Skip to main content
. 2021 Jul 29;13(15):3825. doi: 10.3390/cancers13153825

Table 2.

Comparative results of U-Net with the different backbones and the batch size of 8 (bold represent the best performance).

Model Name Backbone Batch Size Optimizer Loss Function Metrics
Accuracy Sensitivity Specificity Dice AJI
U-Net ResNet101 8 Adam BCE 0.98939 0.67254 0.99584 0.68844 0.53922
EfficientNetB7 0.98992 0.7392 0.99526 0.72448 0.57832
DenseNet161 0.98881 0.66545 0.99521 0.66838 0.51961
InceptionResNetV2 0.98918 0.66615 0.99553 0.67742 0.52953
SENetResNext101 0.98812 0.74222 0.99331 0.67823 0.53138
MobileNetV2 0.98891 0.63465 0.99589 0.65913 0.50924
VGG19 0.98778 0.5761 0.99568 0.61238 0.46402