respective GWAS 

association. Prior to this study, none of these genes had been directly connected to the 

regulation of BMD. CADM1 (Cell Adhesion Molecule 1) is a ubiquitously expressed cell 

adhesion molecule involved in many biological processes, including cancer, 

spermatogenesis, and neuronal/mast/epithelial cell function(Cao et al., 2017; Wakayama and 

Iseki, 2009; Zhang et al., 2016) that had been implicated in osteoclast proliferation and 

activity(Nakamura et al., 2017) and as an osteoblast-specific marker in the context of 

osteosarcoma(Inoue et al., 2013; Mentink et al., 2013). B4GALNT3 (Beta-1,4-N-Acetyl- 

Galactosaminyltransferase 3) is a glycosyltransferase that transfers N-acetylgalactosaine 

(GalNAc) onto glucosyl residues, thus forming N,N-prime-diacetyllactoseadiamine 

(LacdiNAc), which serves as a terminal structure of cell surface N-glycans that contributes 

to cell signaling 51,52. B4GALNT3 is expressed in bone and associated with circulating 

levels of sclerostin 53-55. DOCK9 (Dedicator of Cytokinesis 9) is a guanine nucleotide-

exchange factor (GEF) that activates Cdc42(Meller et al., 2002), which has been shown to 

regulate osteoclast differentiation and ossification 57,58. GPR133 (Adhesion G Protein-

Coupled Receptor D1) is a G protein-coupled receptor that participates in cell-cell and cell-

matrix interactions 59. Our results demonstrate the utility of the LDS in broadening our 

understanding of the molecular and genetic basis of BMD.

Our study is not without limitations. First, we used gene expression data from the mouse as 

a discovery platform, however this may limit the translational applications of the work due 

biological differences and missing homologs between mouse and human. Secondly, this was 

not a comprehensive study of the genetic effects driving osteoporosis, because we focused 

exclusively on the contributions of just one cell type, bone-forming osteoblasts. In future 

work, this approach could also be applied to other bone cell types. For example, one could 

use in vitro measures of osteoclast activity as a filter to identify groups of genes influencing 

bone resorption, and ultimately BMD. Finally, the eQTL comparisons made in this study 

were not derived from expression data in bone tissue, as bone tissue expression was not 

measured in the GTEx project. While we identified colocalizing eQTL in other tissues, these 

eQTL may be irrelevant to BMD or the direction of eQTL effects in non-bone tissues may 

not reflect the direction of effect in osteoblasts.

While we identified four novel regulators of bone mineral density, there is still much to be 

gleaned from the late differentiation submodule. The LDS is a promising resource for two 

key applications: (1) causal gene discovery and functional follow up and (2) studying the 

impact of genetic variation on biological networks and complex phenotypes. There are still 

many genes with no known connection to BMD in the LDS that are likely important to 

osteoblast biology and mineralization. Additionally, the LDS is not just a list of candidate 

genes; it also provides insight into the molecular hierarchy driving osteoblast differentiation 

and mineralization, which can demonstrate how genetic variation impacts biological 

networks. The network topology of the LDS can also be used to infer the causal 

relationships between genetic variants and the many genes that influence osteoblast activity. 

Moving forward, the LDS can serve as a platform for the identification of novel 

determinants of BMD and for furthering our understanding of the nuanced relationship 

between genetic variation, molecular phenotypes, and complex traits.
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In summary, we have used an integrative, network-based method to identify core genes for 

the process of mineralization and BMD. While the definition of a core gene is still open to 

debate, we found the expected properties of core genes are effective lenses through which to 

contextualize GWAS associations. Integrating gene co-expression networks, GWAS data, in 
vitro and in vivo phenotypic data reflecting “core” properties, and eQTL information has led 

us to a more complete understanding of the biology and genetics of BMD.

STAR Methods

Resource Availability

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Charles Farber (crf2s@virginia.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The accession numbers for the RNA sequencing data 

reported in this paper are GEO: GSE134081.

Experimental Model and Subject Details

Primary cell cultures of neonatal murine osteoblasts were used to generate the RNA 

sequencing data and to conduct the in vitro mineralization experiments. Neonatal 

collaborative cross heads were received from the University of North Carolina. At UNC, 

neonatal (3-5 days) collaborative cross mice were euthanized by CO2, decapitated onto 

paper towels soaked in 70% ethanol, and placed in cold PBS on ice for overnight shipping. 

Once received, calvaria were dissected, paying special attention to brain and interparietal 

bone removal. Isolated calvaria were placed in 24 well plates containing 0.5 mL of digest 

solution (0.05% trypsin and 1.5 U/ml collagenase P) and incubated on a rocking platform at 

37 degrees during six, fifteen-minute digestions in 0.5 mL of digestion solution. Fraction 1 

is discarded and fractions 2-6 are collected. Fractions 2-6 are added to an equal volume of 

cold plating media (89 mL DMEM, 1 mL 100x Pen/Strep solution, and 10 mL Lot tested 

FBS). The resulting cells are filtered using a 70-100 mm cell strainer to remove clots, 

centrifuged at 1000 rpm for 5 minutes and re-suspended in 0.5 ml plating media. The 

resulting cells are plated in a T25 flask. 24 hours later, cells are washed with PBS, treated 

with trypsin, counted, and plated at a density of 1.5x105 cells per well in a 12-well plate, and 

allowed to grow to confluence for 48 hours. After 48 hours of growth, cells are switched to 

differentiation media (10 mL lot tested FCS, 1 mL 100x Pen/Strep solution, 283.8 uL 

ascorbic acid (0.1 M), 400 uL B-glycerol phosphate (1 M), and 88.3 mL alpha-MEM per 

100 mL) and allowed to differentiate for 10 days and then either RNA is collected or mineral 

is quantified. The strain and sex of cells used are listed in Table S8.

Method Details

RNA sequencing in mineralizing osteoblasts: On day 10, total RNA was extracted 

from the mineralized cultures using mirVana RNA isolation kit (ThermoFisher Scientific). 

RNA-Seq libraries were constructed from 200 ng of total RNA using Illumina TruSeq 

Stranded Total RNA with Ribo-Zero Gold sample prep kits (Illumina, Carlsbad, CA). 
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Constructed libraries contained RNAs >200 nt (both unpolyadenylated and polyadenylated) 

and were depleted of cytoplasmic and mitochondrial rRNAs. An average of 39.7 million 2 x 

75 bp paired-end reads were generated for each sample on an Illumina NextSeq 500 

(Illumina, Carlsbad, CA). FastQC was used to evaluate the quality of the reads, and all 

samples passed the QC stage (Bioinformatics, 2011). Reads were mapped to the eight 

collaborative cross founder transcriptomes based on build mm9 using Bowtie, and quantified 

using EMASE (Raghupathy et al., 2018). EMASE output transcript level expression 

estimates calculated by assigning multi-mapping reads across the genome using an 

expectation-maximization algorithm to allocate reads that differentiate between genes, then 

isoforms of a gene, and then alleles.

In vitro mineralization measurement: In order to identify the modules of coexpressed 

genes with patterns of expression correlated with mineralization, we measured in vitro 
mineralization in osteogenic cells from the calvaria of 42 strains of collaborative cross mice. 

After 10 days of differentiation and mineral production, cells are washed with PBS and 

treated with 10% NBF (1 mL per well) and incubated at room temperature for 15 minutes. 

The NBF is removed and cells are washed with H2O (1mL x 2). Next, wells are stained with 

alizarin red (0.5 mLs, 40 mM @ pH 5.6) for 20 minutes on a shake plate at 120 rpm. 

Alizarin red stain is then removed, and cells are washed 5 times with deionized H2O for 5 

minutes on a shake plate at 180 rpm. Once rinsed, the mineralized wells are scanned, 

and .tiff images are retained to extract geometric parameters of the mineral deposits. After 

imaging, the wells are de-stained by incubation with 5% perchloric acid (1 mL) at room 

temperature for 5 minutes while shaking at 120 rpm. Eluent is collected and read at 405 nm. 

The levels of in vitro mineralization varied significantly across the population, with a 63-

fold change from the highest to lowest mineralization samples (max_mmAR = 2.995993, 

min_mmAR = 0.04719). In this population, in vitro mineralization had a heritability of 

47.8%(p=1.8x10−46), indicating that the between-strain variation is larger than the within 

strain variation and that there is a genetic contribution to the process of mineralization.

Quantification and Statistical Analysis

WGCNA network construction: Estimated transcript count data was used as the basis 

for co-expression network construction from each of the 96 samples sequenced. We removed 

transcripts with less than an average tpm <= 0.3 tpm across all samples, resulting in 29,000 

transcripts used to construct the network. We used a variance stabilizing transformation from 

the DESeq2 package that decouples the variance from the mean (Love et al., 2014). Next, 

we used PEER in order to remove latent confounding batch effects from our data (Stegle et 

al., 2012). As per PEER recommendations, we estimated PEER factors equal to one quarter 

of the number of samples (sample N = 96, PEER factors = 24) and included covariates in the 

calculation. We carried out the downstream analysis with the residual values from PEER 

transformation. Finally, we used quantile normalization to match the distribution of each of 

the samples in the analysis and averaged the expression across samples of the same strain, 

resulting in 42 expression profiles.

The resulting expression data was used to construct a signed, weighted gene co-expression 

network using the weighted gene co-expression network analysis (WGCNA) package 
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(Langfelder and Horvath, 2008). There were no evident outliers from the hierarchical 

clustering analysis. The pickSoftThreshold() function from the wgcna package was used to 

determine the power used to calculate the network. The minimum power value that had an 

R2 >= 0.9 for the scale-free topology model fit was used, and the network was calculated 

using a power of 9. We then used the blockwiseModules() function to construct a signed 

network with a merge cut height of 0.15, and a minimum module size of 20 genes. Using 

WGCNA, we constructed a signed network composed of 65 modules of co-expressed genes, 

with an average of 292 transcripts and 266 unique genes per module.

Gene Ontology Analysis: For those modules that were enriched for BMD GWAS genes, 

we conducted gene ontology analysis to identify the functional categories represented by 

each module. Using the ToppFun tool on the ToppGene site, we identified the significantly 

enriched categories for GO molecular functions, GO biological processes, GO cellular 

components, human and mouse phenotypes, and pathways (Chen et al., 2009). The adjusted 

p-values reported for these enrichments were Benjamini & Hochberg corrected FDR q-

values, correcting for multiple testing across many gene ontology categories.

Creating BMD GWAS list: In order to identify co-expression modules enriched for BMD 

GWAS genes, we identified all genes overlapping a BMD GWAS locus using the 2012 and 

2017 BMD GWAS (Estrada et al., 2012; Kemp et al., 2017). For each BMD locus, a bin was 

defined by the furthest upstream and downstream SNPs with LD >= 0.7 as calculated from 

the European populations in the 1000 genomes phase III data identified using the LDLink 

LDProxy tool (Machiela and Chanock, 2015). Then, using the Genomic Ranges tool, we 

identified all genes from the GRCh37/hg19 Ensembl gene set overlapping a BMD GWAS 

bin (Hubbard et al., 2002; Lawrence et al., 2013). If no gene intersected a bin, we identified 

the nearest upstream and downstream genes from the bin. The Estrada GWAS resulted in 

179 genes and the eBMD GWAS resulted in 701 genes, resulting in a list of 731 unique 

genes. We converted the list of human genes to mouse homologs.

BMD GWAS gene enrichment: In order to identify modules of genes enriched for 

GWAS genes, we used a fisher’s exact test to measure the statistical significance of the 

representation of GWAS genes in each module. We then applied a Bonferroni correction to 

correct for testing the enrichment of all 65 modules, and applied a significance cutoff of 0.05 

to the adjusted p-values, resulting in 13 modules of genes enriched for 2012 and 2017 

GWAS genes, and 26 modules of genes enriched for 2012, 2017, and 2018 GWAS genes.

In vitro mineralization correlation with module expression: Using the WGCNA 

package, the eigengene of each module was calculated, and the correlation between the 

eigengene and the in vitro mineralization phenotype was calculated using the cor() function 

in R. The p-values associated with the correlation between the module eigengenes and in 
vitro mineralization were corrected for multiple testing using a Bonferroni correction across 

65 co-expression modules and a p-value cutoff of 0.05 was applied to the adjusted p-values.

LD Score Regression: In order to evaluate the relevance of the BMD GWAS gene 

enriched modules we calculated the partitioned heritability of the SNPs in the regions 

surrounding the genes in each module. We used the LD score regression method, which 
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takes gene lists as an input and returns the enrichment of the associated SNP set for 

heritability for the tested trait. For each set of modules we tested using this method, we 

corrected the enrichment p-values for multiple testing across 13 co-expression modules 

using a Bonferroni correction, and applied a p-value cutoff of 0.05 to the adjusted p-values. 

Additionally, we report the standard error of the heritability estimate where applicable.

Module enrichment for genes with associated bone phenotypes and 
monogenic bone disease: In order to identify modules of co-expressed BMD GWAS 

genes that are enriched for genes with bone phenotype annotations, we curated a list of 

genes which produce a bone phenotype when knocked out. We used four databases of gene 

perturbations that result in bone phenotypes, including genes annotated with a bone 

phenotype in the Mouse Genome Informatics database (MGI), the Origins of Bone and 

Cartilage Disease (OBCD) database, the International Mouse Phenotyping Consortium 

(IMPC), and the Bonebase Database (Bolser, 2004; Dyment et al., 2016; Freudenthal et al., 

2016; Koscielny et al., 2014). Specifically, we pulled BMD, altered bone morphology, 

altered bone cell activity, changes in ossification or mineralization, or association with a 

known bone disease from the MGI database. The OBCD database contained genes with 

changes in bone mineral content (BMC), bone volume fraction (BV/TV), and BMD of the 

femur and BMD of the vertebra. We mined the IMPC database for any genes with altered 

BMD, and we pulled all Bonebase genes with altered BV/TV in the femur or vertebra. This 

resulted in a list of 923 unique “bone” genes (Table S6).

We also curated a list of genes associated with monogenic bone disorders using a literature 

review, specifically focusing on genes that disrupt osteoblast function, leading to monogenic 

bone disorders (Boudin and Van Hul, 2017; Johnson, 2016; Marini and Brandi, 2010; 

Robinson and Rauch, 2019; Rocha-Braz and Ferraz-de-Souza, 2016) (Table S5). We used a 

fisher’s exact test to measure the statistical significance of the representation of genes with 

associated mouse knockout bone phenotypes and monogenic bone disease in each module. 

We then applied a Bonferroni correction to correct for testing the enrichment of all 13 or 26 

modules and applied a significance cutoff of 0.05 to the adjusted p-values.

Clustering analysis in osteoblast differentiation gene expression data: We 

investigated the expression profiles of all purple module genes in the context of 

differentiation. Using gene expression data from osteoblasts throughout differentiation 

(Series GSE54461), we used k-means clustering to identify differentiation-related 

transcriptional programs in the purple module. We tested k = 1:5, and found two robust 

clusters of genes within the purple module. Enrichment analysis of the two clusters in all 

function categories were conducted as described above.

Epigenetic enrichment analysis for LDS BMD GWAS associations: For BMD 

GWAS lead SNP (and proxies with LD >= 0.7) overlapping an LDS gene (n = 84), 

GenomicRanges (Lawrence et al., 2013) was used to calculate the proportion of lead SNPs 

overlapping regions marked by epigenetic modifications, including H3K4me1, H3K4me2, 

H3K4me3, H3K9me3, H3K27ac, H3K27me3, H3K26me3, H3K79me2 and H4K20me1, 

and histone H2AZ from the Roadmap Project (Chadwick, 2012). Using the GenomicRanges 

function findOverlaps(), we quantified the overlap between the LDS-associated lead SNPs 
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and each epigenetic mark. To assess the enrichment of this overlap, we compared against 

1000 sets of control SNPs (n = 84). We chose sets of control SNPs that were within +/− 20% 

of the mean distance from a transcription start site for the BMD GWAS lead SNPs, and 

within +/− 20% of the mean minor allele frequency of the BMD GWAS lead SNPs. P-values 

were calculated by taking the proportion of random sets of SNPs with a more extreme 

enrichment in the tail of the distribution with which we are comparing our experimental 

proportion. If the experimental proportion is more extreme than any measured random set, 

the p-value is reported as < 1x10−3. This same procedure was used to evaluate the tissue 

specificity for each mark. For each mark, the overlap with the LDS BMD SNP set and the 

1000 random SNP sets were computed and the ratio between the proportion of overlapping 

LDS BMD SNPs and the mean proportion of overlapping random SNPs was computed. 

Higher ratios indicated greater enrichment of the LDS BMD SNPs over random SNPs with a 

given mark in a given tissue (Table S7).

Colocalization analysis: For each gene in the LDS that overlapped a BMD GWAS 

association from the Morris et al. study, eQTL from all GTEx tissues were identified (GTEx 

Consortium et al., 2017; Morris et al., 2018). Using the coloc package, we assessed the 

potential for colocalization between the QTL for BMD and the proximal cis-eQTL 

(Giambartolomei et al., 2014). Two associations were considered to colocalize if the 

posterior probability of hypothesis four (PPH4), which is the probability of colocalization, is 

> 0.7. The RACER package was used to plot the two associations in a mirrorPlot (Sabik and 

Farber, 2018).

Mouse phenotype statistical comparisons: Using the International Mouse 

Phenotyping Consortium (IMPC) database, we identified genes from the LDS that had 

eQTL that colocalized with BMD QTL and exhibited a difference in BMD when knocked 

out in mouse (Koscielny et al., 2014). Using the PhenStat package, we analyzed the 

differences between control and knockout animals using a mixed model framework 

(Kurbatova et al., 2015). The specific equation used for each analysis are in Table S1.

Network Topology Analysis: A t-test was used to compare the module membership of 

the four causal genes and the remainder of the LDS genes and the connectivity of the LDS 

genes overlapping a BMD GWAS locus as opposed to those that do not. A linear model was 

used to assess the relationship between gene connectivity and gene correlation with in vitro 
mineralization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Weighted gene co-expression network generated using transcriptomic profiles from 
mineralizing osteoblasts.
The network, built using expression profiles of 42 unique strains of Collaborative Cross 

mice, was composed of 65 modules of co-expressed genes, many of which were enriched for 

specific biological processes relevant to osteoblasts. Padj = significance of enrichment of 

module genes in GO category and n = number of genes in the module. See also Table S2 and 

S3.

Sabik et al. Page 20

Cell Rep. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The purple module is enriched for genes with core-like properties.
(A) Module enrichments for genes overlapping a BMD GWAS association. (B) Enrichments 

for partitioned BMD heritability for each module determined using stratified LD score 

regression. (C) Correlation between each module eigengene and in vitro mineralization. (D) 

Module enrichments for genes that, when knocked out, produced a bone phenotype and (E) 

human monogenic bone disease genes. Red line in each panel represents Padj < 0.05. See 

also Figures S1 and S2.
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Figure 3. The purple module was the only core module after increasing the number of analyzed 
GWAS associations by 3.5-fold.
(A) A greater number of modules (N = 65) were identified as enriched for GWAS implicated 

genes in the Morris et al. GWAS versus the Kemp et al. GWAS. (B) Module enrichments for 

partitioned BMD heritability for each module determined using stratified LD score 

regression. (C) Correlation between each module eigengene and in vitro mineralization. 

Related to figure S2. (D) Module enrichments for genes that, when knocked out, produced a 

bone phenotype and (E) human monogenic bone disease genes. Red line in each panel 

represents Padj < 0.05. The most highly connected genes in the purple module also have 

higher alizarin red correlations and are more likely to be implicated by BMD GWAS. See 

also Figures S1 and S2.
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Figure 4. The purple module consists of genes representing two distinct transcriptional profiles 
across osteoblast differentiation, one of which, the late differentiation submodule (LDS), is more 
enriched for genes with properties consistent with core genes for mineralization.
(A) Purple module genes show two distinct patterns of expression across differentiation, (B) 

Genes in cluster 1 (or the early differentiation submodule; EDS; N=192 transcripts; 175 

unique genes) are expressed high early in osteoblast differentiation. Genes in cluster 2 (or 

the late differentiation submodule; LDS; N=423 transcripts; 323 unique genes) are expressed 

high late in osteoblast differentiation (relative expression = average z-score of expression of 

genes in each submodule; error bars = standard deviation of relative expression across three 

replicates). (C) LDS genes have a significantly higher purple module membership score (P = 

3.0 x 10−4), see also Figure S4. (D) The LDS is more significantly enriched than the EDS 

for genes implicated by BMD GWAS in humans, associated with GO terms for bone 

development, for genes that when knocked out, produce a bone phenotype, and for genes 

involved in monogenic bone disorders. See also Figure S4.
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Figure 5. CADM1, B4GALNT3, DOCK9, and GPR133 (aka Adgrd1) are genetic regulators of 
BMD.
(A-D) All four genes have an eQTL in at least one tissue in the GTEx database that 

colocalizes with a proximal BMD GWAS association. (E-H) Knockout mice from the 

KOMP for each gene exhibit altered BMD (E) N control male = 816, N control female = 

778, N KO male = 7 N KO female = 7; (F) N control male = 445, N control female = 459, N 

KO male = 8, N KO female = 8; (G) N control male = 1692, N control female = 1729, N KO 

male = 8, N KO female = 8; (H) N control male = 1477, N control female = 1466, N KO 

male = 7, N KO female = 7, see also Figures S3 and S4 and Table S1.
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