Skip to main content
. 2021 Jul 29;13(15):3825. doi: 10.3390/cancers13153825

Table 1.

A performance comparison between the U-Net and Detectron2 on the test data set, using different combinations of backbone, batch size, optimizer and loss functions (bold represent the best performance).

Model Name Backbone Batch Size Optimizer Loss Function Metrics
Accuracy Sensitivity Specificity Dice AJI
U-Net ResNet50 2 SGD BCE 0.97135 0.81653 0.97349 0.51159 0.35148
4 0.97729 0.66402 0.98229 0.5015 0.34194
8 0.98119 0.19418 0.99565 0.25376 0.14849
2 Adam BCE 0.98922 0.65317 0.99571 0.67643 0.5301
4 0.98933 0.65703 0.99585 0.67773 0.53082
8 0.98904 0.65452 0.99551 0.66949 0.52215
ResNet101 2 SGD BCE 0.97202 0.80081 0.97434 0.51812 0.35626
4 0.97635 0.71966 0.98038 0.52575 0.36193
8 0.98066 0.20058 0.99493 0.25703 0.15036
2 Adam BCE 0.98902 0.65415 0.99538 0.67106 0.52394
4 0.98903 0.66182 0.99542 0.67364 0.52681
8 0.98939 0.67254 0.99584 0.68844 0.53922
Detectron2 ResNet50 2 SGD BCE+L1 0.98795 0.63321 0.99509 0.6571 0.50428
4 0.98823 0.58092 0.99632 0.63354 0.48617
8 0.98816 0.57355 0.99629 0.62887 0.48037
2 Adam BCE+L1 0.98811 0.63597 0.99514 0.65672 0.50619
4 0.98792 0.57015 0.99616 0.61928 0.47275
8 0.98823 0.58092 0.99632 0.63354 0.48617
ResNet101 2 SGD BCE+L1 0.9881 0.62078 0.99563 0.65472 0.50358
4 0.98778 0.5791 0.99607 0.62088 0.47237
8 0.98788 0.58846 0.99609 0.63493 0.48353
2 Adam BCE+L1 0.98828 0.62597 0.99563 0.65985 0.50696
4 0.98817 0.59231 0.9963 0.63697 0.48881
8 0.98815 0.59255 0.99622 0.63644 0.48773