Skip to main content
. 2021 Aug 6;21:237. doi: 10.1186/s12911-021-01591-x

Table 1.

Significant scholarly works that ML techniques to compare with the performance of APACHE II

Study Data source Condition Number of patients Machine learning algorithms Accuracy AUC
Samaneh Layeghian Javan et al.[19] MIMIC III Cardiac arrest 4611 Stacking algorithm 0.76 0.82
Min Woo Kang et al.[20] Seoul National University Hospital Continuous renal replacement therapy 1571 Random forest / 0.78
Meng Hsuen Hsieh et al. [21] Chi-Mei Medical Center Patients with unplanned extubation in intensive care units 341 Random forest 0.88 0.91
Zhongheng Zhang et al.[22] SAILS study and OMEGA study Acute respiratory distress syndrome 1071 Neural network / 0.821
Dan Assaf et al.[21] Sheba Medical Center Coronavirus disease (COVID-19) 162 Random forest 0.92 0.93
Grupo de Trabajo Gripe A Grave et al.[23] GETGAG/SEMICYUC database Severe influenza 3959 Random forest 0.83 0.82
Kuo-Ching Yuan et al.[24] Taipei Medical University Hospital Sepsis 434 XGBoost 0. 82 0.89
Scherpf M et al.[39] MIMIC III Sepsis 1050 Recurrent neural network / 0.81
Zhang Z et al.[40] MIMIC III Acute kidney injury 6682 XGBoost / 0.86
Kong G et al.[41] MIMIC III Sepsis 16,688 Gradient boosting machine 0.85
Our work MIMIC III ICU patients 24,777 XGBoost 0.87 0.81