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ABSTRACT

Objective: To summarize how artificial intelligence (Al) is being applied in COVID-19 research and determine
whether these Al applications integrated heterogenous data from different sources for modeling.

Materials and Methods: We searched 2 major COVID-19 literature databases, the National Institutes of Health’s
LitCovid and the World Health Organization’s COVID-19 database on March 9, 2021. Following the Preferred
Reporting ltems for Systematic Reviews and Meta-Analyses (PRISMA) guideline, 2 reviewers independently
reviewed all the articles in 2 rounds of screening.

Results: In the 794 studies included in the final qualitative analysis, we identified 7 key COVID-19 research areas
in which Al was applied, including disease forecasting, medical imaging-based diagnosis and prognosis, early
detection and prognosis (non-imaging), drug repurposing and early drug discovery, social media data analysis,
genomic, transcriptomic, and proteomic data analysis, and other COVID-19 research topics. We also found that
there was a lack of heterogenous data integration in these Al applications.

Discussion: Risk factors relevant to COVID-19 outcomes exist in heterogeneous data sources, including elec-
tronic health records, surveillance systems, sociodemographic datasets, and many more. However, most Al
applications in COVID-19 research adopted a single-sourced approach that could omit important risk factors
and thus lead to biased algorithms. Integrating heterogeneous data for modeling will help realize the full poten-
tial of Al algorithms, improve precision, and reduce bias.

Conclusion: There is a lack of data integration in the Al applications in COVID-19 research and a need for a mul-
tilevel Al framework that supports the analysis of heterogeneous data from different sources.

Key words: machine learning, deep learning, neural networks, natural language processing, coronavirus

INTRODUCTION rapidly spread around the globe, and at the time of this writing, there
In just a few months, the 2019 novel coronavirus disease (COVID-19), are over 100 million confirmed COVID-19 cases and a few million
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has confirmed deaths from COVID-19 worldwide.! The COVID-19
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pandemic is now the second deadliest pandemic in over 100 years,
behind only the 1918 influenza pandemic (ie, Spanish Flu).> While the
COVID-19 pandemic is still raging, and the number of cases are
growing exponentially, the scientific communities around the world
have reacted promptly by directing effects and resources to research
studies on the etiology, transmission, detection, treatment, and pre-
vention and control of COVID-19. In about a year, an outstanding
number of over 100 000 research articles on COVID-19-related topics
have been published according to PubMed.?

Recent advances in artificial intelligence (AI) have provided novel
methods and tools for combating global pandemics, such as COVID-
19. In classic computer science textbooks, Al is broadly defined as the
study of intelligent agents, machines or devices that can imitate hu-
man cognitive functions to learn the environment and take actions.”*
The learning process is often implemented through mathematical or
statistical models in computer programs. Machine learning, of which
deep learning is a subset, is a branch of Al that trains algorithms that
allow computer programs to automatically (ie, without explicit pro-
gramming) improve through data.’ In the fields of public health and
medicine, Al techniques—especially machine learning and, more re-
cently, deep learning methods—have been widely used for disease sur-
veillance, health risks and outcomes prediction, medical diagnostics
and therapeutics, clinical decision-making, and many more.®™

With surveillance tools, patient reporting systems, and clinical
studies emerging quickly, large amounts of novel data have been
rapidly accumulated during the COVID-19 pandemic. There is
growing interest in leveraging these data to develop Al solutions for
COVID-19 challenges. However, developing Al models in the era of
precision health is not a trivial task. Precision health adopts a uni-
fied approach to understanding the full range of determinants of
health for health promotion, prevention, diagnosis, and treat-
ment.”!? The vision of precision health can only be realized through
the integration and examination of a comprehensive list of determi-
nants of health that include genetic, biological, environmental, as
well as social and behavioral factors. On the other hand, these deter-
minants of health exist in various data sources that are heteroge-
neous in syntax (eg, file formats), schema (eg, data models and
structures), and semantics (eg, meanings or interpretations of the
variables). One of the first and most important challenges in build-
ing precision health Al models is integrating relevant data that con-
tain determinants of health from the heterogeneous sources.

In this study, we conducted a scoping review of Al applications
in COVID-19 research with a focus on heterogeneous data integra-
tion. Our goal was to summarize the COVID-19 research areas in
which Al is being applied, the Al models being used in these research
applications, and the data sources being used to build the AT models.
We were particularly interested in examining whether these Al
applications integrated heterogenous data from different sources for
building the models and treated missing data in the variables of in-
terest. Although a few published reviews have summarized the appli-
cations of Al or machine learning methods in COVID-19
research,"’ ™" none of them examined data integration, and many
focused on a specific area of COVID-19 research (eg, medical imag-
ing'®). Note that we focused on the use of Al methods for data anal-
ysis and excluded other Al fields, such as robotics.

MATERIALS AND METHODS

Search strategy
We searched 2 major COVID-19 literature databases, the National
Institutes of Health (NIH) LitCovid (part of PubMed)® and the

World Health Organization (WHO) COVID-19 database'® for
articles published through March 9, 2021. LitCovid is an open-
resource literature hub developed by the NIH for tracking up-to-
date scientific information about COVID-19. It provides a central
access to all COVID-19-related articles in PubMed.> The WHO
COVID-19 database contains global literatures of scientific findings
and knowledge on COVID-19 gathered by the WHO.'® Both data-
bases are updated daily with newly published articles. The following
query and keywords were used to search the databases: “artificial
Intelligence” or “machine learning” or “supervised learning” or
“unsupervised learning” or “deep learning” or “neural networks”
or “natural language processing.”

Literature screening

Following the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guideline,'” we screened the articles re-
trieved from the databases in 2 rounds. First, we screened the titles
and abstracts of the identified articles and excluded those that: (1)
did not use any Al methods for data analysis, (2) were unrelated to
COVID-19, (3) were reviews, editorials, opinions, letters to editor,
or case reports, or (4) were not written in English. Second, we
screened the full texts of the remaining articles to further exclude
articles that met our exclusion criteria. Two reviewers (YZ and TL)
independently reviewed all the articles in the 2 rounds of screening.
Any conflicts between the 2 reviewers were reviewed and solved by
a third reviewer (YG). We extracted and summarized COVID-19-
and Al-related information from the retained articles.

RESULTS

Summary

We summarized our review procedure in a PRISMA flow diagram in
Figure 1. We identified 1311 and 1218 studies in the LitCovid and
WHO COVID-19 databases, respectively. After removing dupli-
cated studies, we included 1338 studies in the first round of screen-
ing. In the first round of screening of titles and abstracts, 492 studies
were excluded according to our exclusion criteria, while 846 studies
were included in the full-text review. In the second round of screen-
ing, another 52 studies were excluded based on full-text review and
eventually, 794 studies were included in the final qualitative
analysis.

The AI applications covered in these 794 studies can be catego-
rized into the following areas of COVID-19 research: Disease fore-
casting (n=161), Medical imaging-based diagnosis and prognosis
(n=322); Early detection and prognosis (non-imaging) (n=152);
Drug repurposing and early drug discovery (n=353); Social media
data analysis (n =44); Genomic, transcriptomic, and proteomic data
analysis (n=24); and Other COVID-19 research topics (survey
studies, literature mining, surveillance, clinical trials, miscellaneous
topics) (n=38). We listed the full citations of all 794 studies by re-
search area in the Supplementary Table S1. In the following sec-
tions, we summarized what and how Al techniques were applied in
these areas. In particular, we determined whether the studies inte-
grated heterogeneous data to expand the list of inputs (or predictors)
for building the AI models. In line with Lenzerini 2002,® we defined
data integration as the action of combining data that are heteroge-
neous in syntax, schema, and semantics and extracting predictors
from these data for modeling. The total number of studies and the
number of studies with data integration in each research area were
summarized in Figure 2.
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Figure 2. Number and percentage of studies with data integration in each research area.

Disease forecasting

A total of 161 studies described the use of Al for COVID-19 forecast-
ing (Supplementary Table S1). In these studies, 106 predicted future
COVID-19 incidence or mortality using historical data only, 43 pre-
dicted future or confirmed COVID-19 cases using potential risk fac-
tors as inputs, 8 characterized country-level differences in COVID-19
outcomes worldwide (clustering studies), and 4 predicted future
demands for hospital resources or medical consumables.

The majority of the 106 studies on predicting future COVID-19
incidence or mortality used COVID-19 data from the Johns Hopkins
University Center for Systems Science and Engineering,'” or local
health authorities. In these studies, the long short-term memory
(LSTM), a class of recurrent neural networks (RNN), was the most
commonly used deep learning model. Other popular models included
other types of artificial neural networks (ANN); machine learning
models, such as random forest, support vector machines (SVM), and

gradient boosting machine (GBM); statistical time series models, such
as the autoregressive integrated moving average (ARIMA) model; and
epidemiological models, such as the Susceptible-Infectious-Recovered
and Susceptible-Exposed-Infected-Removed models. None of the 106
studies integrated heterogeneous data for modeling since only histori-
cal COVID-19 data were used as inputs.

In the 43 studies on COVID-19 risk factors, 27 examined envi-
ronmental exposures, while the remaining 16 examined a range of
other risk factors, such as population characteristics, socioeconomic
status, or other health-related factors. Most of these studies used
machine learning models, among which random forest and GBM
were the most popular algorithms. A small portion of these studies
used ANN, among which the multilayer perceptron (MLP) was the
most popular. Among these 43 studies, slightly over half (n=24,
55.8%) integrated heterogeneous data on predictors for modeling
(Table 1). Three of these studies imputed missing data. Two studies
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used simple mean or median imputation, while the third study used
the k-nearest neighbor (k-NN) method (Table 1).

All 8 clustering studies used unsupervised machine learning mod-
els, with the most popular model being the k-means. These studies
aimed to group and compare countries or regions based on COVID-
19 incidence, risks, and preparedness or performance. Half of the
studies (n=4, 50.0%) integrated heterogeneous data for modeling
(Table 1). One of the 4 studies imputed missing data with mean val-
ues (Table 1).

The 4 studies on future demands predicted the need for intensive
care unit (ICU) beds or medical consumables (eg, face masks) using
data on COVID-19 cases or on consumable sales or production. All
4 studies used ANN (eg, MLP) or RNN (eg, LSTM), with some
studies also building machine learning models. None of the studies
integrated heterogeneous data for modeling.

Medical imaging-based diagnosis and prognosis

A total of 322 studies described the use of Al for analyzing medical
imaging data for COVID-19 diagnosis and prognosis (Supplemen-
tary Table S1). All studies analyzed either computed tomography or
chest X-ray data, except for 5 studies that analyzed images of lung
ultrasound*®=3! or skin lesions.*> The most common sources of med-
ical images were local hospitals or healthcare systems and image
datasets published on public domains, such as GitHub or Kaggle. In
these imaging studies, roughly half used the convolutional neural
network (CNN)-based models. More than 90% of these studies pre-
dicted COVID-19 outcomes using medical imaging data alone. Only
29 out of the 322 studies (9.0%) considered data from heterogenous
sources for Al modeling (Table 2). In addition to imaging data, these
studies considered influences from demographics (eg, age, sex, etc),
clinical characteristics (eg, symptoms, lab results, disease history,
etc), and other human factors (eg, exposure history) on COVID-19
outcomes. Five of these studies imputed missing data using simple
mean or median imputation (Table 2).

Early detection and prognosis (nonimaging)

A total of 152 studies described the use of Al for COVID-19 early
detection (n=352) and prognosis (n=100) (Supplementary Table
S1). The vast majority of the studies on COVID-19 early detection
analyzed COVID-19 positivity (+ vs —, determined by the reverse
transcription polymerase chain reaction test) as the study outcome
using patient data from hospitals or healthcare systems. A wide
range of Al models were used for prediction, although machine
learning models (eg, random forest, GBM) were used more often
than deep learning models. Furthermore, most studies used a single
type of data for COVID-19 detection, such as lab test data (eg,
blood cell counts or inflammatory biomarkers) or clinical symp-
toms. Only 8 out of the 47 studies (17.0%) integrated heterogenous
data for modeling (Table 3). In addition to lab and symptom data,
these studies considered data on comorbidity, medications, travel/
contact history, etc.

The vast majority of the studies on COVID-19 prognosis exam-
ined hospitalization, ICU admission, mechanical ventilation require-
ments, and/or death in COVID-19 patients using data from
hospitals or healthcare systems. Traditional machine learning mod-
els were preferred over deep learning models, with the most popular
model being random forest. Only 21 out of the 92 studies (22.8%)
integrated heterogenous data for modeling (Table 3). These heterog-
enous data included demographics, clinical data (eg, lab, disease and

medication history, and symptoms), genetic sequencing data, expo-
sure history, etc.

In the early detection and prognosis studies that integrated heter-
ogenous data (Table 3), 8 studies imputed missing data. Most stud-
ies performed simple imputation based on mean, mode, or median
values, while 2 studies performed multivariate imputation by

chained equations,'°%1%4

96

and 1 study imputed missing values using
bagging trees.

Drug repurposing and early drug discovery
A total of 53 studies described the use of Al for drug repurposing
(36 studies) or early COVID-19 drug discovery (18 studies) (Supple-
mentary Table S1). The majority of the studies focused on screening
for candidate drugs in biomolecule or drug databases. Popular data
sources included DrugBank (Food and Drug Administration [FDA]-
approved and experimental drugs),''° ChEMBL (bioactivity data-
base for drug discovery),!'’ PubChem (substance and compound
databases),!'? ZINC (commercially available compounds for virtual
screening),''* BindingDB (experimentally determined protein-ligand
binding affinities).""* Deep learning models (eg, CNN, RNN) were
used more often than the machine learning models. Furthermore, 5
out of the 36 drug repurposing studies mined the literature for
repurposable drugs.! > All 5 studies used NLP-based methods to
mine scientific literature or other relevant data. For example, 1
study examined the description of over 1.2 million bioassays in the
ChEMBL database to identify COVID-19-related bioassays.''®

The 18 studies on early drug discovery mainly focused on screen-
ing for potential biomolecules (eg, virtual ligand screening) in ligand
or compound databases (eg, ChEMBL, PubChem, ZINC, Bind-
ingDB) that could target SARS-CoV-2 functional domains. Simi-
larly, deep learning models were preferred over the machine
learning models. None of drug repurposing or early drug discovery
studies integrated heterogeneous data for modeling.

Social media data analysis

A total of 44 studies described the use of Al for analyzing social me-
dia data (Supplementary Table S1). In these studies, Twitter was the
single most popular data source, with 32 studies analyzing tweets
from all over the world. The other 12 studies used data from Face-
book, Reddit, YouTube, Weibo, etc. Most social media studies
adopted a similar analytic approach: NLP methods and tools for
text extraction and processing, followed by topic modeling and/or a
sentiment analysis. The most common method for topic modeling
was the latent Dirichlet allocation, whereas a range of machine
learning models were used for sentiment analysis including SVM,
Naive Bayes, k-NN, random forest, etc. None of the social media
studies integrated heterogeneous data for modeling.

Genomic, transcriptomic, and proteomic data analysis

A total of 24 studies described the use of Al for analyzing SARS-
CoV-2 sequence data (eg, ribonucleic acid [RNA], small interfering
RNA [siRNA ], or protein sequences) (Supplementary Table S1).
One common analysis goal of many of these studies was to deter-
mine the unique SARS-CoV-2 RNA or protein features that could
potentially be targeted for disease detection and drug or vaccine de-
sign. Over half of these studies analyzed the SARS-CoV-2 genome
sequences in the National Center for Biotechnology Information
GenBank.'?° Other data sources included the Protein Data Bank,'*!
National Genomics Data Center of China,'** or self-generated se-
quence data. A wide variety of Al models were used in these studies,
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Table 4. Other COVID-19 studies using heterogeneous data

Study Region Outcome Data source Model Heterogeneous data® Missing data
imputation
Literature mininng
Reese et al'*® N/A Knowledge Graphs 13 knowledge sources Traditional or Scientific literature, COVID-19  N/A
for COVID-19 graph-based ML cases and mortality, Drug,
Response Genome sequence, Diseases,
Chemicals
Surveillance
Franchini et al'?’ Italy Individualized Survey, medical records RF, SVM, GBM Demographic, Heath status, No
COVID-19 risk Other health and social
information
Miscellaneous topics
Abdalla et al3° USA Social distancing NYT, Census Bureau, Elastic net 43 socio-demographic No
USDA ERS, CDC, variables
Google Community
Mobility Reports

“Data that are heterogeneous in syntax, schema, and semantics.

CDC: Centers for Disease Control and Prevention; GBM: gradient boosting machine; ML: machine learning; NYT: New York Times; RF: random forest;

SVM: support vector machine; USDA ERA: US Department of Agriculture Economic Research Service.

including the deep learning models (CNN, RNN) and the traditional
machine learning models (k-NN, SVM, random forest, GBM). None
of the studies integrated heterogeneous data for modeling.

Other COVID-19 research studies

Survey studies

A total of 14 survey studies used Al models for studying COVID-19-
related topics in various populations around world (Supplementary
Table S1). The most common study outcomes were self-reported
fear, stress, anxiety, and depression related to the pandemic. The
majority of the studies used machine learning models, including ran-
dom forest, XGBoost, SVM, and Naive Bayes. Two of the stud-
ies,'?>12* which were based on the same online survey, collected
text data using open-ended questions. These studies performed a
sentiment analysis that involved sentiment scores calculation and
clustering using the k-mean algorithm. None of the survey studies
integrated heterogeneous data for modeling.

Literature mining

A total of 10 studies described the use of Al for mining COVID-19
literature (Supplementary Table S1). Literature mining studies on
drug repurposing were summarized in a previous section. These 10
studies focused on summarizing topics and trends in COVID-19 re-
search and identifying future research needs. All but 2 studies mined
either PubMed or the COVID-19 Open Research Dataset.'?® Of the
other 2 studies, 1 mined ClinicalTrials.gov to extract data on
COVID-19-related trials,'?® while the other searched the Scopus
database for a bibliometric analysis.'*” All of the studies involved
NLP methods and tools (eg, word2vec, doc2vec). Some studies per-
formed topic modeling and/or sentiment analysis. The only study
that performed heterogeneous data integration was Reese et al
(Table 4),'*® in which data from 13 heterogeneous knowledge sour-
ces (eg, scientific literature, COVID-19 cases, drug, genome sequen-
ces, chemicals, etc) were downloaded, transformed, and integrated
to create the KG-COVID-19 knowledge graph.

Surveillance

A total of 6 studies described the use of Al for social distancing or
syndromic surveillance (Supplementary Table S1). Three of these
studies analyzed data from surveillance cameras for monitoring so-
cial distancing using well-known deep learning models for object de-

. 131-133
tection,

including the single-shot detector, YOLO (you only
look once), and/or the regional CNN detector. Two other studies fo-
cused on analyzing Bluetooth signal strength data with linear and lo-
gistic models for contact tracing>* or developing NLP and deep
learning-based pipeline for sentinel syndromic surveillance of
COVID-19 using medical records.'® The remaining study devel-
oped a Telegram Bot that could model individualized COVID-19
risk by integrating heterogenous data, including user responses and
health/social data in medical records (Table 4).*° This lone study
involving heterogenous data used machine learning models random
forest, SVM, and GBM.

Clinical trials

Two studies described the use of AI models in noninterventional
clinical trials on COVID-19 patients (Supplementary Table S1). The
2 trials, namely the READY (NCT04390516) and IDENTIFY
(NCT04423991),"3%137 were conducted by the same group of inves-
tigators based on the same machine learning algorithm (an XGBoost
classifier) designed to predict mechanical ventilation and mortality
within 24 hours upon hospital admission using inputs from clinical
data. The READY trial evaluated the performance of the algo-
rithm,'®® while the IDENTIFY trial identified a subpopulation of
COVID-19 patients who had improved survival from taking
hydroxychloroquine.'” Neither study integrated heterogenous data
for modeling.

Miscellaneous topics

A total of 6 studies did not fall under any of the previous research
topics (Supplementary Table S1). In the lone study that integrated
heterogeneous data for modeling, Abdalla et al integrated 43 socio-
demographic variables from multiple sources (eg, Census Bureau,
US Department of Agriculture, Centers for Disease Control and Pre-
vention) and built elastic net models to examine how sociodemo-
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graphics impacted county-level social distancing (Table 4).'3° Of the
remaining studies, 1 used ANN to perform a drive-through mass
vaccination simulation,'*® while the other 4 used NLP methods and
tools on various research topics, including cross-lingual clinical dei-
dentification in electronic health records (EHRs),'>” dream reports
analysis,'*° drug safety analysis by mining the FDA adverse event
system,'*! COVID-19 clinical concept (signs and symptoms) identi-

fication, and normalization in EHRs.'#?

DISCUSSION

As governments, research communities, and healthcare industries
are actively attempting to address the COVID-19 pandemic, we are
tasked to identify quick yet reliable solutions for screening, diagno-
sis, forecasting, surveillance, the development of vaccine or drugs,
and so on. On the other hand, with large amounts of COVID-19-
related data being collected in novel surveillance systems, Al meth-
ods have been widely employed in assisting medical experts and
researchers in addressing COVID-19 challenges. In this article, we
reviewed 1338 recent studies that applied Al methods or technolo-
gies in COVID-19 research. In the 794 studies included in our final
qualitative analysis, we identified 7 key areas in which Al was ap-
plied. We also found that a wide range of machine learning and
deep learning algorithms were used for modeling, although some
were used more frequently than others depending on the area of re-
search.

It is not at all surprising that Al methods have been used exten-
sively in many areas of COVID-19 research. Al has been revolution-
ary for many analytics challenges in medicine and public health. For
example, just shy of half of the studies we reviewed were studies of
medical imaging analysis for assisting COVID-19 diagnosis. In fact,
the use of Al in diagnostic medical imaging has been extensively ex-
plored for many diseases, such as cancer,'*’ cardiovascular dis-

h - ) .
144,145 146 and brain diseases.'”” In these

eases, lung diseases,
applications, Al has shown impressive sensitivity—similar to or bet-
ter than expert interpretation—in identifying patterns and abnor-
malities in medical images that can aid diagnosis. Another major Al
application in COVID-19 research is disease forecasting, with one-
fifth of the studies we reviewed being in this category. Compared to
popular statistical time series models such as the ARIMA, Al models
such as the LSTM have been proven to have superior precision and

Ce . 14
accuracy when predicting time series data,'*®

without making ex-
plicit assumptions (eg, stationarity) about the data. In several other
areas of COVID-19 research, Al methods are the preferred data
analysis tools because of their ability to handle large amounts of het-
erogenous data, including text data such as those in clinical narra-
tives or on social media. For example, in drug discovery and
genomic research, Al is ideal for analyzing massive amounts of se-
quence data (eg, proteomic or genomic data),'**!3°

One limitation of the Al applications included in our scoping re-
view is the lack of integration of data from heterogenous sources for
modeling. In the era of precision health, it is critical to examine a
comprehensive list of determinants of COVID-19 outcomes, includ-
ing biological, clinical, social, behavioral, and environmental fac-
tors, that exist in various heterogeneous data sources. However,
most studies we reviewed used data from a single source to perform
the Al-driven tasks. For instance, over 90% of the imaging studies
included in this review used data from radiological images only to
build Al models for COVID-19 diagnosis. This single-sourced ap-
proach ignores other important risk factors such as clinical symp-
toms, exposure history, lab test results, and so on, leading to

algorithms with bias (eg, confounding bias)'*!

and suboptimal
performance. In fact, many of the medical imaging studies that
integrated heterogenous data have shown that data integration led
to Al models with better performance compared to models built
with imaging data alone.’373%:62:65:6976=78 Eyrthermore, although
some data are difficult to get due to privacy issues or simply being
unavailable, there are still a range of public data on risk factors that
could be easily obtained for modeling. Many studies we reviewed
leveraged the “free” data sources, such as the huge amounts of envi-
ronmental data from the National Oceanic and Atmospheric Ad-
ministration or the socioeconomic data from the Census Bureau.
Overall, integrating heterogenous but relevant data for modeling
will help realize the full potential of Al algorithms, and thus improve
precision and reduce bias. Our review highlights the need for a mul-
tilevel Al framework that supports the analysis of heterogenous data
from difference sources.

Our scoping review has several limitations. First, our search
strategy is not as comprehensive as that of a systematic review. For
example, our keyword list did not include “AL” Articles that used
the abbreviation “AI” without mentioning “artificial intelligence”
were not included in this review. Although we do not expect a large
amount of articles being omitted, we do acknowledge this limitation
in keywords. Second, we searched 2 major COVID-19 literature
databases rather than the traditional databases used in systematic
literature reviews. Relevant articles were often indexed in these 2
COVID-19 databases with a delay of a few days up to months.
Third, we did not perform a risk of bias assessment given this is a
scoping review.

CONCLUSION

Huge amounts of novel data related to COVID-19 have emerged
quickly during the pandemic. As a result, Al methods and technolo-
gies have been widely applied in efforts to overcome COVID-19
challenges. In this scoping review (date of literature search: March
9, 2021), we show that a broad range of Al algorithms are used for
COVID-19 research, and these algorithms are primarily used in 7
major research areas. We also show that there is a lack of data inte-
gration in these Al applications and a need for a multilevel Al frame-
work that supports the analysis of heterogenous data from
difference sources.
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