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Noncoding RNAs as Promising Diagnostic Biomarkers and 
Therapeutic Targets in Intestinal Fibrosis of Crohn’s Disease: The 
Path From Bench to Bedside

Long-Yuan Zhou, MD,* Si-Nan Lin, MD,* Florian Rieder, MD,† Min-Hu Chen, MD,* Sheng-Hong Zhang, MD* 
and Ren Mao, MD*,†

Fibrosis is a major pathway to organ injury and failure, accounting for more than one-third of deaths worldwide. Intestinal fibrosis causes irre-
versible and serious clinical complications, such as strictures and obstruction, secondary to a complex pathogenesis. Under the stimulation of 
profibrotic soluble factors, excessive activation of mesenchymal cells causes extracellular matrix deposition via canonical transforming growth 
factor-β/Smads signaling or other pathways (eg, epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition) in intestinal 
fibrogenesis. In recent studies, the importance of noncoding RNAs (ncRNAs) stands out in fibrotic diseases in that ncRNAs exhibit a remark-
able variety of biological functions in modulating the aforementioned fibrogenic responses. In this review, we summarize the role of ncRNAs, 
including the emerging long ncRNAs and circular RNAs, in intestinal fibrogenesis. Notably, the translational potential of ncRNAs as diagnostic 
biomarkers and therapeutic targets in the management of intestinal fibrosis is discussed based on clinical trials from fibrotic diseases in other 
organs. The main points of this review include the following:

•	 Characteristics of ncRNAs and mechanisms of intestinal fibrogenesis
•	 Wide participation of ncRNAs (especially the emerging long ncRNAs and circular RNAs) in intestinal fibrosis, including transforming growth 

factor-β signaling, epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition, and extracellular matrix remodeling
•	 Translational potential of ncRNAs in the diagnosis and treatment of intestinal fibrosis based on clinical trials from fibrotic diseases in other 

organs
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BACKGROUND
Fibrosis stands out as a global medical challenge ac-

counting for more than one-third of deaths worldwide.1 
Specifically, intestinal fibrosis is a common and refractory pa-
thology that leads to bowel strictures, perforation, fistula for-
mation, and organ failure in many alimentary diseases, such 
as inflammatory bowel disease (IBD) and radiation enteritis. 
For example, approximately 50% of patients with Crohn's di-
sease (CD) develop clinically relevant strictures and fistulas, 
and experience a nearly lifetime risk of surgery and heavy 
cost burden.2 More than two-thirds of patients with CD have 

endoscopic recurrence at 1  year, and nearly half  still need 
treatment at 4 years.3 Nevertheless, there are few effective and 
reliable methods of identifying the early stages of fibrosis or 
reversing existing intestinal strictures. Current studies mainly 
focus on the sophisticated network of intestinal fibrosis in-
cluding inflammatory cascades, extracellular matrix (ECM), 
profibrotic mediators, and gut microbiota. Thus far, non-
coding RNAs (ncRNAs) have been proved to participate in 
the fibrotic diseases of multiple organs (eg, liver diseases, myo-
cardial fibrosis, and renal fibrosis). The ncRNAs involved in fi-
brotic diseases mainly consist of microRNAs (miRNAs), long 
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noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). 
NcRNAs modulate the function of mesenchymal cells, inflam-
matory cascades, ECM, and microbiota via mechanisms of en-
dogenous RNA competition, RNA transcription regulation, 
protein sponges, and translation regulation.4-6 In this review, we 
introduce the complicated roles of various ncRNAs, including 
the emerging lncRNAs and circRNAs, in intestinal fibrosis 
and explore their clinical value as biomarkers and therapeutic 
targets.

PATHOGENESIS OF INTESTINAL FIBROSIS
Similar to the fibrogenesis of other organs, intestinal 

fibrosis is triggered by autocrine and paracrine factors, path-
ogen- or damage-induced inflammation, and subsequent 
dysregulation of bowel mucosal healing.7 As a crucial factor 
in intestinal fibrogenesis, mesenchymal cells (eg, fibroblasts, 
myofibroblasts, and smooth muscle cells) are activated by mul-
tiple profibrotic soluble factors.8 Transforming growth factor-β 
(TGF-β), a major cytokine in intestinal fibrosis, is mainly se-
creted by macrophages in response to interleukin-4 (IL-4) and 
IL-13.9 Research has shown that TGF-β can transdifferen-
tiate α-smooth muscle actin (α-SMA)-negative fibroblasts into 
α-SMA-positive myofibroblasts10 and activate the prolifera-
tion, migration, and contraction of myofibroblasts by a series 
of signaling pathways, including Smad2/3/4, ERK/JNK/p38/
AKT, and rho/ROCK/actin/MRTF/SRF.11-14 

In addition, other profibrotic cytokines, such as con-
nective tissue growth factor (CTGF), platelet-derived growth 
factor, fibroblast growth factor, insulin-like growth factor 
(IGF), endothelin, IL-36, and tumor necrosis factor-like cy-
tokine 1A (TL1A) also promote myofibroblast proliferation 
and ECM production.15-20 Because the balance between ECM 
production and degradation is disrupted, collagen-rich ECM 
is produced and excessively accumulates via fibrogenic re-
sponses,9 along with a significant upregulation of the collagens 
fibronectin and tenascin C,21 thereby ultimately leading to the 
pathologic thickening of all layers of the intestinal wall from 
the mucosa to the muscularis propria. 

Meanwhile, microbiota dysbiosis is also associated with 
intestinal fibrosis. Gut infection by pathogens (eg, adherent-
invasive Escherichia coli and Salmonella typhi), contributes to 
the pathogenesis of intestinal fibrosis.22 In bacterial infection, 
flagellin binds to Toll-like receptor 5 (TLR5) of the intestinal 
epithelium, induces the expression of IL-33 and its receptor, and 
therefore promotes IL-13 and TGF-β.23 The flagellin-induced 
MyD88 activation elicits increased collagen I and fibronectin 
production in intestinal myofibroblasts, and MyD88 deletion 
in α-SMA-positive cells alleviates fibrosis in a mouse model of 
chronic colitis.24 

Epithelial-to-mesenchymal transition (EMT) is another 
potential fibrogenic mechanism in intestinal fibrosis in that it 
promotes epithelial-derived fibroblasts and ECM deposition in 

the fibrogenesis of many organs. Although the occurrence of 
EMT in intestinal fibrosis has been proved, its functional mech-
anism is still warranted.25

ncRNAS
The MiRNAs, lncRNAs, and circRNAs are the major 

entities of ncRNAs. Most of them selectively bind to other 
nucleic acids by base pairing and regulate gene transcription, 
RNA processing, and translation in various pathophysiolog-
ical processes such as fibrosis.26 Defined as small fragments 
of RNA that comprise 20~25 nucleotides, miRNAs bind to 
the complementary sequences of targeted mRNAs and de-
grade them via cleavage, destabilization, or inhibition of 
mRNA translation, which finally represses the expression of 
target genes.27 NcRNAs with >200 nucleotides are classified as 
lncRNAs, which not only control gene transcription but also 
modulate regulate mRNA processing, stability, and transla-
tion via posttranscriptional regulation by acting as sponges 
for miRNAs or sources of other small RNAs.28 As another 
subclass of ncRNAs, circRNAs are generally produced by 
backsplicing and are highly stable, resulting from the formation 
of a covalently closed loop. CircRNAs have a similar function 
to lncRNAs, such as sponging miRNAs, sequestering RNA-
binding proteins, and regulating mRNA transcription.29 

Until now, many studies have focused on the relation-
ship between ncRNAs and CD by means of high-throughput 
sequencing and microarray.30,31 Some ncRNAs have recently 
been developed as biomarkers of CD (eg, miR-146b-5p).30 
Research has reported that ncRNAs participate in the in-
flammatory response by modulating the relevant cytokines or 
chemokines, activation, and differentiation of immune cells 
(eg, Th1 and Th17 cells).32,33 On the other hand, ncRNAs reg-
ulate tight junctions (eg, the claudin family) of the intestinal 
epithelium, mucus barrier, and immune homeostasis, therefore 
widely manipulating intestinal epithelial barrier function.34 In 
addition, the significance of ncRNAs in gut microbiota and 
fibrogenesis is gradually unveiled in the etiology of CD. In this 
review, we mainly elucidate the importance of miRNAs, along 
with lncRNAs and circRNAs, in the process of intestinal fi-
brosis in CD (Fig. 1).

DYSREGULATION OF NCRNAS IN INTESTINAL 
FIBROSIS

In intestinal fibrotic diseases, ncRNAs are often 
dysregulated. Lewis et  al35 compared the serum level of 372 
miRNAs of patients with stricturing CD (defined as Montreal 
criteria, n = 6) with those of patients with nonstricturing CD 
(n = 11) and healthy control patients (n = 5) and detected 94 
differentially expressed miRNAs, such as miR-19-3p (miR-
19a-3p and miR-19b-3p), miR-29a-3p, and miR-29c-3p. In 
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accordance with the results of the aforementioned miRNA 
serum array, decreased levels of miR-19-3p and the miR-29 
family have been further verified in the serum or tissues of intes-
tinal strictures in patients with CD.35,36 Similarly, Zhou, Liang, 
et al37 analyzed the differential expression of lncRNAs in tissue 
samples from patients with radiation-induced intestinal fi-
brosis and reported that 76 lncRNAs (54 upregulated and 22 
downregulated) exhibited 10-fold or more differences in com-
parison with nonradiation-induced intestinal fibrosis controls, 
such as lncRNA WWC2-AS1, lncRNA RP1-65 J11·1, lncRNA 
XLOC-004117, and lncRNA RP11-63P12·7. The changes of 
miRNA and lncRNA expression profiles suggest their under-
lying roles in modulating fibrogenic responses in different types 
of intestinal fibrotic diseases.

ncRNAs in TGF-β Signaling Modulation
TGF-β signaling modulates a wide spectrum of  bio-

logical processes, such as tumor metastasis, tissue fibrosis, 
immune response, and cell proliferation and differentiation.38 
Because TGF-β signaling not only alleviates inflammation 
but also drives organ fibrosis,39 miRNAs modulating TGF-
β signaling are found dysregulated in inflammatory dis-
eases (eg, miR-4448) and fibrotic diseases (eg, miR-21).38,40 
For example, miR-155 increases in the inflamed duodenal 
mucosa and inhibits TGF-β signaling by targeting and 
downregulating Smad2 in inflammation.41,42 However, it de-
creases in the primary duodenal fibroblasts of  pediatric pa-
tients with CD under TGF-β stimulation.41 The dual function 

of  miR-155 partially reveals the sophisticated modulating 
network of  ncRNAs in inflammation and fibrosis by modu-
lating TGF-β signaling.

In canonical TGF-β signaling (Smad-dependent path-
ways), TGF-β triggers the phosphorylation of  Smad2 and 
Smad3 by binding to TGF-β receptor (TGFBR) 1.  Smad4 
binds phosphorylated Smad2/3 and enables the nuclear trans-
location of  the Smad2/3 complex, therefore activating the 
transcription of  fibrosis-relevant genes. Smad7 competes with 
the Smad2/3 complex for TGFBR1 and exerts negative regula-
tion on TGF-β signaling.38 As important transcription factors 
of  TGF-β signaling, Smads are often targeted by ncRNAs. 
When treated with TGF-β, miR-21 expression is elevated in 
fibroblasts and epithelial cells depending on phosphorylated-
Smad2/Smad3.43-45 MiR-21 also directly targets Smad7 and in-
creases collagen expression in TGF-β activation,46,47 whereas 
the miR-21/Smad7 pathway can be further regulated by 
lncRNA COL1A2-AS1.48

Other ncRNAs have also been proven to manipulate 
every step of  TGF-β signaling. MiR-503 modulates Smad2 
differently because it mediates the ubiquitination of  Smad2. 
It is known to upregulate Smad2 by directly targeting Smad 
ubiquitin regulatory factor 2, an E3 ubiquitin ligase that 
promotes the ubiquitination and degradation of  phosphor-
ylated Smad2.49 The miR-503-induced activation of  TGF-β/
Smad2 signaling further promotes downstream CTGF and 
collagen production.49,50 The antifibrotic role of  miR-29b is 
attributed to its inhibition of  the phosphorylation of  Smad3 
and the expression of  collagen I and collagen III via the Sp1/

FIGURE 1.  Schematic diagram of ncRNAs involved in intestinal fibrosis. In intestinal fibrogenesis, excessive activation of mesenchymal cells 
causes ECM deposition via canonical TGF-β/Smads signaling or other pathways (eg, EMT/EndMT), and ncRNAs contribute to the aforementioned 
mechanisms.
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TGF-β1/Smad/CTGF pathway.36,51 Different from miR-29b, 
lncRNA HOX transcript antisense RNA (HOTAIR) tar-
gets and downregulates the antifibrotic factor peroxisome 
proliferator-activated receptor γ (PPARγ) in fibrosis because 
it antagonizes Smad3 and interferes with TGF-β signaling.52,53 
Regarding Smad4, miR-34 upregulation provides positive 
feedback under TGF-β stimulation and reciprocally activates 
TGF-β signaling by upregulating Smad4.54 Nevertheless, the 
function of  miR-34 in fibrosis may be tissue-specific because 
the miR-34 downregulation triggered by lncRNA HOTAIR 
de-represses Notch signaling and elicits the enhanced expres-
sion of  collagen I and α-SMA in dermal fibroblasts.55 In addi-
tion, the TGF-β receptor is another important target site for 
ncRNAs to modulate TGF-β signaling. Downregulated miR-
20a-5p leads to the de-repression of  TGFBR2 and activates 
TGF-β signaling in fibrogenesis56; Similarly, let-7b/c targets 
TGFBR1 and downregulates TGF-β signaling.57

Potential Involvement of ncRNAs in EMT and 
Endothelial-to-Mesenchymal Transition

Research has shown that EMT is a common pathological 
process of cellular transdifferentiation in fibrosis and cancer. 
Through EMT, epithelial cells acquire mesenchymal features, 
such as fibroblast-like morphology, downregulated epithelial 
markers (eg, E-cadherin, tight junction, and cytoskeleton pro-
teins), upregulated mesenchymal markers (eg, α-SMA, vimentin, 
and collagens), and upregulated EMT transcription factors 
(eg, Twist, Snail, Slug, and zinc finger E-box binding homebox 
1/2).25 The Wnt/β-catenin pathway is one of the most important 
signaling pathways that positively modulates the transcription 
of EMT-promoting genes.58 Because accumulating evidence 
has revealed the contribution of EMT to ECM deposition, 
EMT is believed to play a role in intestinal fibrogenesis.59 As 
a special form of EMT, endothelial-to-mesenchymal transition 
(EndMT) refers to the transdifferentiation of endothelium into 
mesenchymal cells, which exhibits a loss of endothelial markers 
and an upregulation of transcription factors and mesenchymal 
markers similar to EMT.60

Mainly modulating EMT/EndMT transcription fac-
tors, the miR-200 family takes on an antifibrotic role in 
intestinal fibrosis. Members of  this family (miR-141, 
miR-200a, miR-200b, miR-200c, and miR-429) are all 
downregulated in the stricture-overlying mucosa of  patients 
with CD.61,62 They inhibit TGF-β-induced EMT/EndMT by 
targeting zinc finger E-box binding homeobox 1 and 2,63–67 
whereas lncRNA activated by TGF-β (lncRNA ATB) ab-
rogates the antifibrotic function of  the miR-200 family.68,69 
MiR-200b-3p regulates microfibrial-associated glycopro-
tein 2 and the downstream expression of  Slug, Snail, matrix 
metalloproteinase (MMP)-2, and MMP-9.70 The regulatory 
role of  miR-200b has been further verified in in vivo ex-
periments: miR-200b-containing microvesicles alleviate 
2,4,6-Trinitrobenzenesulphonic acid–induced intestinal 

fibrosis in rats by inhibiting EMT.71 Because it plays an in-
hibitory role in EndMT, miR-200a may directly decrease 
the expression of  growth factor receptor-bound 2.72

Different from the miR-200 family, lncRNA HOTAIR 
acts extensively in EMT and fibrosis mainly by regulating the 
expression of epithelial/mesenchymal markers and the Wnt/β-
catenin pathway. Under the stimulation of TGF-β, HOTAIR 
targets antifibrotic miR-124 and upregulates Notch1 signaling, 
resulting in increased α-SMA, MMP-2, and MMP-9 in vitro.73,74 
In addition, HOTAIR maintains the expression of IGF2 
binding protein 2, therefore promoting IGF signaling–induced 
EMT.75 Furthermore, HOTAIR has an indirect function in the 
epigenetic regulation of fibrosis by inhibiting miR-29b because 
miR-29b is identified as targeting DNA methyltransferases 
in the methylation of EMT-relevant genes.76,77 MiR-29b-3p 
targets progranulin, a Wnt/β-catenin-signaling downstream 
adaptor, and significantly increases E-cadherin expression but 
downregulates vimentin and Snail.78 Other ncRNAs also form 
the sophisticated modulating network of EMT/EndMT and 
are listed in Table 1.

ncRNA-Associated ECM Remodeling
Both EMT/EndMT and dysregulated TGF-β signaling 

finally lead to excessive ECM remodeling, which is crucial in 
fibrogenesis. The 2 entities of ECM, interstitial matrix and 
basement membrane, are different from each other in molecular 
composition and biological function.113 Consisting of proteins, 
glycosaminoglycans, proteoglycans, and enzymes, the heteroge-
neous ECM structure provides a dynamic microenvironment 
for collagen-producing cells (eg, fibroblasts, myofibroblasts, 
and smooth muscle cells).114 Fibronectin bridges ECM com-
ponents (eg, collagens and cell surface integrins) to modulate 
ECM structural changes and signaling pathways.114 The col-
lagen family, especially (myo-)fibroblast-produced collagen I/
III, represents a major part of interstitial ECMs.115 Collagen-
producing cells further organize the alignment of collagens 
under the stimulation of profibrotic cytokines or growth fac-
tors (eg, TGF-β and IL-13).116 In addition, ECM proteases, 
such as MMPs, tissue inhibitors of metalloproteinase, neutro-
phil elastases, and meprins, are the major mediators of ECM 
degradation.116 Because of the imbalance between ECM deg-
radation and deposition, excessive ECM remodeling leads to 
intestinal fibrosis.

MiR-16 plays different parts in ECM remodeling be-
cause of  different etiologies. In a mouse model resembling 
postsurgical intestinal inflammation and fibrosis, miR-16-1 in-
creases at the site of  anastomosis and exacerbates ileocolonic 
anastomotic fibrosis by de-repressing myofibroblast differen-
tiation.117,118 In contrast, miR-16 is downregulated by lncRNA 
WWC2-AS1 in radiation-induced intestinal fibrosis. As a re-
sult, reduced miR-16 gives rise to the production of  fibroblast 
growth factor 2, α-SMA, and collagen I, and therefore pro-
motes fibroblast proliferation and fibrosis.37 Unlike miR-16, 
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miR-210 is proven to be a profibrotic miRNA in radiation-
induced intestinal fibrosis because it promotes collagen Iα1 
expression in fibrotic smooth muscle cells.119,120 In addition, 
ECM deposition and degradation in IBD fibrogenesis are 
orchestrated by ncRNAs. Bioinformatic analysis indicates 
that miR-192 may participate in ECM remodeling in CD.121 
Experiments have further shown that miR-192 is upregulated 
by TGF-β signaling and promotes the accumulation of  ma-
trix collagens.122 Apart from manipulating ECM components, 
the cotranscribed miR-143/145 functions as an upstream 

process and promotes the transdifferentiation of  smooth 
muscle cells into myofibroblasts in that the knockout of  miR-
143/145 leads to morphological abnormality and dysfunction 
of  myofibroblasts in a mouse model of  chemically induced 
colitis.123

A few miRNAs also play a part in regulating the pro-
duction of ECM proteins via similar targets. MiR-150 sup-
presses the expression of α-SMA, TGF-β1, and collagen fibers 
in ECM.124 MiR-101 suppresses the production of ECM com-
ponents (eg, α-SMA, collagen I) in fibrosis by inhibiting PI3K/

TABLE 2.  ncRNAs as Diagnostic Biomarkers for Diseases in Registered Clinical Trials

ncRNA Disease Reference/Clinical Trial

miR-10b Gliomas NCT01849952
miR-100 Breast cancer NCT02950207
miR-107 Alzheimer disease NCT01819545
miR-122* Chronic hepatitis C NCT00980161/NCT03687229
miR-122 Drug-induced liver injury by chemotherapy NCT03039062
miR-126* Postmyocardial infarction remodeling NCT01875484
miR-126 Allergic contact dermatitis NCT04365140
miR-138 Oral lichen planus NCT02834520
miR-146a Chronic periodontitis and coronary heart disease NCT03721159
SNP rs2910164 in pre-miR-146a 

gene
Cancer NCT04038996

miR-142-3p Synaptopathy in multiple sclerosis NCT03999788
miR-150/miR-155 Multiple sclerosis NCT04300543
miR-155 Preeclampsia NCT04277390
miR-155 Nonmuscle invasive bladder cancer NCT03591367
miR-155 Oral lichen planus NCT03871114
miR-192/miR-25* Diabetic kidney disease NCT04176276
miR-200b/miR-21* Diabetic wounds NCT02581098
miR-204 Capillarization in limb muscles of patients with chronic 

obstructive pulmonary disease
NCT02903043

miR-210 Preeclampsia NCT03193554
miR-210* Wound healing NCT02024243
miR-221/miR-222 Hepatocellular carcinoma NCT02928627
miR-25 Pancreatic cancer NCT03432624
miR-29 family* Shoulder stiffness NCT02534558
miR-29 family Head-and-neck squamous cell carcinoma NCT01927354
miR-29b Oral squamous cell carcinoma NCT02009852
miR-30a Childhood nephrotic syndrome NCT03235128
miR-30 family Schizophrenia NCT02650102/NCT03007303
miR-31-3p/miR-31-5p Colon cancer NCT03362684
miR-452 Preeclampsia NCT03258125
miR-494 Cerebral ischemia NCT03577093
lncRNA CCAT1 Colorectal cancer NCT04269746
lncRNA HOTAIR Thyroid cancer NCT03469544
lncRNA NBR2 Sepsis NCT04427371
circRNA Uck2 Acute myocardial infarction NCT03170830

*Fibrotic diseases.
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AKT/mTOR signaling.125 In addition, the negative correlation 
between lncRNA growth arrest–specific transcript 5 (lncRNA 
GAS5) and MMP-2/MMP-9 reveals the potential modulating 
mechanism of ncRNAs in ECM degradation.126

PERSPECTIVES

Challenges
Over recent years, research on ncRNA-modulated intes-

tinal fibrosis has made substantial progress, but there are still 

challenges. First, although most studies reveal correlations in-
stead of causal relationships between dysregulated ncRNAs 
and intestinal fibrotic diseases, whether these correlations differ 
across segments of gut and reflect the stages of fibrosis remains 
a question because there is no gold standard for diagnosis in 
radiology, pathology, or endoscopy. Second, few studies elabo-
rate the underlying molecular mechanisms thoroughly, such as 
ncRNA localization via RNAscope or BaseScope and functional 
verification based on in vivo and in vitro experiments. Third, 
many ncRNAs have significant function in modulating EMT 
and profibrotic factors. For example, hsa_circRNA_102610 

TABLE 3.  Validated ncRNAs as Biomarkers in Clinical Studies on Fibrotic Diseases

ncRNA Disease Sample Result Reference

miR-29 family Hepatic fibrosis Serum ↓ 129-132

miR-122 Hepatic fibrosis Liver tissue and serum ↓ 130,133-136

miR-34a-5p Hepatic fibrosis Serum ↑ 137-139

miR-378 family Hepatic fibrosis Liver tissue ↑ 140,141

let-7 Hepatic fibrosis Serum ↓ 142,143

miR-223 Hepatic fibrosis Serum ↑ 144,145

miR-21 Hepatic fibrosis Liver tissue and serum ↑ 132,139,146,147

lncRNA H19 Hepatic fibrosis Liver tissue and serum ↑ 148-150

lncRNA MALAT1 Hepatic fibrosis Liver tissue and serum ↑ 151-153

lncRNA HOTAIR Hepatic fibrosis Liver tissue ↑ 76,77

lincRNA p21 Hepatic fibrosis Liver tissue and serum ↓ 154-156

lncRNA APTR Hepatic fibrosis Serum ↑ 157,158

lncRNA ATB Hepatic fibrosis Liver tissue and serum ↑ 68,159

miR-21 Renal fibrosis Renal tissue, urine, and serum ↑ 160-166

miR-214 Renal fibrosis Renal tissue ↑ 165,167

miR-29 family Renal fibrosis Urine ↓ 128,164,166,168

miR-29 family Cardiac fibrosis Cardiac tissue and serum ↓ 169-175

miR-21 Cardiac fibrosis Cardiac tissue and serum ↑ 173,176-182

miR-208 Cardiac fibrosis Cardiac tissue and serum ↑ 173,183,184

miR-133 Cardiac fibrosis Cardiac tissue and serum ↑ 185-187

miR-155 Cardiac fibrosis Cardiac tissue and serum ↑ 174,187

miR-146 Cardiac fibrosis Cardiac tissue and serum ↑ 176,188,189

miR-21 Pulmonary fibrosis Lung tissue and serum ↑ 190-195

miR-200 family Pulmonary fibrosis Lung tissue and serum ↓ 191,196

miR-155 Pulmonary fibrosis Lung tissue and serum ↑ 197,198

miR-101 Pulmonary fibrosis Lung tissue ↑ 199,200

miR-31 Pulmonary fibrosis Serum and bronchoalveolar lavage 
fluid

↓ 191,201

miR-21 Skin fibrosis Skin tissue ↑ 202,203

miR-29 Skin fibrosis Skin tissue ↓ 202,204,205

miR-145 Skin fibrosis Skin tissue ↑ 205,206

lncRNA HOXA11-AS Skin fibrosis Skin tissue ↑ 207,208

lncRNA CACNA1G-AS1 Skin fibrosis Skin tissue ↑ 207,209

miR-29 Intestinal fibrosis Gut tissue ↓ 36,210

miR-200 Intestinal fibrosis Gut tissue and serum ↓ 61-63

miR-19 Intestinal fibrosis Serum ↓ 35

We only include studies on specific ncRNAs in fibrosis diseases screened and validated by multicenter studies or no less than 2 studies.
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promotes TGF-β1-induced EMT by sponging miR-130a-3p.102 
However, EMT in intestinal fibrogenesis and the contribution 
of EndMT should be further studied in in vivo experiments 
and clinical studies.9 Fourth, although some research reveals 
that circRNAs act in intestinal fibrosis, more convincing evi-
dence is still warranted. Learning from studies on miRNAs and 
lncRNAs in intestinal fibrogenesis, researchers and clinicians 
could collect and analyze gut biopsy, serum, and fecal samples 
from patients with stricturing CD and those with nonstricturing 
CD. Based on screening from samples of large cohorts, poten-
tial circRNAs could be first profiled and subsequently validated 
in vitro and in vivo.

Finally, as a useful tool to unveil intestinal fibrogenic 
responses, spontaneous, induced, and gene-targeted animal 
models are developed and widely utilized,127 whereas the 
ncRNA-targeted model is rarely applied in studies.

Diagnosis
There is an urgent need for efficient and accurate bio-

markers to diagnose and prognosticate intestinal fibrosis, espe-
cially for those that can be detected by noninvasive methods, 
such as blood and fecal tests. NcRNAs have been newly devel-
oped as diagnostic biomarkers for various diseases, including 
fibrosis diseases, in clinical trials and other studies (Tables  2 
and 3). For example, miR-29c in urinary exosomes indicates 

early renal fibrosis in lupus nephritis (AUC = 0·946).128 Given 
the promising role of ncRNAs, certain ncRNAs (eg, miR-200 
family, miR-29 family, and miR-19 family) could have clinical 
significance in patients. However, their diagnostic values should 
be further validated in larger cohort studies or multicenter clin-
ical trials. In addition, even though intestinal fibrogenesis may be 
in part independent of inflammatory signal cascades, fibrogenic 
responses are indeed triggered by certain types of chronic intes-
tinal inflammation (eg, IBD).16 NcRNAs in intestinal inflamma-
tion may present a unique opportunity for predicting the early 
stage of colitis-induced fibrosis.

Therapeutic Potential
Owing to the extensive participation of  ncRNAs in 

intestinal fibrogenesis, more attention should be paid to 
their potential role as therapeutic targets to prevent early-
stage fibrosis or reverse existing fibrosis.211 Since Miravirsen 
(SPC3649, a miR-122 inhibitor) was first used for hepatitis 
C in clinical trials, ncRNA-based therapies have become fea-
sible and attractive212,213 (Table  4). As for fibrotic diseases, 
Remlarsen (MRG-201), an anti-fibrotic miR-29 mimic,204 
has been applied to keloids in phase 2 clinical trials (eg, 
ClinicalTrials.gov identifier: NCT03601052). Because miR-
29 is also an inhibitor in intestinal fibrosis because it inhibits 
TGF-β signaling, whether Remlarsen can be used to treat 

TABLE 4.  ncRNAs as Therapeutic Targets for Diseases in Registered Clinical Trials

Drug Disease Target Phase Reference/Clinical Trial

RG-125 (AZD4076) Type 2 diabetes with nonalco-
holic fatty liver disease

miR-103/miR-107 Phase 1/2a NCT02826525

RG-125 (AZD4076) Non-alcoholic steatohepatitis miR-103/miR-107 Phase 1 NCT02612662
Miravirsen (SPC3649)* Hepatitis C miR-122 Phase 2 NCT01200420/ NCT01727934/NCT01872936/

NCT01646489/NCT02452814/NCT02508090/
NCT00979927/ NCT00688012

Cobomarsen (MRG-106) Mycosis fungoides miR-155 Phase 2 NCT03713320/NCT03837457
TargomiRs Malignant pleural mesothe-

lioma, Non-small cell lung 
cancer

miR-16 Phase 1 NCT02369198

Lademirsen (SAR339375, 
RG-012)

Alport syndrome miR-21 Phase 2 NCT02855268/NCT03373786

Remlarsen (MRG-201)* Keloids miR-29 Phase 2 NCT03601052/NCT02603224
MRX34 Primary liver cancer, Lym-

phoma, melanoma, non–
small cell lung cancer, small 
cell lung cancer

miR-34a Phase 1 NCT01829971

Multiple myeloma, renal cell 
carcinoma

MRX34 Melanoma miR-34a Phase 1/2; 
withdrawn

NCT02862145

MRG-110* Heart failure miR-92 Phase 1 NCT03603431

*Fibrosis diseases.
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intestinal fibrosis is worth a discussion. However, the design 
of ncRNA-based drugs needs further consideration for opti-
mized curative effects. First, a successful delivery system (eg, 
nanoparticles and liposome-bearing microvesicles) of artificial 
miRNAs is prerequisite because of their vulnerability to deg-
radation, especially in the alimentary tract. Second, effective-
ness and efficiency should be considered in the choice of drug 
administration method for patients with intestinal obstruction. 
Because of varied tissue enrichment among different organs, 
choosing a gut-specific ncRNA for alimentary fibrotic diseases 
is important. In addition, an intestine-targeting delivery system 
for ncRNA-based drugs remains to be developed. Third, be-
cause of the intricate network of ncRNA, 1 ncRNA usually 
plays multiple roles in different organs and needs to be thought 
over as a whole system. For example, in spite of its antifibrotic 
role, miR-200 has been shown to promote the malignant trans-
formation of tumors by inducing EMT in hepatocellular car-
cinoma214 and to enhance the proliferative and invasive 
capacities of  ovarian cancer cells.215 Therefore, whether the 
application of  ncRNA-based drugs may cause adverse effects 
remains a problem.

CONCLUSIONS
As the biology of ncRNA-modulated intestinal fibrosis 

is gradually unveiled, ncRNAs may present as promising bio-
markers and therapeutic targets in the future.
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