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Abstract

A variety of techniques involving the use of mass spectrometry (MS) have been developed to 

obtain structural information on proteins and protein complexes. One example of these techniques, 

surface-induced dissociation (SID), has been used to study oligomeric state and connectivity of 

protein-protein complexes. Recently, we demonstrated that appearance energies (AE) could be 

extracted from SID experiments and that they correlate with structural features of specific protein-

protein interfaces. While SID AE provides some structural information, the AE data alone are not 

sufficient to determine the structures of the complexes. For this reason, we sought to supplement 

the data with computational modeling, through protein-protein docking. In a previous study, we 

demonstrated that the scoring of structures generated from protein-protein docking could be 

improved with the inclusion of SID data, however this work relied on knowledge of correct tertiary 

structure and only built full complexes for a few cases. Here, we performed docking using input 

structures that require less prior knowledge, using homology models, unbound crystal structures, 

and bound+perturbed crystal structures. Using flexible ensemble docking (to build primarily 

subcomplexes from an ensemble of backbone structures), the RMSD100 of all (15/15) predicted 

structures using the combined Rosetta, cryo-EM, and SID score was less than 4 Å, compared to 

only 7/15 without SID and cryo-EM. Symmetric docking (which used symmetry to build full 

complexes) resulted in predicted structures with RMSD100 less than 4 Å for 14/15 cases with 

experimental data, compared to only 5/15 without SID and cryo-EM. Finally, we also developed a 

confidence metric for which all (26/26) proteins flagged as high confidence were accurately 

predicted.
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Introduction

Mass spectrometry (MS) can be used to elucidate elements of protein structure using a 

variety of techniques. This is of great significance because the determination of protein 

structure can markedly facilitate the development of new therapeutics through a variety of 

different approaches.1 Furthermore, structural knowledge of protein complexes is 

particularly important because approximately 86% of proteins interact with other proteins to 

form complexes in vivo.2 MS provides many advantages such as the ability to collect data 

using small sample sizes (typically μLs of sample at low μM concentrations), on complex 

mixtures, and on both small and large protein systems (up to megadalton).3–5 Some 

examples of MS-based methods that can provide structural information for proteins and 

complexes are surface-induced dissociation (SID),6–13 chemical cross-linking (XL),14–18 

covalent labeling (CL),19–24 and ion mobility (IM).25–28 However, the data collected from 

MS experiments are insufficient to fully elucidate protein structure, although the information 

gained (masses of the intact complex and its subunits, post-translational modification [PTM] 

information, stoichiometry and topology, ligands bound) can be informative and can help 

guide, or allow better interpretation of data from other structural biology tools.

High-resolution experimental protein structure determination approaches such as X-ray 

crystallography, nuclear magnetic resonance (NMR), and cryo-EM exist, however each 

method has significant shortcomings with current technology. With the exception of cryo-

EM, these methods are especially challenging when considering large complexes, and thus 

alternative approaches such as native MS must frequently be used. As alternatives, some of 

the higher resolution approaches can be used at lower-resolution, such as when cheaper, less 

extensive NMR experiments are performed,29–31 when low-resolution density maps are 

obtained by cryo-EM,32–36 or when a technique known to be lower resolution is used, such 

as small-angle X-ray scattering (SAXS),37–39 etc. However, the sparse data obtained from 

these types of experiments are typically incomplete, noisy, or sometimes inaccurate.
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While data obtained from these lower resolution methods are structure-dependent, the 

provided information is not enough to fully determine the coordinates of all atoms in the 

protein complex. One way to extract more structural information from these data is to 

combine them with computational methods. Many different approaches that use 

computational methods to supplement the information obtained from sparse data for 

structure prediction have been developed.13, 16–18, 20–24, 26–44 Computational methods to 

predict tertiary structure from sequence have been developed as have protein-protein 

docking methods, which can be used to predict quaternary structure specifically when 

working with protein complexes.

As previously stated, MS can be used to obtain structural information on proteins. While 

many methods have been developed to predict structures using XL, CL, and IM, we have 

demonstrated that surface-induced dissociation (SID) can be used to collect structural data 

as well, specifically for protein complexes.11, 12 In SID, protein complexes are softly ionized 

in the gas phase and accelerated towards a surface. Upon collision with the surface, the 

complexes can dissociate into monomers or subcomplexes, breaking the non-covalent 

interactions of the interfaces, and the resulting products are analyzed with MS. The 

experiment can be repeated over a range of acceleration energies to obtain an overall pattern 

of breakage, resulting in energy-resolved mass spectrometry (ERMS) plots. From these 

analyses, SID has been used to extract information on stoichiometry and connectivity.
10, 45, 46 While SID has been incorporated into multiple different instrument platforms from 

different vendors in work that is ongoing, including quadrupole time of flight, Orbitrap, and 

FT ICR instruments, this has been limited previously to in-house modified instruments plus 

a few beta test situations.47–50 Recently, SID has become commercially available on a high-

resolution ion mobility-quadrupole time of flight instrument (Waters Select Series Cyclic 

IMS) increasing the potential applications of SID for protein structural studies by a broader 

range of users.

We have previously demonstrated that weaker interfaces break more frequently than stronger 

interfaces at low acceleration energies.12 By extracting the appearance energy (AE, lab-

frame energy at which specific interfaces begin to break, defined in our previous work as 

based on 10% intensity of the precursor), a link between SID data and protein structure was 

determined. (This arbitrary value of 10% [E10] was used to avoid odd onset behavior 

associated with non-uniform distributions of energy in different precursors prior to surface 

collision and different onset slopes. We wanted to avoid use of E50 for our particular 

application because at 50% dissociation, multiple competitive pathways can overlap for 

higher oligomeric states of a given complex.) We hypothesized that interfaces with more 

favorable interactions (i.e., large interface area, more hydrogen-bonds, salt bridges, etc.) 

would result in higher AE. From this, we developed models to predict the AE from structure. 

Using an AE prediction method, we showed that the information contained in the model was 

sufficient to discriminate between nativelike and non-nativelike structures.13 To do this, we 

redocked bound crystal structures to generate a set of complex structures using RosettaDock, 

which varied significantly in structural accuracy. Using a scoring function derived from the 

difference between predicted and experimental AE for each structure, we showed that the 

SID AE data could indeed facilitate the discrimination between good and bad poses. While 

these previous results were very encouraging, ultimately, there were a few remaining 
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shortcomings. Examples of shortcomings are as follows: we used tertiary structures from 

crystal structures of the complexes as input into the docking, we performed rigid docking 

only, we only attempted to build structures of entire complexes in 3/9 cases, we identified 

success based on obtaining a good structure in the top 3 scoring models, and finally, accurate 

structures were only identified in ~66% of cases.

In addition to SID, cryo-EM can be used to obtain sparse data for protein complexes. While 

it is possible to obtain high-resolution density maps from cryo-EM, sometimes only low-

resolution density maps are reconstructed, requiring further supplementation using 

computational methods. We hypothesized that data obtained from SID and low-resolution 

cryo-EM would be complementary for a variety of reasons. For one, both methods are much 

higher throughput than full structure determination using either X-ray crystallography or 

NMR as they require relatively small amounts of sample. Additionally, both methods are 

compatible with large protein complexes, while X-ray crystallography and NMR have 

significant size limitations, making them incompatible for very large systems. Finally, we 

hypothesized that SID and cryo-EM provide orthogonal structural information. SID AE is 

dependent on interface composition, while cryo-EM low-resolution density maps are 

dependent on overall shape of the complex.

In this study, we performed a plethora of docking simulations to demonstrate the ability of 

SID to accurately predict full complex structures in realistic scenarios, essentially 

overcoming the noted shortcomings from our previous docking study. Here, we combined 

SID AE with simulated cryo-EM low-resolution density maps to predict structures of protein 

complexes using protein-protein docking. Rather than simply using bound crystal structures, 

i.e., structures in which all monomers are bound to form a complex, which required 

knowledge of the complex structure for input into docking, we obtained input tertiary 

structures in multiple different ways: homology models (HM), unbound (monomer or 

subcomplex) crystal structures, and bound+perturbed crystal structures. We then performed 

docking on these input structures two different ways. First, we performed ensemble docking 

using RosettaDock, which allowed for a flexible backbone during the docking based on an 

ensemble of generated input structures. Next, we performed rigid symmetric docking using 

Rosetta SymDock51 with the same ensemble of input structures to build whole complexes. 

This symmetric docking approach was the first docking strategy with SID to routinely build 

full complexes. Scoring and model selection was based on scores from Rosetta, cryo-EM, 

and SID. An overview of the method is shown in Figure 1. For ensemble docking, the 

RMSD100 of all (15/15) predicted structures using the combined Rosetta, cryo-EM, and SID 

score was less than 4 Å, compared to 7/15 without including experimental data. For 

symmetric docking, the RMSD100 of the predicted, full complex structures using the 

combined score was less than 4 Å for 14/15 cases, compared to 5/15 without cryo-EM and 

SID.

Methods

Dataset

The dataset used for protein-protein docking with SID was described previously.13 In short, 

the dataset contained triose phosphate isomerase (homodimer, 8TIM), streptavidin 
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(homotetramer, 1SWB), hemoglobin (heterotetramer, 1GZX), cholera toxin B 

(homopentamer, 1FGB), C-reactive protein (homopentamer, 1GNH), and serum amyloid P 

(homopentamer, 1SAC). For the complexes in the dataset, experimental SID AE values for 

specific interfaces were extracted from ERMS plots and normalized by the number of inter-

subunit protein-protein interfaces as described previously.12, 13 Simulation of the 14 Å 

resolution density maps with noise is described in the SI.

Input structures for docking

Rather than solely redocking crystal structures for full complexes, here, we obtained docking 

input structures three different ways, which are visually depicted in Figure 1A and described 

in further detail in the SI. In short, when possible, we built homology models, used unbound 

crystal structures, and extracted bound crystal structures.

Rather than performing completely rigid docking simulations with single input structures, 

we performed extra backbone sampling for all inputs prior to docking. For each input 

structure, 10 models were built using Rosetta relax, normal mode analysis (NMA), and 

backrub, resulting in a total of 30 models with slightly different backbones. These structures 

were input into docking as described in the following sections.

Ensemble docking

Using a somewhat similar approach to our previous rigid docking method with SID,13 we 

performed docking in order to build (sub)complexes corresponding to each interface where 

AE was extracted. However, here we performed ensemble docking, where backbones were 

allowed to swap during the simulation from a pool of inputs. As described in the SI, these 

docking simulations were performed for all of the different types of input structures: 5 for 

HM, 2 for unbound, and 8 for bound+perturbed. A list of the specific interfaces and partners 

built for each input structure type is provided in Table S1. Additionally, for each input 

structure, the 30 extra backbone structures were pooled prior to docking. The orientation of 

the mobile chain was randomized using the -randomize2 flag. Ensemble docking in 

RosettaDock52 was performed where the prepacked monomers were allowed to swap during 

the simulation, allowing for backbone flexibility based on the sampled tertiary structures. 

For each input structure, 10,000 docked structures were built. The workflow for ensemble 

docking is shown in Figure 1B (left).

Symmetric docking

In addition to ensemble docking, symmetric docking was also performed to build full 

complexes in all cases based on the symmetry derived from stoichiometry provided by SID 

data. De novo symmetry was used when possible, however due to poor observed sampling 

when using D2 symmetry, complexes for streptavidin (1SWB and 5N8T) were docked using 

noncrystallographic point symmetry. A list of applied symmetries for each input structure is 

provided in Table S2. Note that for hemoglobin (1GZX, dimer of heterodimers) in both HM 

and bound+perturbed, the input heterodimer was the predicted structure from the ensemble 

docking (using the combined score described in the following section) and was subsequently 

docked with C2 symmetry to form the heterotetramer. A definition of C2 symmetry was also 

used in all other cases where dimers were used to build tetramers (2HBC, 1GZX_dimers, 
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and 1SWB_dimers). For symmetric docking, backbones of input structures were not allowed 

to swap during the simulations, therefore separate trajectories of 500 structures for each of 

the 30 inputs were performed for a total of 15,000 docked structures. The workflow for 

symmetric docking is shown in Figure 1B (right).

Scoring strategy

Structures from both the ensemble and symmetric docking were scored using the Rosetta 

interface score (Isc). Then, cryo-EM score and SID scores were subsequently included in the 

overall scoring. The components corresponding to the score terms are visually depicted in 

Figure 1C. Rosetta Isc represents the Rosetta energy of the interface and the model with the 

lowest Isc represents the predicted model using Rosetta without experimental data. The 

Rosetta cryo-EM score (elec_dens_fast) was calculated based on the generated low-

resolution density maps with noise.36, 53, 54 Calculation of SID scores was described in 

depth previously.13 In short, for each docked structure, the AE was predicted using the 

model (with rigidity factor [RF]12 specifically calculated and averaged for the ensemble of 

input structures) and compared to the experimental AE. Structures were scored based on this 

difference using a fade function, with no penalty assigned to structures for which the 

predicted AE was within 100 eV of the experimental lab frame energy. If multiple AEs were 

available for a complex where all interfaces corresponding to the aforementioned AEs were 

built, the SID score used was the average SID score for those AEs. For the combined scores 

(Isc+cryo-EM and Isc+cryo-EM+SID), each individual score was first normalized based on 

the maximum observed absolute value for the score of the docked structures for that protein. 

The total score was a weighted sum of the three normalized terms, as shown in Equation 1. 

The weights (wIsc, wcryo-EM, and wSID) used for ensemble and symmetric docking are 

provided in Table S3. We always chose the lowest scoring model as the predicted structure.

Score = wIscIsc + wcryo−EMScorecryo−EM + wSIDScoreSID (1)

Confidence metric

A confidence metric was calculated in order to classify the prediction for each protein as 

either high or low confidence without the knowledge of the native structure. To derive the 

confidence metric, we first calculated RMSD (all atom, refined, and aligned) of each model 

with respect to the top overall scoring model for each protein. The confidence metric was 

defined as the Pnear (lambda=10.0 and kBT=2.0, using the RMSD values with respect to the 

top scoring model). We hypothesized that when accurate predictions (RMSD100 of top 

scoring model less than 4 Å) were made, a larger number of favorably scoring models would 

be more similar to the top scoring model and superior funneling would be observed, thus 

Pnear (with respect to the top scoring model) would be high. Proteins for which Pnear was 

greater than 0.1 were identified as high confidence.
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Results and Discussion

Previous work showed SID AE could improve model selection

While SID has typically been used to determine stoichiometry and connectivity for protein 

complexes, we established previously that a structurally-dependent measure, appearance 

energy (AE), for protein-protein interfaces could be extracted from SID.12 We observed 

correlations between AE and interface features such as size and other measures relating to 

interface energy in Rosetta. From these correlations, methods to predict AE from structure 

were developed. AE prediction methods were then used to score sets of docked structures 

based on the agreement between predicted and observed AE for each structure.13 We 

showed that the structural information contained in the prediction model was sufficient to 

facilitate the discrimination between nativelike and non-nativelike poses. When the SID 

scoring function was used, for 3/9 cases, the RMSD of the selected model improved by more 

than 18 Å with respect to when no experimental data were included, and the inclusion of 

SID was never detrimental. We observed that the SID scoring function generally scored a 

variety of structures equally well (notably including many of the top models) but penalized 

the majority of bad structures. While this study laid the foundation of SID usage in protein 

complex structure prediction, showing for the first time that SID data could facilitate model 

selection for a diverse set of docked poses, there were a few shortcomings in our initial 

implementation that we addressed here. Originally, tertiary structure obtained from crystal 

structures of the complexes was used as input into the rigid docking. Additionally, for the 

majority of our docking simulations (6/9), we predicted structures of subcomplexes rather 

than entire complexes. For these reasons, we sought to perform a set of docking simulations 

that was much more realistic, by modifying the input structures to decrease the amount of 

knowledge required and also building structures of the entire complexes in more cases.

Different strategies for obtaining input structures for docking require less prior knowledge

To perform more realistic docking simulations and thus reduce the necessary prior 

knowledge for docking by not relying on the bound structures, we performed docking using 

alternative input structures. First, when possible, we built homology models of monomers. 

The monomer building blocks were accurately built (RMSD < 2 Å) using RosettaCM multi-

template modeling for the following five proteins: 1GNH (RMSD of 1.36 Å), 1GZX (chain 

A: 1.70 Å, chain B: 1.74 Å), 1SAC (1.10 Å), 1SWB (0.59 Å), and 8TIM (1.12 Å). Next, we 

used unbound structures for the following two proteins: hemoglobin (heterodimer, 2HBC, 

corresponding to substructure of 1GZX) and streptavidin (monomer, 5N8T, corresponding to 

subunit of 1SWB). Unbound input structures were not available for the remaining proteins in 

the benchmark set. Unsurprisingly, the RMSD of both unbound input structures (with 

respect to bound) was small (1.48 Å for 2HBC to 1GZX and 0.51 Å for 5N8T to 1SWB). 

Finally, for all proteins in the dataset, we perturbed the backbones of the bound structures 

using several backbone-altering methods so as to not run the simulation with the tertiary 

structure that exactly matched the bound crystal structures. In addition to adjusting the 

backbones of bound structures, the same approach was used for all HM and unbound input 

structures with the purpose of adding flexibility into all docking as well. For each input 

structure, different backbones were sampled by generating 10 models each using Rosetta 

relax, backrub, and normal mode analysis (NMA), for a total of 30 models. Overall, when 
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using these sampling methods, the structures did not change drastically, with RMSDs 

comparing inputs and outputs of typically ~0.5 Å and rarely above 1.5 Å, as shown in Figure 

S1. These ensembles of structures with slightly different backbone conformations were input 

into docking as described in the following sections.

Scoring strategy combines SID and cryo-EM

In addition to using data from SID to score structures, here, simulated low-resolution cryo-

EM density maps with noise were also included in scoring. To evaluate the complex 

structure prediction when including experimental data, scoring was performed using three 

different scoring functions: Rosetta interface score (Isc, i.e., score with no experimental data 

included), Isc with Rosetta cryo-EM score, and a combined Isc, cryo-EM, and SID score. 

The combined score was a linear combination of the three normalized terms and represented 

the score when cryo-EM and SID data were both included. The weights used for Isc, cryo-

EM, and SID were the same for each protein, however, different sets of weights were used 

for ensemble and symmetric docking (HM and crystal). The predicted structure for each 

scoring function was identified as the top scoring model. The ensemble and symmetric 

docking are described in detail in the following sections, but we also compared the score vs. 

RMSD plots for the SID scores individually to previous work. Example SID score vs. 

RMSD plots for 1SWB are shown in Figure S2 for bound rigid redocking (previous work),13 

HM ensemble docking, unbound (5N8T) ensemble docking, perturbed+bound ensemble 

docking, HM symmetric docking, unbound (5N8T) symmetric docking, and perturbed

+bound symmetric docking. We note that while SID scores were not normalized in previous 

work and RMSD values were calculated differently (they were essentially ligand RMSD 

[LRMSD] values), the results are generally comparable. In all cases, the general trend that 

most accurate (low RMSD) structures were scored favorably and most inaccurate structures 

(high RMSD) were scored unfavorably continued to be observed. Although the SID scores 

are not enough to predict structures, they can be beneficial when combined with other scores 

(such as Isc and cryo-EM scores described here), when structures are scored slightly 

incorrectly. This example demonstrates that the relationship between SID AE and interface 

composition are similar here to previous work.

Ensemble docking resulted in accurate modeling of subcomplexes, strengthened by SID 
data

To increase the conformational space sampled during docking, we performed flexible 

ensemble docking (as opposed to rigid docking) using RosettaDock. This docking was 

performed for all input structures (5 for HM, 2 for unbound, and 8 for bound+perturbed; see 

Table S1) and was used to build complexes across all interfaces with measured experimental 

AE. Figure 2A shows the RMSD100 of the top scoring model using each scoring function. 

When no experimental data were included (Isc, gray), the RMSD100 of the predicted model 

was less than 4 Å for only a few cases (2/5 for HM, 1/2 for unbound, and 4/8 for bound

+perturbed). When cryo-EM data were included in scoring (Isc+cryo-EM), the RMSD100 of 

the predicted structure was less than 4 Å for 12/15 cases. After the inclusion of SID data (Isc

+cryo-EM+SID), all (15/15) cases resulted in accurate prediction. For predictions with this 

level of accuracy, the method was able to identify the correct complex topology. 

Remarkably, for 5 cases, the lowest RMSD model was also the top scoring model for the 
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combined Rosetta, cryo-EM, and SID score. Predicted structures (and RMSD100) are shown 

in Figure 2C (aligned to native shown in green) for 1GZX (HM), 5N8T (unbound), and 

1SAC (bound+perturbed). Agreement with native crystal structure improved significantly 

when all experimental data were included.

The average model quality of the predicted structure generally improved with the inclusion 

of additional experimental data (both cryo-EM and then SID) when considering the CAPRI 

(Critical Assessment of PRediction of Interactions) metrics, as shown in Table S4 (left) and 

Figure 2B. For example, the average DockQ score,55 a quantitative measure of model quality 

inspired by CAPRI categories, improved from 0.30 when no experimental data were 

included to 0.48 when cryo-EM was included, and further improved to 0.58 when SID data 

were also included. The same trend was observed for average RMSD (all atom, aligned), 

RMSD100, Fnat, Fnon-nat, iRMSD, and LRMSD. Using CAPRI model quality designations, 

9/15 predicted structures using the combined score were identified as medium or high 

quality, with no cases identified as incorrect (i.e., all were at least acceptable quality), 

compared to 9/15 incorrect when scoring without experimental data. Improvement of 

funneling for the score vs. RMSD distributions was also observed when experimental data 

were included, with the Pnear improving by an average of 0.27 (on a scale of 0 to 1). The 

RMSD for the top 50 scoring models improved by an average of 2.8 Å when SID and cryo-

EM data were included as well. While much of the improvement when experimental data 

were included was due to the inclusion of the cryo-EM score, the SID score did play a 

significant role in a few cases, namely 1GNH (HM), 1GZX (HM), and 5N8T (unbound). 

Furthermore, accurate structures were predicted in all cases.

Symmetric docking resulted in accurate modeling overall

In order to predict structures of entire complexes, rather than building only across interfaces 

identified with AE, we performed symmetric docking using Rosetta SymDock. In 

comparison to our previous docking studies, the symmetric docking was new and 

extensively increased the breadth of SID-guided modeling. In addition to each input 

structure (5 for HM, 2 for unbound, and 8 for perturbed bound; see Table S2), as the dimer 

of heterodimers could not be directly built with the structures of the monomers and 

symmetric docking, input structures for two cases were obtained from the output of the 

ensemble docking (1GZX HM and bound+perturbed, with RMSD100s of 1.36 Å and 0.33 Å 

respectively). Figure 3A shows RMSD100 of the top scoring model using each scoring 

function. When no experimental data were included (Isc, gray), the RMSD100 of the 

predicted model was less than 4 Å for only 5/15 cases (0/5 for HM, 1/2 for unbound, and 4/8 

for bound+perturbed). When data from both SID and cryo-EM were included, the RMSD100 

of the predicted structure was less than 4 Å for 14/15 cases (4/5 for HM, 2/2 for unbound, 

and 8/8 for perturbed bound). Predicted structures are shown in Figure 3C (aligned to native 

shown in green) for 1GNH (HM), 2HBC (unbound), and 1FGB (bound+perturbed). 

Agreement with native crystal structure improved significantly when all experimental data 

were included for these cases.

When considering the CAPRI metrics, as shown in Table S4 (right) and Figure 3B, the 

results were generally best when cryo-EM and SID data were included. The averages for all 
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RMSD-based metrics improved when more data were included. The average results 

appeared slightly worse for fnat, fnon-nat, and DockQ score upon the inclusion of SID 

(comparing Isc+cryo-EM to Isc+cryo-EM+SID), however this was due to a single case, 

8TIM (average DockQ score improves slightly from 0.54 to 0.55 for the other proteins). To 

illustrate this minor, non-deleterious difference in structure for 8TIM, the structures 

predicted from Isc+cryo-EM and Isc+cryo-EM+SID are shown in Figure S3. Noticeably, 

there are very few differences in the accuracy of the predicted structure.. When assessing 

model quality using DockQ score, 10/15 models were identified as inaccurate without 

experimental data. However, when the combined score including SID was used, 7/15 were 

identified as medium or high quality (only two inaccurate). For symmetric docking, 

improvement in funneling was observed when SID and cryo-EM data were included. Pnear, 

goodness of funneling in score vs. RMSD distributions, improved over Isc by an average of 

0.37 (on a scale of 0 to 1). Improvement of the average RMSD of 7.3 Å for the top 50 

scoring models was also observed when SID and cryo-EM data were included. In summary, 

the symmetric docking results were slightly improved by SID, but the inclusion of both 

cryo-EM and SID produced the best results. Importantly, for the first time, all full complexes 

were built using SID data and input structures required much less knowledge than previous 

work.

Dependence of prediction accuracy on input structure followed expected trends

Due to the difference in accuracy of the input structures (with respect to their structures in 

the complex), the overall docking results were expected to depend on the method used to 

obtain them. While Table S4 shows average metrics over all proteins for ensemble and 

symmetric docking, we also examined averages of each type of input structure (HM, 

unbound, and bound+perturbed) separately. The category-dependent results of Fnat, iRMSD, 

LRMSD, and DockQ score are shown in Figures 2B and 3B for ensemble and symmetric 

docking respectively. First, similar to the total average results, the accuracy of the predicted 

structures was generally best when using all experimental data (cryo-EM and SID). When 

considering the difference between input structure categories, we expected the structures 

built from bound+perturbed to be the best followed by unbound and HM based on accuracy 

of input structures prior to docking. The results typically followed the expected trend for 

both ensemble and symmetric docking. The results were best for bound+perturbed, followed 

by unbound and HM, respectively. We also note that there were no cases where the inclusion 

of SID improved the prediction results for the bound+perturbed docking simulations (Isc

+cryo-EM+SID compared to Isc+cryo-EM), which is indicated by the very similar results 

when comparing Isc+cryo-EM and Isc+cryo-EM+SID for bound+perturbed. However, this 

did not indicate poor performance from the SID score, rather this occurred because the 

scoring was already excellent. On the other hand, SID improvements were much more 

common for the docking simulations using homology models since the scoring was slightly 

off without SID. To summarize, whether SID can improve prediction results depends on the 

scoring before including SID (in that the SID score is most beneficial when the scoring was 

close to being accurate).
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Confidence metric effectively separated nativelike and non-nativelike structures

As not all predictions resulted in accurate structures (RMSD100 less than 4 Å), we sought to 

quantify a prediction confidence metric that could be calculated without knowledge of native 

structure. For the confidence metric (applied to both ensemble and symmetric docking), 

Pnear of the score vs. RMSD distribution with respect to the top scoring model was 

calculated. We hypothesized that when accurate predictions were made, a larger quantity of 

similar structures would score well and thus the funneling of the score vs. RMSD 

distribution would be stronger (as quantified by a higher Pnear).22 Figure 4 shows the 

RMSD100 of the top scoring model as a function of the confidence metric. Proteins for 

which the Pnear was greater than 0.1 were identified as high confidence, as indicated by the 

vertical solid line. The prediction was accurate for all proteins identified as high confidence 

(26/26), as indicated by the dotted horizontal line. All inaccurate predictions were flagged as 

low confidence (1/1), with only three accurate predictions flagged as low confidence. All 

ensemble docking predictions (black, all accurate) were identified as high confidence 

(15/15). Overall, this confidence metric served as an effective indicator of prediction 

accuracy.

Conclusion

Surface-induced dissociation has typically been used on protein complexes to determine 

stoichiometry and intersubunit connectivity. We recently demonstrated that an appearance 

energy (AE) extracted from SID data also provides information on interface composition 

and developed models to predict AE from structure.13 Using this predictive model, we 

showed that SID AE data were able to distinguish between nativelike and non-nativelike 

models of subcomplexes generated with rigid protein-protein docking in Rosetta using 

bound crystal structures as inputs. While previous work laid the foundation of SID usage in 

protein complex structure prediction, there were a few shortcomings that we sought to 

address in this work, primarily to make the docking more realistic. The most notable 

shortcomings of previous work that were overcome here were the exclusive use of exact 

tertiary structure from bound crystal structures, rigid docking, and only predicting full 

complexes in a few cases. To limit and frequently completely obviate required prior 

knowledge, we used three different types of input structures in the present work: homology 

models, unbound crystal structures, and bound+perturbed crystal structures. For each input 

structure, we generated an ensemble of backbones to encode flexibility. Additionally, we 

performed two types of docking: ensemble docking (with flexibility) and symmetric docking 

(which predicted full complexes in all cases). Finally, we included simulated low-resolution 

density maps from cryo-EM into scoring as well.

When ensemble docking was performed on all input structures, the RMSD100 of the 

predicted structure without including experimental data was less than 4 Å for only 7/15 

cases, but was less than 4 Å in all (15/15) cases when both cryo-EM and SID data were 

included. Furthermore, when SID and cryo-EM data were included, all calculated CAPRI 

metrics improved on average. For the ensemble docking, there were both cryo-EM- and 

SID-driven cases. For the symmetric docking, the RMSD100 of the predicted model was less 

than 4 Å for only 5/15 cases without including experimental data and also when cryo-EM 
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density maps were incorporated. However, when SID and cryo-EM data were included, the 

RMSD100 of the predicted model was less than 4 Å for 14/15 cases. Additionally, typically 

CAPRI metrics were the best when all experimental data were included.

In this study, we were able to overcome many shortcomings of previous docking studies 

with SID data. Full complex structures were built without the knowledge of the exact tertiary 

structure. To do this, we combined data in the forms of SID AE and noisy, low-resolution 

cryo-EM density maps to build full structures of protein complexes. This work demonstrates 

the potential of SID as a tool to facilitate the modeling of protein complexes. We 

hypothesized that SID AE and low-resolution cryo-EM density maps would provide 

complementary information for the scoring of complexes. The experimental methods are 

also compatible, with cryo-EM becoming more accessible as it grows in popularity and with 

SID commercialization underway.

However, in this study, we generally observed that scoring with cryo-EM may be too 

accurate to reap the full benefits of scoring with SID. While the final prediction results were 

excellent, we only observed a few cases where the inclusion of SID appeared strongly 

beneficial if cryo-EM data were already applied (Isc+cryo-EM+SID over Isc+cryo-EM). 

However, since we have consistently observed that the SID scoring function scores most 

accurate structures favorably and penalizes most inaccurate structures, we believe that the 

lack of consistent SID benefit here was simply because of the cryo-EM accuracy, even for 

low-resolution density maps. For this reason, the results of this work motivate the potential 

of modeling with SID and data that provide less structural information than cryo-EM density 

maps. There are multiple examples of MS methods that may fit this category, namely ion 

mobility, covalent labeling, and chemical crosslinking and non-MS methods such as SAXS. 

We hope to find the optimal amount of additional information to include with SID for the 

best results in these realistic docking simulations. While we hoped that SID and cryo-EM 

would be the most compatible, the MS methods are easier to perform and thus offer even 

more potential for experimental ease. Based on the scoring strategy presented here, different 

types of experimental data can be easily combined with SID. Ultimately, we hope to find the 

optimal use of SID data with other methods that provide additional orthogonal structural 

information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Overview of docking approach. (A) Input structures for docking were acquired by building 

homology models, obtaining unbound crystal structures, and extracting structures from 

bound crystal structures (followed by backbone perturbation in panel B). (B) Extra backbone 

sampling was performed on all input structures via Rosetta relax, backrub, and normal mode 

analysis (NMA), respectively. Ensemble docking (left) was performed by pooling the 

different backbones and docking with flexibility. Symmetric docking (right) was performed 

rigidly, but with each backbone structure as a starting point for separate trajectories. (C) 
Scoring was performed using three terms: Rosetta interface score (Isc, score without 

including experimental data), Rosetta cryo-EM score using noisy, low-resolution density 

maps, and the appearance energy (AE)-dependent SID score.
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Figure 2: 
(A) All atom, aligned RMSD100 of the top scoring models for ensemble docking when 

including no experimental data (Isc, gray), using cryo-EM data (blue), and when including 

both SID and cryo-EM (red). Cartoon complexes are shown for each, with the portions built 

in each simulation depicted in color. The bottom of the solid gray lines indicates the overall 

best model built. Gray points are always on top of vertical gray lines. In all cases, RMSD100 

of the predicted structure using the combined score was less than 4 Å (only 7/15 without 

experimental data). (B) Dependence on input structure category. Metrics shown are fnat, 

LRMSD, iRMSD, and DockQ score. Overall, the results were best with all experimental 

data. In general, bound+perturbed performed the best followed by unbound and HM 

respectively. (C) Predicted structures for 3 cases (1GZX, HM; 5N8T, unbound; 1SAC, 

bound+perturbed) without (gray) and with (red) experimental data (native shown in green).
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Figure 3: 
(A) All atom, aligned RMSD100 of the top scoring models for symmetric docking when 

including no experimental data (Isc, gray), using cryo-EM data (blue), and when including 

both SID and cryo-EM (red). Input structures were obtained from ensemble docking for two 

cases (indicated with an asterisk). Cartoon complexes are shown for each. All symmetric 

docking simulations resulted in full complexes. The bottom of the solid gray lines indicates 

the overall best model built. Gray points are always on top of vertical gray lines. In 14/15 

cases, RMSD100 of the predicted structure using the combined score was less than 4 Å (only 

5/15 without experimental data). (B) Dependence on input structure category. Metrics shown 

are fnat, LRMSD, iRMSD, and DockQ score. Typically, the average results were best with 

all experimental data. In general, bound+perturbed performed the best followed by unbound 
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and HM respectively. (C) Predicted structures for 3 cases (1GNH, HM; 2HBC, unbound; 

1FGB, bound+perturbed) without (gray) and with (red) experimental data (native shown in 

green).
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Figure 4: 
All atom, aligned RMSD100 of the top scoring models as a function of the confidence metric 

(Pnear with respect to the top scoring model) for both ensemble (black) and symmetric 

(green) docking. Solid vertical line (Pnear=0.1) indicates the separation between high (right) 

and low confidence (left). Dotted horizontal line indicates the cutoff for accurate predicted 

models (4 Å). All (26/26) high confidence structures were accurate. All (1/1) inaccurate 

predictions were low confidence.
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