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Abstract

Effective treatments for chronic pain without abuse liability are urgently needed. One in 5 adults 

suffer chronic pain and half of these patients report inefficient treatment. Mu opioid receptor 

agonists (MOP), including oxycodone, tramadol and morphine, are often prescribed to treat 

chronic pain, however, use of drugs targeting MOP can lead to drug dependency, tolerance and 

overdose deaths. Kappa opioid receptor (KOP) agonists have antinociceptive effects without abuse 

potential; however, they have not been utilised clinically due to dysphoria and sedation. We 

hypothesise that mixed opioid receptor agonists targeting the KOP and delta opioid receptor 

(DOP) would have a wider therapeutic index, with the rewarding effects of DOP negating the 

negative effects of KOP. MP1104, an analogue of 3-Iodobenzoyl naltrexamine, is a novel mixed 

opioid receptor agonist with potent antinociceptive effects mediated via KOP and DOP in mice 

without rewarding or aversive effects. In this study, we show MP1104 has potent, long-acting 

antinociceptive effects in the warm-water tail-withdrawal assay in male and female mice and rats; 

and is longer acting than morphine. In the paclitaxel-induced neuropathic pain model in mice, 

MP1104 reduced both mechanical and cold allodynia and unlike morphine, did not produce 

tolerance when administered daily for 23 days. Moreover, MP1104 did not induce sedative effects 

in the open-field locomotor activity test, respiratory depression in mice using whole-body 

plethysmography, or have cross-tolerance with morphine. This data supports the therapeutic 
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development of mixed opioid receptor agonists, particularly mixed KOP/DOP agonists, as non-

addictive pain medications with reduced tolerance.
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1. Introduction

Chronic pain has become a worldwide issue, with global rates ranging from 11 to 50% of the 

adult population (Henderson et al., 2013; Kennedy et al., 2014; Fayaz et al., 2016). The high 

abuse potential of opioids prescribed for chronic pain also contributes to the global opioid 

epidemic, with 21–29% of patients abusing, and a further 8–12% addicted to prescription 

opioid medications (Vowles et al., 2015; Hedegaard et al., 2018). Despite vast efforts, opioid 

overdose deaths are continuing to increase due to the induction of respiratory depression 

(Okie, 2010; Berterame et al., 2016; Rudd et al., 2016), highlighting the urgent need for 

more effective, safer, non-addictive pain medications.

The main opioid receptors are mu (MOP), delta (DOP), kappa (KOP) and nociceptin opioid 

receptors (Stevens, 2009). Each opioid receptor subpopulation has a unique expression 

pattern and endogenous ligands that contribute to a unique analgesic effect, side-effects, and 

abilities to modulate different aspects of pain (Mayer and Saper, 2000). MOP analgesics 

such as morphine, oxycodone, and tramadol, are the most utilised pharmacological 

treatments for pain (Houmes et al., 1992; Lichtor et al., 1999; Caldwell et al., 2002). 

Unfortunately, on-target side-effects including tolerance, dependence, addiction, withdrawal, 

respiratory depression, hyperalgesia, and constipation, severely limit their clinical utility 

(Shook et al., 1990; Chu et al., 2006; Compton and Volkow, 2006; Goodman et al., 2007).

KOP agonists are a promising alternative, as they are non-rewarding, and have low abuse 

potential (Kivell and Prisinzano, 2010; Ueno et al., 2013). KOP agonists are effective in 

peripheral (Rivière, 2004 ), visceral (Binder et al., 2001) and inflammatory (Bileviciute-

Ljungar et al., 2005) pre-clinical models of pain. DOP agonists also have antinociceptive 

(Brainin-Mattos et al., 2006; Gaveriaux-Ruff et al., 2008; Codd et al., 2009; Jones et al., 

2009), anti-depressant (Broom et al., 2002; Naidu et al., 2007) and anxiolytic effects (Saitoh 

et al., 2004; Perrine et al., 2006; Vergura et al., 2008). In addition, it has been shown that 

administration of a KOP agonist and a DOP agonist can have a synergistic antinociceptive 

response (Miaskowski et al., 1990). Unfortunately, both KOP and DOP agonists have some 

unwanted side-effects that limit their clinical use. KOP activation causes dysphoria, 

anhedonia, aversion, depression and anxiety (Pfeiffer et al., 1986; Mello and Negus, 2000; 

Land et al., 2008), activation of DOP induces seizures (Bilsky et al., 1995; Jutkiewicz et al., 

2005), and DOP agonists have abuse potential (Shippenberg et al., 2009; Pradhan et al., 

2011; Mori et al., 2015). However, studies have shown that mixed opioid receptor agonists 

may be a viable strategy to generate a more desirable drug profile (Balboni et al., 2002; 

Váradi et al., 2016; Anand and Montgomery, 2018; Majumdar and Devi, 2018). We 

hypothesise that a mixed opioid receptor agonist targeting the KOP and DOP could have a 
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wider therapeutic index, with the rewarding and positive effects of DOP opposing the 

aversive effects of KOP.

In this study, we explored the antinociceptive potential of the mixed opioid receptor agonist, 

17-cyclopropylmethyl-3-hydroxy-4,5α-epoxy-7,8-en-6-β-[(3′-iodo)benzamido]-morphinan 

(MP1104), an analogue of 3-iodobenzoyl naltrexamine, a potent analgesic belonging to the 

6β-amidoepoxymorphinan group of opioids (Váradi et al., 2015a, Váradi et al., 2015b). 

MP1104 has a higher affinity for KOP than MOP and DOP (Váradi et al., 2015a ). In the 

mouse tail-withdrawal assay, MP1104 produced 15-fold greater antinociceptive effects than 

morphine, without inducing seizures or rewarding effects (Váradi et al., 2015a). In addition, 

MP1104 did not induce aversion, anxiety, sedation or depressive-like effects in rats at doses 

that block the rewarding effects of cocaine (Atigari et al., 2019). More recently, MP1104 

was found to attenuate pain-like behaviours in phases I and II of the formalin assay in both 

male and female mice (Ulker et al., 2020).

In the current study, we sought to determine whether the dual activation of KOP and DOP by 

MP1104 was effective in assays of nociceptive and chemotherapy-induced neuropathic pain. 

In addition, we tested for sedative, tolerance, withdrawal, and respiratory side-effects.

2. Methods

2.1. Animals

Male (n = 164) and female (n = 18) adult (8+ weeks) C57BL/6J mice (20–30 g), and adult 

male Sprague-Dawley rats (n = 55; 250–400 g) were housed within the vivarium at the 

School of Biological Sciences, Victoria University of Wellington, New Zealand. Mice were 

housed in temperature (19–20 °C) and humidity (55%) controlled rooms with lights 

maintained on a 12 h light/dark cycle (lights on at 07:00). All experimental procedures were 

approved and conducted in accordance with the guidelines of the Victoria University Animal 

Ethics Committee (approval numbers 22334, 21,480, and 25,751) and the New Zealand 

Animal Welfare Act, 1999. For the tolerance and withdrawal experiments, male CD1 mice 

(n = 100; 20–32 g) were obtained from Charles River Laboratories. The mice were 

maintained on a 12 h light/dark cycle and were housed in groups of five until testing. These 

animal studies were pre-approved by the Institutional Animal Care and Use Committees of 

the Memorial Sloan Kettering Cancer Center, in accordance with the 2002 National 

Institutes of Health Guide for the Care and Use of Laboratory Animals. For all animal 

procedures at both facilities, food and water were available ad libitum except during 

experimental procedures. All animals were handled by the experimenter for 2–3 days prior 

to testing to habituate the animals to handling stress, and all tests were performed by an 

experimenter blinded to the treatment groups.

2.2. Drugs

MP1104 and naltrindole (>98% purity) (Váradi et al., 2015a) were provided by Dr Susruta 

Majumdar (Center of Clinical Pharmacology, St. Louis College of Pharmacy and 

Washington University School of Medicine, USA). MP1104, DOP antagonist naltrindole, 

MOP antagonist β-Funaltrexamine (β-FNA) (Tocris Bioscience), and morphine were 
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dissolved in a vehicle of dimethyl sulfoxide (DMSO), tween 80 (Sigma-Aldrich) and 

physiological saline in a ratio 2:1:7. The KOP antagonist nor-binaltorphimine (nor-BNI) 

(Tocris Bioscience) was diluted in physiological saline. The pre-treatment time was 15 min 

for naltrindole (15 mg/kg), whereas β-FNA (10 mg/kg) and nor-BNI (10 mg/kg) were 

injected 24 h prior to testing via subcutaneous (s.c.) injection. All drugs and solutions were 

stored in the dark at 4 °C. For the tolerance and withdrawal experiments, the naloxone, 

morphine pellets and placebo pellets were provided by the National Institute on Drug Abuse. 

Paclitaxel (Paclitaxel Ebewe; Sandoz Pty Ltd., NSW, Australia) was commercially available 

in concentrated liquid form (6 mg/mL). Paclitaxel was diluted to 0.4 mg/mL to give a 

mixture of absolute ethanol, Kolliphor EL (Sigma-Aldrich), and 0.9% saline in 1:1:18 ratio.

2.3. Warm-water tail-withdrawal assay

The warm-water tail-withdrawal assay measures latency to withdraw the tail following 

thermal stimulation and is mediated via spinal cord reflexes (Irwin et al., 1951). Warm-water 

tail-withdrawal assays were conducted as previously described (Thorn et al., 2011; Paton et 

al., 2017). Mice were restrained in plexiglass restrainers with an internal diameter of 24 mm, 

while rats were restrained by hand. Tail-withdrawal latencies were measured by immersing a 

third of the distal portion of the tail in a water-bath containing 50 ± 0.5 °C (mice) or 55 °C 

(rats) water. The time taken for withdrawal responses was recorded, with a 10 s (mice) or 15 

s (rats) cut-off latency to avoid tissue damage.

To evaluate the duration of action of MP1104, a tail-withdrawal time-course was performed. 

Mice and rats were administered via intraperitoneal (i.p.) injection either vehicle, MP1104 

(0.3 or 0.6 mg/kg) or morphine (10 mg/kg) and tail-withdrawal latencies measured to 480 

min. The percent maximum possible effect (%MPE) of antinociception was calculated by 

applying the formula:

%MPE = test latency−baseline latency
10(or 15 for rats) − baseline latency × 100

To measure whether these effects were mediated via KOP, MOP or DOP, animals were pre-

treated with an antagonist for KOP (nor-BNI, 10 mg/kg, s.c., 24 h pre-treatment), MOP (β-

FNA, 10 mg/kg, s.c., 24 h pre-treatment), or DOP (naltrindole, 15 mg/kg, s.c., 15 min pre-

treatment).

Dose-response effects for tail-withdrawal were evaluated using a within-subject 

experimental design as described previously (Bohn et al., 2000; Paton et al., 2017). Animals 

were given s.c. injections (5 μL/g) of MP1104 at increasing concentrations and tail-

withdrawal latency measured 1 h following administration of each cumulative dose. The 

potency (ED50) and efficacy (Emax) were calculated using non-linear four-parameter 

regression analysis (variable slope dose-response curve) using GraphPad Prism software 

version 7 (GraphPad, La Jolla, CA).

2.4. Chemotherapy-induced neuropathic pain

To induce chemotherapy-induced neuropathic pain (CINP), male C57BL/6J mice were 

administered paclitaxel (4 mg/kg, i.p.) four times on alternate days to give a cumulative dose 
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of 16 mg/kg. This dosing regime is known to produce paclitaxel-induced neuropathic pain in 

mice (Deng et al., 2015; Paton et al., 2017). Control mice were given vehicle consisting of a 

1:1:18 ratio of absolute ethanol, kolliphor EL, and 0.9% saline, respectively, and housed in 

separate cages to paclitaxel-treated mice. To measure the progress of paclitaxel-induced 

effects, mice were placed in chambers on an elevated mesh grid with holes of approximately 

1 mm and allowed to habituate to the apparatus for 20 min. Each hind paw was measured 

twice for both mechanical and cold allodynia and the average value recorded. On days when 

paclitaxel was to be administered, mechanical and cold allodynia measurements were taken 

prior to the administration of paclitaxel.

2.4.1. Mechanical allodynia—Mechanical allodynia was measured using von Frey 

filaments (20-piece set; #58011, Stoelting, IL, USA). Von Frey filament numbers 2 to 9 were 

used to measure the sensitivity to mechanical stimuli, beginning with filament 5, and using a 

simplified up-down method (Bonin et al., 2014). Briefly, a positive response to filament 

application resulted in the use of the next lower filament in the subsequent test, but if no 

response was observed, the next higher filament was used. The process continued until five 

filaments were used. The paw withdrawal threshold was calculated using the outcome of the 

fifth filament. A value of 0.5 filament intervals was added or subtracted to the result if the 

response to the fifth filament was negative or positive, respectively (Bonin et al., 2014).

2.4.2. Cold allodynia—Cold allodynia was measured using a drop of acetone 

administered to the plantar surface of the hind paw as described previously (Deng et al., 

2015; Paton et al., 2017). The total response time of relevant behaviours, including licking, 

shaking, elevating or biting the paw, was measured.

2.4.3. Dose-response procedure in mice with established chemotherapy-
induced neuropathic pain—The dose-response experiments were carried out on day 15 

following the initial induction of CINP. Mice were administered cumulative doses of 

MP1104, morphine or equivalent volumes of vehicle, with a 1 h interval between each 

cumulative dose. The doses were administered via s.c. injection to allow for a sustained rate 

of absorption. Non-linear regression analysis was used to calculate ED50 and Emax and four-

parameter variable slope with least-squares ordinary fit used to fit the data curve in 

GraphPad Prism software version 7.

2.4.4. Evaluation of chronic MP1104 administration on chemotherapy-
induced neuropathic pain—The effects of repeated MP1104 administration on 

mechanical and cold allodynia were evaluated in mice with established paclitaxel-induced 

neuropathic pain. This experimental design allowed evaluation of tolerance following 

chronic administration of MP1104 or morphine. On day 15, CINP mice were allocated into 

treatment groups so that mechanical allodynia scores were equal. Mice were administered 

daily injections of either MP1104 (1.2 mg/kg, i.p.), morphine (10 mg/kg, i.p.) or vehicle for 

23 days (days 16–38). On even-numbered days, mechanical and cold allodynia behaviours 

were measured 1 h following injection.
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2.5. Open-field locomotor activity test

The open-field arena was a 45 × 45 cm chamber that was virtually separated into two zones, 

comprising a 5 cm width border zone and a middle zone. The animals were placed in the 

center of the chamber and allowed to move freely for 15 min, while their horizontal 

ambulatory activity was tracked with the aid of a video-tracking system using SMART 3.0 

software. Treatment groups included vehicle, morphine (10 mg/kg, i.p.) and MP1104 (0.6 

and 1.2 mg/kg, i.p.).

2.6. Tolerance and withdrawal studies

For the initial withdrawal experiment, male CD1 mice were administered twice-daily 

injections with either morphine (5 mg/kg, s.c.) or MP1104 (1 mg/kg, s.c.) for 5 days. 

Naloxone (1 mg/kg, s.c.) was administered to precipitate withdrawal, and animals were 

evaluated for the number of jumps over 15 min (Ling et al., 1984; Gistrak et al., 1989; 

Majumdar et al., 2011; Grinnell et al., 2014). Similarly, in the second withdrawal 

experiment, in morphine (75 mg free-base) or placebo pelleted animals, after 3 days 

withdrawal was precipitated with either naloxone (1 mg/kg, s.c.) or MP1104 (0.66 mg/kg, 

s.c.).

Cross-tolerance studies were also performed in morphine (75 mg free-base) or placebo 

pelleted mice. Antinociceptive tolerance was assessed by performing a dose-response radiant 

heat tail-flick assay using an Ugo Basile model 37,360 instrument as previously described 

(Váradi et al., 2015a, 2015b). The intensity was set to achieve a baseline between 2 and 3 s. 

Baseline latencies were determined before experimental treatments for all mice. Morphine or 

MP1104 were administered via s.c. injection with 30 min between subsequent doses. Tail 

flick antinociception was assessed with a maximal 10 s latency to minimize damage to the 

tail. Data were analysed as percent maximal effect, % MPE, and was calculated according to 

the formula:

%MPE = observed latency−baseline latency
10 − baseline latency × 100

2.7. Whole-body plethysmography in unrestrained awake mice

Mice were acclimatised to the room for 30 min and habituated to the respiratory chamber for 

10 min every day for 2 weeks. The respiratory measurements were taken as previously 

described (Lim et al., 2014). In brief, volume changes were calibrated by injecting known 

amounts of air into the chamber, the pressure deflection of this injection was used to 

calibrate the pressure transducer and was recorded for later analysis (Colman and Miller, 

2001; Lewanowitsch et al., 2006). On the experimental day, mice were placed into the 

respiratory chamber for 10 min with 3 baselines taken at 5, 7, and 9 min. The animal was 

then removed from the chamber and injected within a 2 min window. The animal was then 

returned to the chamber and recordings taken at 5, 10, 15, 20, 30, 40, 50, and 60 min post-

administration. Data were analysed using the LabChart Software v8 (Dunedin, NZ) using 

previously described macro analysis (Lim et al., 2014). Tidal volume and minute volume 

were then calculated using equations (1)–(3) and presented as a percent of the baseline 

measurements:
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V T(mL) = PT
PK

× V K

× TCORE PB − PC ÷ TCORE PB − PC − TC PB − PCORE
(1)

Where;

VT = tidal volumePT = pressure deflection due to tidal volumePK = pressure deflection due 

to each μL injectionVK = volume of each calibration injectionTCORE

= core temperature of each mouse

PB = barometric pressurePC = water vapor pressure at chamber temperature relative 

humidity in chamber

PCORE = pressure at body temperature

(water vapor pressure at body temperature × 1)

V T
mL
kg = V T(ml)

Body weigℎt(kg) (2)

Minute V olume mL
min /kg = V T × F

Body weigℎt (kg) (3)

2.8. Statistical analysis

One-way and two-way interaction analysis was carried out with GraphPad Prism version 7. 

Data from repeated measures experiments were analysed using two-way repeated-measures 

ANOVA followed by Bonferroni or Turkey’s multiple comparison tests and were compared 

to vehicle-treated control animals. To evaluate dose-response effects, the data were 

transformed to logarithmic values (base 10), and a non-linear regression was performed 

using a four-parameter variable slope with least-squares ordinary fit to determine ED50 and 

Emax values from the dose-response curve. For mechanical allodynia, the top constraint was 

set to no more than 9.5 and for cold allodynia, the bottom constraint was set at no less than 

0. No constraints were set for tail-withdrawal analyses. Data sets were tested prior to 

statistical analysis for normality using the D’Agostino and Pearson omnibus normality test. 

For data sets with p < 0.05 in the normality test were analysed with the Mann-Whitney non-

parametric test.

The three-way interaction analysis was carried out with IBM SPSS Statistics (version 26) 

using a three-way mixed ANOVA, with treatment and sex as the between-subjects variables, 

and time as the within-subjects variable. Normality was assessed using the Shapiro-Wilk 

test, the homogeneity of variances was assessed with Levene’s test, and the sphericity was 

tested using Mauchly’s test. If the assumption of sphericity was violated, the Greenhouse-
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Geisser correction was applied. The Bonferroni correction was applied for the pairwise 

comparisons of simple main effects.

3. Results

3.1. MP1104profile

MP1104 is an analogue of 3-iodobenzoyl naltrexamine, a potent analgesic belonging to the 

6β-amidoepoxymorphinan group of opioids (Fig. 1). MP1104 is a novel mixed opioid 

agonist that has high in vitro binding affinity and activity at the KOP, MOP and DOP 

(Váradi et al., 2015a).

3.2. Onset and duration of action of MP1104 in the warm-water tail-withdrawal assay

The warm-water tail-withdrawal assay was used to assess the onset and duration of action of 

MP1104. To investigate any sex differences in the antinociceptive effects of MP1104, both 

male and female mice were evaluated using the warm-water tail-withdrawal assay (Fig. 2A 

and B). The mean baseline latencies were not significantly different between the sexes, with 

baseline latencies of 2.0 ± 0.1 s for males and 1.9 ± 0.1 s for females. There was no three-

way interaction of treatment, sex and time (F(14.4,216.7) = 0.907, p = 0.555), however, there 

were significant two-way interactions between treatment and time (Fig. 2A, p < 0.0005) and 

between treatment and sex (Fig. 2B, p = 0.027). MP1104 (0.6 mg/kg) produced 

antinociceptive effects starting at 30 min, and lasting up to 8 h, whilst morphine (10 mg/kg) 

produced effects up to 4 h (Fig. 2A). Between 30 and 60 min, morphine had more potent 

antinociceptive effects than MP1104, however, between 2 and 8 h, MP1104 produced 

significantly greater antinociceptive effects than morphine (Fig. 2A). The mean effects 

showed that MP1104 (0.6 mg/kg) had more potent antinociceptive effects than morphine (10 

mg/kg) and vehicle within both the male and female mice (Fig. 2B).

Antinociceptive effects were evaluated in the presence of selective MOP (β-FNA, 10 mg/kg, 

s.c.), KOP (nor-BNI, 10 mg/kg, s.c.) and DOP (naltrindole, 15 mg/kg, s.c.) antagonists (Fig. 

2C). The %MPE was calculated for each treatment group at 30 min, the time-point that 

showed peak significant antinociceptive effects (Fig. 2C). MP1104 at 0.6 mg/kg (p < 0.0001) 

dose showed significant antinociceptive effects compared to vehicle-controls (Fig. 2C). Pre-

treatment with the MOP selective antagonist β-FNA did not alter antinociceptive effects, 

whereas pre-treatment with the selective DOP (naltrindole) (p < 0.0001) or KOP (nor-BNI) 

(p < 0.0001) antagonists attenuated the antinociceptive effects of MP1104 (0.6 mg/kg). 

When both nor-BNI and naltrindole were co-administered, MP1104 showed no significant 

antinociceptive effects, confirming the lack of MOP involvement in MP1104 induced 

antinociception, consistent with previous findings in mice (Váradi et al., 2015a).

Both mice and rats were used in this study to correlate our finding to previous reports 

evaluating side-effects and therapeutic effects of MP1104 utilising these same species 

(Váradi et al., 2015a; Atigari et al., 2019; Ulker et al., 2020). In the warm-water tail-

withdrawal assay, MP1104 (0.6 mg/kg) showed a long duration of action of 8 h in both mice 

(Fig. 2A) and rats (Fig. S1). In addition, the antinociceptive effect in rats was attenuated 

following pre-treatment with KOP and DOP antagonists (Fig. S1). MP1104 was also found 
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to be potent and efficacious in the cumulative dose tail-withdrawal assay in mice (ED50 = 

0.35 ± 0.1 mg/kg) (Fig. 2D) and rats (ED50 = 0.37 ± 0.1 mg/kg) (Fig. S1).

3.3. Cumulative dose-response effects of MP1104 on mechanical and cold allodynia

Paclitaxel, when administered as indicated in Fig. 3A, induced both mechanical (Fig. 3B) 

and cold (Fig. 3C) allodynia in mice. Maximal mechanical and cold allodynia was 

established at day 15 as described previously (Paton et al., 2017). Paclitaxel-induced 

mechanical allodynia on days 7–15 is shown as a reduction in withdrawal score measured by 

von Frey filaments (Fig. 3B) and an increase in response time to a cold acetone stimulus 

(Fig. 3C). MP1104 showed significant attenuation of both mechanical (Fig. 3D) and cold 

(Fig. 3E) allodynia. MP1104 showed a 9-fold increase in potency (ED50 = 0.449 mg/kg) in 

tests of mechanical allodynia compared to morphine (ED50 = 4.07 mg/kg) (p = 0.0386, 

Student’s t-test) (Fig. 3D). MP1104 was found to have 10-fold higher potency (ED50 = 

0.479 mg/kg) compared to morphine (ED50 = 5.179 mg/kg) (p = 0.0371, Student’s t-test) in 

measures of cold allodynia (Fig. 3E).

3.4. Effect of chronic administration of MP1104 on CINP-induced mechanical and cold 
allodynia

Mice were administered MP1104 (1.2 mg/kg), morphine (10 mg/kg) or vehicle daily 

beginning on day 16 following the initial induction of CINP (Fig. 4A). Two-way repeated-

measures ANOVA revealed a significant interaction between the treatment and time for the 

mechanical allodynia measurements (F(33,352) = 29.1, p < 0.0001). Administration of 

MP1104 attenuated paclitaxel-induced mechanical allodynia for the entire experiment (days 

16–38; p < 0.0001) (Fig. 4B). In contrast, morphine treatment showed significant 

antinociceptive effects that only lasted until day 34 (days 16–34; p <0.0001) (Fig. 4B). To 

understand the main effect of treatment, the area under the curve was calculated from days 

16–38. MP1104 (p < 0.0001) and morphine (p < 0.05) reduced mechanical thresholds 

compared to paclitaxel/vehicle-treated mice (Fig. 4C).

Cold allodynia was also assessed using the acetone test. There was significant interaction 

between treatment and time (F(33,352) = 23.98, p < 0.0001; two-way ANOVA with 

Bonferroni post-tests). MP1104 and morphine reduced paclitaxel-induced cold allodynia on 

all days assessed (days 16–38; p < 0.0001) (Fig. 4D). Moreover, MP1104 treatment reduced 

the cold response times back to the same level as non-diseased control levels (vehicle/

vehicle treatment group (p > 0.999)) (Fig. 4D). The area under the curve analysis showed a 

significant effect of treatment (F(3,24) = 19.29, p < 0.0001), and Bonferroni post-tests 

showed that MP1104 and morphine reduced the paclitaxel-induced cold allodynia effects (p 
< 0.0001; Fig. 4E).

3.5. Open-field locomotor activity test

The open-field activity test was used to evaluate the locomotor effects of MP1104 in adult 

male C57BL/6J mice (Fig. 5A). The mean total distance travelled by mice treated with 0.6 

and 1.2 mg/kg of MP1104 (5998 ± 722.4 cm and 6544 ± 499.6 cm, respectively) were not 

significantly different from the vehicle-treated control mice (6475 ± 704.2 cm; Fig. 5B). 

However, mice treated with morphine (10 mg/kg) had significantly (p < 0.01) increased 
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locomotor activity (16,166 ± 1491 cm) compared to the vehicle controls (Fig. 5B). 

Morphine-treated mice showed increased activity in both the middle zone and border (Fig. 

5C). However, neither morphine nor MP1104-treated mice showed a significant difference in 

the amount of time spent in the middle or border zone compared to the vehicle controls (Fig. 

5D).

3.6. Tolerance and withdrawal studies

Chronic administration of traditional mu-opioids leads to physical dependence. We have 

previously shown that daily administration of morphine (5 mg/kg, s.c.) twice a day led to 

antinociceptive tolerance in mice to morphine by day 5 (Váradi et al., 2016). These 

morphine-treated mice show naloxone precipitated withdrawal syndrome. The same model 

was used with MP1104 and mice were treated twice a day at 1 mg/kg s.c. for 5 days and 

then challenged with naloxone (F(2,27) = 75.93, p < 0.0001). Contrary to morphine treated 

group (p < 0.0001 compared to saline control), the MP1104 treated mice showed no signs of 

naloxone induced withdrawal (p >0.9999 compared to saline control; Fig. 6A).

We implanted one pellet of morphine (75 mg free-base) which results in slow release of 

morphine and leads to marked morphine tolerance and dependence in mice (Cicero and 

Meyer, 1973; Yoburn et al., 1985; Majumdar et al., 2011; Grinnell et al., 2014). Naloxone 

demonstrated withdrawal in morphine pelleted animals (measured by involuntary jumping in 

mice) indicating that the morphine-pelleted mice were physically dependent (F(2,27) = 443.5, 

p < 0.0001). MP1104, on the other hand, failed to demonstrate any evidence of withdrawal 

in the morphine-pelleted animals (p > 0.9999 for comparison of MP1104 administration to 

mice with morphine pellet vs mice with placebo pellet; Fig. 6B).

Cross-tolerance with MOP agonists is often used to demonstrate a common mechanism of 

action. A cumulative dose-response was carried out with morphine and MP1104 in the 

morphine-pelleted animals. Morphine showed a 7-fold decrease in tail withdrawal 

antinociception (p < 0.0001), with the ED50 increasing from 3.2 to 22.4 mg/kg s.c. (Fig. 6C). 

However, the morphine-pelleted animals retained antinociceptive efficacy to MP1104, and 

the shift in the antinociceptive dose-response curve was only 2-fold (Fig. 6C).

3.7. Opioid-induced respiratory depression studies

To assess the ability of MP1104 (0.6 mg/kg, s.c) to induce respiratory depression we utilised 

whole-body plethysmography in unrestrained, awake, male C57BL/6J mice. The effects on 

frequency (F(16, 136) = 2.525, p = 0.002), tidal volume (F(16, 136) = 2.322, p = 0.0047), and 

minute volume (F(16, 136) = 2.162, p = 0.009) were compared to vehicle-treated controls. 

Bonferroni post-tests revealed MP1104 did not decrease respiratory frequency compared to 

vehicle (p > 0.05), whereas, morphine decreased respiratory frequency at the 5, 15 and 30–

60 min time points (p <0.05) (Fig. 7A). Similarly, for tidal volume, MP1104 had no effect 

compared to vehicle (p > 0.05), whereas morphine decreased the tidal volume at the 10 and 

30–60 min time points (p < 0.05) (Fig. 7B). Morphine decreased minute volume at 15, 30–

60 min (p < 0.001), whilst there was no decrease in MP1104 treated mice over the 60 min 

period (p > 0.9999) (Fig. 7C). The analysis of other respiratory parameters showed an 
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increase in exhalation time and total cycle time at peak effect with morphine and MP1104 

(Fig. S2). Only morphine increased the inspiration time (Fig. S2).

4. Discussion

MP1104 is an analogue of 3-iodobenzoyl naltrexamine (Fig. 1), with previous studies 

revealing potent antinociceptive actions in C57BL/6J (ED50 = 0.22 mg/kg, s.c.) and CD1 

mice (ED50 = 0.25 mg/kg, s.c.) in tail-withdrawal assays (Váradi et al., 2015a); and in male 

and female ICR mice (0.05–1.0 mg/kg, s.c.) in the formalin assay (Ulker et al., 2020). In the 

current study, we examined whether the dual KOP/DOP agonist actions of MP1104 would 

be effective at modulating pain and investigated the side-effect profile in mice.

In C57BL/6J mice, the onset of action of MP1104 was 30 min (Fig. 2A), consistent with 

previous studies in CD1 male mice (Váradi et al., 2015a). However, in rats, the onset of 

action was at 45 min and the time of peak effect was between 2 and 3 h (Fig. S1). This is 

suggestive of different pharmacokinetic effects, which may be due to a difference in 

metabolism of MP1104 in mice and rats. There is evidence to support that opioid drug 

metabolism varies in different animals, including rodents and humans (Sawa and Oka, 1976; 

Oguri et al., 1990; Chandrasekaran et al., 2010). Moreover, Chandrasekaran et al. (2010) 

showed that MOP antagonist, methlynaltrexone metabolised to a higher extent in mice 

compared to rats, dogs and humans.

The mean effect analysis of the warm-water tail withdrawal assay showed that MP1104 was 

more potent than morphine in both male and female mice (Fig. 2B). To evaluate the potency 

and efficacy of MP1104 at attenuating CINP, we evaluated the dose-response effects. 

MP1104 was 9-times more potent than morphine in attenuating mechanical allodynia (Fig. 

3D) and 10-times more potent in attenuating cold allodynia (Fig. 3E). It is important to note 

that we used a 1 h interval between subsequent doses in this cumulative dosing paradigm, 

which may have allowed for morphine to be cleared at a faster rate than MP1104, due to the 

peak effect of morphine occurring at 30 min (Fig. 2A). However, since MP1104 is up to 10-

times more potent than morphine, it is not likely that this confounding factor explains this 

entire increase in potency. In fact, using our warm-water tail withdrawal dose-response 

paradigm with a 30 min interval, we have previously shown morphine to have an ED50 of 

5.3 mg/kg (Crowley et al., 2016). By comparing the results for MP1104 in the present paper 

(ED50 = 0.35 mg/kg; Fig. 2D), this makes MP1104 15-times more potent than morphine, 

reflecting the increase in potency seen in the paclitaxel-induced neuropathic pain model.

Following chronic administration, MP1104 attenuated mechanical allodynia for the entire 

experimental period, however, morphine only reduced mechanical allodynia up to day 34 

(Fig. 4B). Studies have shown that selective MOP agonists attenuate paclitaxel-induced 

neuropathic pain in male Sprague-Dawley (Mori et al., 2014) and Wistar rats (Pascual et al., 

2010), however, the current study showed that morphine rapidly shows tolerance. This 

highlights that MP1104, unlike morphine, does not show tolerance in this model, however, 

the mechanisms through which MP1104 exerts its antinociceptive actions in CINP needs to 

be fully evaluated.

Atigari et al. Page 11

Neuropharmacology. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Few compounds possessing dual KOP/DOP activity have been evaluated in thermal 

nociceptive models of pain (Daniels et al., 2005; Tang et al., 2010). However, recent studies 

have evaluated the effects of selective KOP agonists in neuropathic pain (Paton et al., 2017; 

Coffeen et al., 2018). One study showed that lappaconitine (diterpenoid alkaloid) exhibited 

antinociceptive effects mediated by dynorphin A in the spinal cord without tolerance (Sun et 

al., 2018). Both pharmacological and genetic data highlight DOP agonists as promising 

alternatives to MOP analgesics in the treatment of chronic pain (Zhang et al., 2006; Bie and 

Pan, 2007; Cahill et al., 2007; Kabli and Cahill, 2007); and DOP agonists are more potent 

than MOP and KOP agonists in neuropathic pain (Mika et al., 2001; Obara et al., 2009; 

Nozaki et al., 2012). DOP knockout male and female C57BL/6 mice showed enhanced 

development of mechanical and thermal allodynia following sciatic nerve ligation (Nadal et 

al., 2006). These results reveal the involvement of DOP in neuropathic pain and suggest a 

potential therapeutic use for DOP agonists. Selective DOP agonists are known to cause 

seizures (Bilsky et al., 1995; Jutkiewicz et al., 2005), however, MP1104 did not cause 

seizures at 30-times the antinociceptive dose (Váradi et al., 2015a), indicating it is likely to 

have a broad therapeutic window.

Studies in mice (Fantegrossi et al., 2005; Paris et al., 2011), rats (Gallantine and Meert, 

2008; Wang et al., 2009) and rhesus monkeys (Butelman and Kreek, 2001; Butelman et al., 

2009) have shown that KOP agonists have sedative side-effects. This can be a confounding 

factor when using pain-stimulated behavioural models, as the sedative effects can lead to 

‘false positive’ outcomes (Negus, 2019). Therefore, we evaluated the locomotor effects of 

MP1104 in the open-field activity test. MP1104 (0.6–1.2 mg/kg) treated mice did not have 

differences in locomotor activity compared to vehicle-treated mice, whereas, morphine (10 

mg/kg) treated mice showed hyper-locomotor activity (Fig. 5B and C). This indicates that 

the behaviours observed in the pain models were due to antinociceptive effects of MP1104, 

rather than sedative effects. Further examination of the time spent in each zone of the 

chamber showed there was no difference between vehicle and the treatment groups (Fig. 

5D). Time spent in the outer border of open-field locomotor chambers is routinely used as a 

measure of anxiety in rodents (Prut and Belzung, 2003). This data showing that MP1104 

does not induce anxiogenic-like behaviours supports previous studies performed in rats 

using the elevated plus maze (Atigari et al., 2019).

The effects of MP1104 were also evaluated in a series of withdrawal studies. Morphine, but 

not MP1104 exposed mice showed robust naloxone precipitated withdrawal (Fig. 6A). 

Moreover, MP1104 did not precipitate withdrawal in morphine tolerant mice (Fig. 6B). The 

dependence studies in morphine-pelleted mice also suggest that MP1104 has a mechanism 

of action independent of MOP. Unlike morphine, MP1104 doesn’t show physical 

dependence and retains antinociceptive efficacy in morphine-dependent mice (Fig. 6B). This 

confirms that the in vivo actions of MP1104 are not mediated by MOP, as MOP partial 

agonists would show naloxone precipitated withdrawal in a morphine-dependent animal, and 

antinociceptive effects of MP1104 would be blocked by β-FNA (Fig. 2C).

We then investigated the induction of respiratory depression by MP1104. We found that 

morphine significantly reduced respiratory frequency (Fig. 7A), tidal volume (Fig. 7B), and 

minute volume (Fig. 7C), while MP1104 had no significant effects. As previously discussed, 
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the behavioural effects of MP1104 are thought to be dependent on KOP and DOP activation, 

not the MOP. Prototypical agonists of both KOP and DOP induce limited respiratory effects 

(Castillo et al., 1986; Codd et al., 2009). In addition, KOP and DOP agonists have been 

shown to rescue the respiratory depressive effects of MOP agonists when co-administered 

(Dosaka-Akita et al., 1993; Su et al., 1998; Vankova et al., 1996). Furthermore, the 

MOP/DOP mixed agonist, DPI-125, was shown to have reduced respiratory depression, with 

DOP activation believed to be ‘dampening’ the MOP mediated respiratory depression 

(Gengo et al., 2003; Yi et al., 2017). Further investigation is required to understand the 

combination of receptors activated by MP1104 to produce no respiratory side-effects.

Interestingly, although MP1104 has high affinity towards MOP, KOP and DOP in vitro, 

there is a lack of MOP in vivo activity. This is consistent with previous studies evaluating 

antinociception and reward (Váradi et al., 2015a; Atigari et al., 2019; Ulker et al., 2020). 

MP1104 may produce a metabolite that lacks MOP action in vivo but retains KOP and DOP 

action or that metabolism may cause the hydrolysis of the amide bond that would result in 

the formation of a MOP antagonist such as naltrexamine, however, there is no evidence of 

this and further studies are required to fully evaluate the differences between in vitro and in 
vivo effects. Nevertheless, studies have shown difference in opioid receptor binding profiles 

(Pasternak et al., 1987; Ulens et al., 2001) and difference in the antinociceptive effects in 

rodents (Abbott and Palmour, 1988) by the metabolites of morphine, morphine-6-O-

glucuronide (M6G) and morphine-3-O-glucuronide (M3G). In cloned human MOP, KOP, 

DOP, compared with morphine, M6G exhibited higher potency at the MOP, lower potency at 

the KOP, and similar potency at the DOP, while a 1000-fold non-selective reduction in 

potency via opioid receptors was observed with M3G (Ulens et al., 2001). Moreover, M3G 

failed to antagonise the effects of morphine at the MOP unlike naloxone (Ulens et al., 2001). 

There is also a possibility that MP1104 acts on KOP/DOP heterodimers. KOP/DOP 

heterodimers are believed to be tissue-specific and previous studies have shown a DOP/KOP 

heterodimer-specific agonist exhibited spinal-mediated antinociception (Waldhoer et al., 

2005; Jacobs et al., 2019). Therefore, we cannot rule out the possibility that MP1104 may 

act at DOP/KOP heterodimers. However, a previous study using double and triple opioid 

receptor knock out mice failed to find evidence of KOP/DOP heterodimers in vivo (Yoo et 

al., 2014).

5. Conclusion

MP1104 is long-acting, potent and efficacious at modulating nociceptive pain, in a KOP- 

and DOP-dependent manner. In the CINP model, MP1104 was highly potent at attenuating 

both mechanical and cold allodynia. In addition, MP1104 did not show sedation, anxiogenic 

effects, naloXone-precipitated withdrawal, cross-tolerance with morphine, or respiratory 

depression. We have previously shown that MP1104 produced no seizure activity (Váradi et 

al., 2015a ), depression, aversion, anxiety or rewarding effects (Atigari et al., 2019). 

Therefore, we conclude that MP1104 has significant improvements over morphine in the 

duration of action, potency and side-effects, highlighting the potential therapeutic utility of 

mixed KOP/DOP agonists for development of safer, more effective analgesics. This is 

significant in the context of the current opioid epidemic and the dearth of clinical options 

available for treating chronic pain.
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Fig. 1. 
The chemical structure of MP1104.
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Fig. 2. 
Effect of MP1104 in the warm-water tail-withdrawal assay in C57BL/6J mice. (A) MP1104 

showed significant antinociceptive effects in male and female mice that lasted up to 8 h. 

Three-way mixed ANOVA followed by Bonferroni post-tests (n = 12). (B) The mean effect 

analysis showed that MP1104 exhibited significantly increased antinociceptive effects 

compared to morphine and vehicle-controls in male (M) and female (F) mice (n = 6). (C) 

Percent maximal antinociceptive effect (%MPE) measured at 30 min in male mice showed 

that nor-BNI (10 mg/kg, s.c.) and naltrindole (NTI, 15 mg/kg, s.c.) administered individually 

and in combination significantly reduced the effects of MP1104 (0.6 mg/kg). On the other 

hand, MOP antagonist, β-FNA (10 mg/kg, s.c.), had no significant (ns) effect on MP1104 

tail-withdrawal latencies. One-way ANOVA with Bonferroni post-tests (n = 5–6). (D) 

Cumulative dose-response effects of MP1104 administered to mice with %MPE calculated 
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as a percent based on the pre-treatment baseline latencies. Animals were given s.c. injections 

of MP1104 at increasing concentrations and tail-withdrawal latency measured 1 h following 

administration. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ^p < 0.05, ^^^^p < 

0.0001 for MP1104 compared to morphine. ####p < 0.0001 for addition of antagonist 

compared to MP1104. Values expressed as mean ± SEM.
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Fig. 3. 
Dose-response effects of MP1104 on paclitaxel-induced neuropathic pain in male C57BL/6J 

mice. (A) EXperimental design. Mice were administered 4 mg/kg i.p. paclitaxel on days 0, 2, 

4 and 6. Paclitaxel administration led to significant (B) mechanical and (C) cold allodynia. 

On day 15, MP1104 attenuated both (D) mechanical and (E) cold allodynia in mice with 

established paclitaxel-induced neuropathic pain. Veh indicates paclitaxel-treated mice 

injected with the vehicle; D15 indicates the day 15 baseline values prior to the dose-response 

experiment. PtX, paclitaxel; Veh, vehicle. Two-way repeated-measures ANOVA with 
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Bonferroni post-tests. ***p < 0.001, ****p < 0.0001. Values expressed as mean ± SEM, n = 

6.
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Fig. 4. 
Chronic administration of MP1104 and morphine in chemotherapy-treated C57BL/6J mice. 

(A) EXperimental design for chronic treatment of MP1104 or morphine in mice with 

established paclitaxel-induced neuropathic pain. MP1104 (1.2 mg/kg) and morphine (10 

mg/kg) daily i.p. injections reduced paclitaxel-induced (B–C) mechanical and (D–E) cold 

allodynia. MP1104 completely restored mechanical threshold and cold allodynia to non-

diseased levels. The area under the curve (AUC) showed morphine and MP1104 reduced (C) 

mechanical and (E) cold allodynia compared to the vehicle/paclitaxel group. Two-way 
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ANOVA with Bonferroni post-tests; vehicle/vehicle, MP1104 and morphine *p < 0.05, 

****p < 0.0001 compared to the vehicle/paclitaxel control treatment group. Values 

expressed as mean ± SEM, n = 9. PtX, paclitaxel; Veh, vehicle.

Atigari et al. Page 27

Neuropharmacology. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The locomotor effects of MP1104 were evaluated using the open-field activity test in male 

C57BL/6J mice. (A) Graphical representation of the open-field locomotor activity chamber 

divided into 2 zones, the outer border and the middle zone. (B) The total distance travelled 

and (C) the distance travelled in the middle vs border zone showed that the locomotor effects 

of MP1104 (0.6 and 1.2 mg/kg) were not significantly different to vehicle controls, whereas, 

morphine (10 mg/kg) significantly increased locomotor activity throughout both zones. (D) 

The time spent in the middle vs border zones showed no differences between any of the 

treatment groups. One-way ANOVA (B) and two-way (C–D) ANOVA with Bonferroni post-

tests; **p < 0.01, ****p < 0.0001 compared to vehicle. Values expressed as mean ± SEM, n 

= 7.
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Fig. 6. 
Cross-tolerance and withdrawal effects of MP1104 in male CD1 mice. (A) Mice chronically 

treated with morphine (5 mg/kg twice daily) showed robust naloxone-precipitated 

withdrawal, while mice chronically treated with MP1104 (1 mg/kg twice daily) did not. (B) 

MP1104 (0.66 mg/kg) did not precipitate withdrawal in mice chronically exposed to a 

morphine pellet. One-way ANOVA with Bonferroni multiple comparisons test. (C) 

Antinociceptive dose-response effects in mice chronically exposed to morphine or placebo 

pellet. There was a 7-fold rightward shift in the dose-response effect of morphine in 

morphine-pelleted mice, whereas MP1104 did not show cross-tolerance with morphine. 

Values expressed as mean ± SEM, n = 10. ****p < 0.0001, ns = non-significant.
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Fig. 7. 
The respiratory effects of MP1104 were assessed in whole-body plethysmography in awake, 

unrestrained male C57BL/6J mice. MP1104 (0.6 mg/kg) had no effect on (A) respiratory 

frequency, (B) tidal volume or (C) minute volume. However, morphine (5 mg/kg) 

significantly decreased all three parameters. Two-way repeated-measures ANOVA with 

Bonferroni post-tests; *p < 0.05, **p < 0.01, ***p < 0.001 compared to vehicle; #p < 0.05, 
##p < 0.01 for MP1104 compared to morphine. Values expressed as mean ± SEM, n = 6–7.
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