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Abstract

Childhood attention deficit hyperactivity disorder (ADHD) shows a highly variable course with 

age: some individuals show improving, others stable or worsening symptoms. The ability to 

predict symptom course could help individualize treatment and guide interventions. By studying 

a cohort of 362 youth, we ask if polygenic risk for ADHD, combined with baseline neural 

and cognitive features could aid in the prediction of the course of symptoms over an average 

period of 4.8 years. Compared to a never affected comparison group, we find that participants 

with worsening symptoms carried the highest polygenic risk for ADHD, followed by those with 

stable symptoms, then those whose symptoms improved. Participants with worsening symptoms 

also showed atypical baseline cognition. Atypical microstructure of the cingulum bundle and 

anterior thalamic radiation were associated with improving symptoms while reduction of thalamic 

volume was found in those with stable symptoms. Machine learning algorithms, trained and tested 

on independent groups, performed well in classifying those never affected against groups with 

worsening, stable and improving symptoms (area under the curve > 0.79). We conclude that some 

measures of polygenic risk, cognition, and neuroimaging show significant associations with the 

future course of ADHD symptoms and may have modest predictive power. These features warrant 

further exploration as prognostic tools.

Introduction.

One of the most fascinating aspects of ADHD is the high degree of individual variation in 

the course of its symptoms from childhood into early adulthood. Prospective studies find 

that while a majority show some symptomatic improvement, many show stable or worsening 

symptoms 1, 2. Understanding the variables that underpin different symptom course might 

form the basis of prognostic tools to help stratify individuals for treatment. Here, we ask 

if genomic, neural and cognitive features might be associated with, and predict symptom 
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change, above and beyond the established associations with age and baseline symptom 

severity 3.

Recent advances in ADHD genomics, particularly the mapping through genome wide 

associations studies (GWAS) of how common genetic variations are associated with the 

disorder, prompt us to first consider if genomics may provide prognostic features 4. Using 

GWAS data, the polygenic risk score can be calculated which provides an index of an 

individual’s genomic risk for the disorder 5. Here, we ask if polygenic risk for the diagnosis 

of ADHD may also predict its symptom course. This is informed by prior longitudinal 

twin studies that find that around half of the genetic factors contributing to the course of 

ADHD symptoms overlap with those tied to its onset 6. Additionally, a population cohort 

study found the persistence of ADHD symptoms across adolescence was associated with 

higher polygenic risk, a finding we attempt to replicate in a cohort with detailed, prospective 

symptom mapping 7.

We also consider neural and cognitive features. Among neuroimaging measures, preliminary 

associations have been reported between adolescent ADHD symptom trajectories and 

baseline measures of neuroanatomy (specifically dimensions of the superior cerebellar 

vermis and anterior cingulate cortex), neurophysiology (altered theta, beta ratios in EEG) 

and functional connectivity (coupling between activity in the medial and dorsolateral 

prefrontal cortex) 8–11. We build on these studies, using multimodal imaging to ask if 

baseline anatomic and microstructural properties of white matter tracts measured might be 

tied to future symptom course. We also consider cognition, looking at domains implicated 

in the pathogenesis of ADHD, specifically intelligence, processing speed, visuomotor 

integration and working memory 12–14.

In summary, we follow 362 subjects for an average of 4.8 years, drawing contrasts between 

a group who remained symptom-free and participants showing either stable, improving or 

worsening symptoms of ADHD. First, using regression-based methods, we characterize 

baseline differences between these dissimilar symptom course groups in atypical cognitive, 

genomic and neural features. We then use machine learning approaches for prediction. The 

machine learning analyses first learn how baseline features relate to group membership and 

then predict symptom course in a separate test set of participants.

Methods

Overall, 362 participants were recruited from communities surrounding the study site. The 

inclusion criteria were at least two clinician-led assessments of symptoms of ADHD, with 

a minimum duration of follow-up of one year (average duration of follow-up was 4.8 

[SD 2.3] years). Additionally, all subjects were genotyped, allowing polygenic risk for 

ADHD to be calculated. The principal exclusion criteria were the presence of any DSM-5 

disorder besides ADHD at study entry, IQ <70, and major neurological disorders. The cohort 

was composed of 155 singletons, and the remaining 207 children came from 85 families. 

Parental history of ADHD was determined from clinical interview or from self-report of a 

diagnosis of ADHD- Supplement A1. Age of onset of impairing symptom was ascertained 

by parental report. The study was approved by the Institutional Review Board of the 
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National Human Genome Research Institute. Parents or guardians of children and adult 

participants gave written consent and children gave assent.

Outcome measures.

We defined four groups based on the course of ADHD symptoms: never affected, 

and those with stable, improving or worsening symptoms. Symptoms of ADHD were 

ascertained by trained clinicians (PS or WS) using the Diagnostic Interview for Children 

and Adolescents for parents 15. Two clinical assessments were obtained on 106 participants, 

three assessments on 79; and 4 or more assessments on 177 participants. At each clinical 

assessment, participants were categorized as having none or minimal symptoms (0, 1, or 2 

symptoms of either inattention or hyperactivity-impulsivity), moderate symptoms (3, 4 or 

5 symptoms) or severe symptoms (6 to 9 symptoms) - Supplement A1. The main analyses 

considered changes in both symptom categories combined. Results for change in inattention 

and in hyperactivity-impulsivity separately are given as supplemental material.

The never affected group was defined as those with consistently having no or minimal 

symptoms of both inattention and hyperactivity-impulsivity. The stable-symptomatic group 
showed the same symptom level at each observation; that is, either moderate or severe 

symptoms of inattention and/or hyperactivity-impulsivity throughout. The improving group 
showed a drop in symptom level, for example moving from severe to moderate or no/

minimal symptoms of hyperactivity-impulsivity, and/or inattention. The worsening group 
showed the opposite pattern, for example increasing from no/minimal symptoms to either 

moderate or clinical/level symptoms.

Baseline predictors.

Polygenic risk for ADHD.—Genotyping used the Illumina HumanOmniExpressExome 

array with genome build GRCh37/hg19. Following filtering, 544,897 SNPs were retained 

for PRS analysis -details in Supplement A2. PRSice calculated polygenic risk scores for 

ADHD 16 as the sum of disorder-associated alleles, weighted by effect sizes from the multi

ethnic genome wide association study for ADHD from the Psychiatric Genetics Consortium 

(which did not contain our recently genotyped cohort) 17. We included a range of PRS at 

increasingly liberal significance thresholds (p < 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 

0.5). Ten principal components (PCs) were included to control for population stratification 

along with a random intercept term for familial relatedness. Genotypes are being deposited 

in dbGAP for consenting individuals.

Neuroanatomic: High resolution T1 weighted anatomic sequences were collected on a 3

T GE Signa scanner. Parameters and quality control measures are detailed in Supplement A3 

and included visual inspection by two raters of the ‘raw’ data and FreeSurfer reconstructions 
18. Following quality control, 267 scans were retained. The anatomic features were volumes 

of structures that have been most consistently implicated in ADHD by meta-analyses 

and pathophysiological models of the disorder: namely the striatum, the amygdala, the 

cerebellum, the cingulate, orbitofrontal and dorsolateral prefrontal cortex 19–22. We did not 

conduct anatomic analyses at the voxel/vertex level in view of the sample size and combined 

right and left hemispheres given high correlations between homologous structures.
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White matter tract microstructure: Diffusion tensor imaging (DTI) data were acquired 

using a single-shot, dual-spin echo, echo-planar imaging sequence on the same 3-T GE 

Signa scanner- Supplement A3. 166 data set passed quality control measures, including 

the reacquisition of corrupted data in real time, visual inspection, exclusion of participants 

with more than two corrupted volumes, and excessive movement. We calculated fractional 

anisotropy, which summarizes the diffusion of water molecules along and perpendicular 

to the axon, of the major white matter tracts (corpus callosum, anterior thalamic 

radiation, superior and inferior longitudinal, uncinate, and inferior frontal-occipital fasciculi, 

parahippocampal and medial frontal divisions of the cingulum bundle, and the corticospinal 

tract 23).

Cognition.—General intelligence was assessed using age-appropriate versions of the 

Wechsler scales 24, 25. Working memory spans were defined as the number of correctly 

recalled digits/tapping patterns in original and reverse order 26. The ability to integrate visual 

and motor skills was assessed using the Beery-Butenika Developmental Test 27. Processing 

speed used subtests of the Woodcock Johnson III Test of Cognitive Abilities 28: the visual 

matching task which requires the matching of identical numbers under time pressure, and 

the decision speed task which requires the matching of two images under time pressure.

Demographic.—Familial socioeconomic status was measured by the Hollingshead scale 

which assesses parental educational attainment and occupation 29.

Analyses.

We first determined associations between baseline variables and symptom course groups. 

The three ADHD symptom course groups were coded as three dummy variables (stable, 

improving and worsening symptoms) with the never affected group as the reference group. 

These groups were entered into mixed model regressions, including a random intercept 

term for family to account for relatedness (using lmertest in R v.3.6.0). This approach 

provides t and p-values for the differences between each clinical and the never affected 

(reference) group via Satterthwaite’s degrees of freedom method. Group differences were 

also expressed as effect sizes (using R package effectsize) (d), where d~0.2 is a small, d~0.5 

is a medium, and d~0.8 is a large effect size 30. Parental history of ADHD was dichotomized 

and its association with outcome groups assessed using mixed effects logistic regression. 

To adjust for multiple testing, we concatenated all the p values and applied a false rate 

discovery procedure and highlight findings that survived adjustment at q<0.05. All analyses 

included gender and age at study entry and exit as covariates. The neuroimaging analyses 

also included as covariates image quality metrics and the polygenic risk analyses included 

10 PCs for population stratification.

We tested for associations between psychostimulant medication history among those with 

ADHD and symptom course groups- Supplement A6b. Using moderation analyses, we 

also determined if psychostimulant medication history impacted the associations between 

baseline characteristics and symptom course.

We next used machine learning approaches to identify the combination of baseline features 

that best predicts group membership. Unlike the univariate approach, which looks at the 
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contribution feature independently, machine learning algorithms can detect information 

conveyed by combinations of features, potentially improving group classification.

Our primary machine learning analysis used conditional random forests (implemented in 

R, caret_6.0, party_1.3–5 cforest). This approach fits several decision tree classifiers on sub

samples of the training data and uses weighted averaging to maximize prediction. Random 

forests can handle missing data, thus increasing sample size and reducing the chances 

of model overfitting. This conditional implementation uses unbiased variable selection to 

overcome the limitation of more general tree-based algorithms that favor the selection 

of variables with multiple cut-points 31. For comparison, we provide results for a more 

conservative machine learning method (sparse linear discriminant analysis, ipred_0.9–9 

slda). This identifies the linear combination of features that best models the differences 

between groups, and then predicts group membership using a Bayesian estimation of the 

probabilities that a new set of inputs belongs to each group- Supplement A4.

Prior to machine learning, data were split into training and test sets, such that the data 

in the test sets were only used to evaluate the trained models. The performance of each 

model in classifying between all pairwise group combinations are given as the area under the 

receiver-operating curve (AUC), sensitivity and specificity. The contribution of each feature 

to group classification was calculated following the permutation principle of the `mean 

decrease in standard accuracy’ importance for conditional random forests.

Results

Symptom course groups.

There were 129 never affected participants; 63 showed stable symptoms; 110 showed 

overall symptom improvement and 60 showed worsening symptoms- details in Table 1 and 

Supplement A1. The symptom course groups did not differ in gender composition (χ2=4.51, 

p=0.21), in number of observations (χ2=4.98, p=0.55) nor the interval between observations 

(F=1.42, p=0.24). Pairwise contrasts showed that a group differences in age at study entry 

(F=2.49, p=0.06) arose as the worsening symptom group were younger at study entry than 

the never affected (p=0.008) with no other significant pairwise group differences. A group 

age difference at the last observation (F=6.75, p=0.001) arose as the improvers and never 

affected were older than the stable and worsening groups. Thus, age at study entry and the 

age of last observation were both entered as covariates in analyses.

Associations between baseline variables and symptom course groups.

Differences in baseline features between the symptom course groups and the never affected 

group varied by domain – Figure 1. For the genomic variables, the worsening symptom 

group showed a significantly higher polygenic risk for ADHD than the never affected group, 

that survived adjustment for multiple testing. Increased polygenic risk in the worsening 

symptom group held across multiple risk thresholds (at p<0.01, p<0.05, p<0.1, p<0.2, p<0.3, 

p<0.4, p<0.5), with a maximum effect of 0.52 (at threshold of p<0.2, with t=4.04, FDR 

adjusted p=0.003). By contrast, the groups with improving or stable symptoms showed 

generally non-significant increases in polygenic risk of small effect sizes.
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The group with worsening symptoms also showed atypical cognition. The cognitive 

deficits in the worsening symptom group were associated with medium effects for IQ [in 

contrast against never affected, t=3.72,adjusted p=0.004, d=0.43]; spatial working memory 

[t=2.8,adjusted p=0.03, d=0.34] and visuomotor integration, [t=2.83,adjusted p=0.03, 

d=0.34]). The groups with stable and improving symptoms both showed significant atypical 

performance in processing speed, visuomotor integration and IQ. Socioeconomic status was 

not significantly associated with symptom course following adjustment for multiple testing.

Among neuroanatomic features, the stable symptom group showed the most atypical 

structure at baseline, the thalamus (t=2.47, nominal p=0.01, adjusted p=0.07, d=0.31). A 

nominally significant decrease in cerebellar white matter (t=2.2, nominal p=0.03) was also 

found in the stable symptom group, and no other significant group differences were noted.

Among white matter microstructural features, fractional anisotropy differed significantly 

between the group showing symptom improvement and the never affected for both the 

parahippocampal division of cingulum bundle (t=3.5, adjusted p=0.006, d=0.63) and 

the anterior thalamic radiation (t=2.86, adjusted =0.03, d=0.51). No other white matter 

microstructure anomalies survived adjustment for multiple testing.

Results for the groups defined by change in inattention and change in hyperactivity

impulsivity are given in Supplement A5. Higher polygenic risk and atypical cognition 

were significantly associated only with worsening inattention, not hyperactivity-impulsivity. 

Anomalies in thalamic volume and white matter microstructure of the cingulum were also 

more prominent among the groups defined on the basis of changing inattention.

In summary, those with worsening symptoms carried the highest polygenic risk for ADHD 

and had cognitive deficits at study entry. By contrast, those with improving symptoms 

had atypical microstructure of the cingulum bundle, and a group with stable symptom had 

atypical reduction in thalamic volume at baseline. These baseline associations were stronger 

with future change in inattention than change in hyperactivity-impulsivity.

Robustness analyses:

The pattern of results was largely unchanged when we confined analyses to those who met 

criteria for ADHD during the study - Supplement A6a. The proportions of those with ADHD 

who never, intermittently or continuously took psychostimulant medication did not differ 

between the three symptom course groups (χ2=3.97, p=0.41). Additionally, the associations 

between baseline features and symptom course groups were not significantly moderated 

by history of psychostimulant medication– Supplemental A6b. The association between 

polygenic risk for ADHD and a worsening symptom course also held when analyses were 

confined to the largest subpopulation (white, non-Hispanic)– Supplement A6c. Results 

were also similar when the typically developing children who had affected siblings were 

excluded- A6d.

Machine learning analyses.

The performance of the random forest machine learning algorithm on a test set, not used in 

the training phase, is shown in Table 2. The algorithm performed well in using baseline 
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features to classify the never affected group from each of the three symptom course 

groups (all AUC > 0.79). The algorithm also performed well classifying the clinical groups 

(worsening against stable, AUC 0.81; worsening against improving symptom groups, AUC 

0.94; and improving against stable AUC 0.77). A linear machine learning approach based on 

discriminant analysis differentiated the improving from worsening and never affected groups 

well (AUCs > 0.75) but performed less well in discriminating the worsening group from 

stable and never affected groups - Supplement A8.

The relative importance of the different variable types (cognitive, polygenic, anatomic and 

white matter microstructure) in the random forest classification of group membership is 

shown in Figure 2 and Supplement A8. Cognitive features combined contributed most to 

classification, particularly in distinguishing the never affected from each of the three affected 

groups. Polygenic risk provided the second most important set of features, contributing 

prominently to the discrimination of the worsening symptom group, followed by the neural 

features.

Discussion.

Three key findings emerge in this study of the relationships between baseline genomic, 

neural and cognitive features and the later course of ADHD symptoms. First, those with 

worsening symptoms, particularly of inattention, had the highest polygenic risk for ADHD 

and most atypical cognition. Second, neural features showed different associations with 

outcome groups. Specifically, baseline reduction of the thalamic volume was found in those 

who later showed stable symptoms, whereas atypical microstructure of the cingulum bundle 

and anterior thalamic radiation was prominent among those who later showed symptom 

improvement. Finally, using a machine learning algorithm we find these objective measures, 

obtained at study entry, can classify with reasonable accuracy groups defined on future 

symptoms course. Overall, in the machine learning analyses polygenic risk and cognitive 

performance emerged as the most important features in predicting future symptom course, 

followed by neural features.

We find that those with worsening symptoms, particularly of inattention, had the highest 

polygenic risk for ADHD. Earlier reports find that high polygenic risk for ADHD is 

associated with symptom persistence but did not consider the possibility that polygenic risk 

may be associated with a worsening symptom course, as we report 7. This finding extends 

previous reports of cross-sectional associations between polygenic risk and clinical severity, 

cognition and academic impairment32–35. The potential prognostic utility of polygenic risk 

is likely to improve as increasingly large GWAS allow more refined measures of polygenic 

risk through stratification based on age. For example, the polygenic risk for ADHD derived 

from GWAS of adult ADHD, which by definition persists from childhood, might better 

predict adolescent symptom course compared to polygenic risk determined from childhood 

cohorts, which contain both those destined to persist or remit.

While all the outcome groups showed some atypical cognition at baseline, deficits were 

slightly more prominent in the worsening symptom groups (at FDR significant levels for 

IQ, working memory and visuomotor integration). This finding may inform the debate on 
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whether cognitive deficits drive later symptoms or if there is a reverse direction of effects, 

whereby children with higher symptoms of ADHD engage less in activities that require, 

and therefore, foster executive functioning skills (Carr et al., 2006). We find that weaker 

cognitive performance at study entry was associated with later symptoms in the worsening 

group, even among those with no or minimal symptoms at baseline, which would not be 

expected if weaker cognitive performance was merely a downstream consequence of earlier 

symptoms. Some other studies similarly find childhood cognitive measures, specifically 

intact working memory and low response time variability, are associated with later symptom 

improvement 36–38. We extend this literature by delineating a cognitive profile that may 

indicate risk for symptom deterioration.

White matter microstructural anomalies as measured by fractional anisotropy were most 

pronounced among the group showing improvement. The anomalies localized to the 

parahippocampal division of the cingulum bundle which connects the cingulate gyrus with 

medial temporal regions. The cingulum bundle is pivotal in executive functions pertaining 

to attentional control and memory and cingulum anomalies are among the earliest reported 

white matter findings in ADHD 39, 40. The cingulum is also the latest maturing white 

matter tract, suggesting a prolonged window for its plasticity, in keeping with a role in the 

processes underpinning symptom resolution 41.

Findings were robust to a range of potential confounders including psychostimulant 

medication use although we relied on parent recall for medication histories which can be 

prone to recall error 42. While there were no significant gender differences, the worsening 

symptom course contained 73% males whereas the never affected group had 60% males. 

Larger cohorts or more prolonged follow-up could reveal gender differences in clinical 

outcomes 43, 44. This study focused on those who had ADHD without comorbid disorders 

at study entry which enhances the specificity of findings, but limits generalizability. The 

three outcome groups were not equated in total symptom severity over childhood, and thus 

while the outcome groups capture change they may not characterize the lifetime burden of 

symptoms. We note however that the pattern of findings held when we confined analyses to 

those who met criteria for ADHD during the study and thus had more equivalent overall 

symptom experience. Additionally, the mean final age of observation was 13.1 years, 

meaning that our cohort was mostly too young to capture the emergence of some important 

comorbidities particularly substance misuse.

The utility of machine learning techniques in diagnosis and predicting treatment response 

has been demonstrated 45–47; here we add a potential prognostic application. A machine 

learning algorithm based on conditional random forests performed well in using baseline 

features to distinguish between unaffected and affected groups, and between those with 

worsening as opposed to improving and stable symptoms (all AUC >= 0.79). Prognostic 

tools that leverage routinely available clinical data have been developed but their accuracy 

is modest, limiting their clinical utility48. Here we find that measures of genetic risk, neural 

features and cognition are associated with later symptom trajectories, and begin to evaluate 

the impact of incorporating such objective features into prognostic tools. While promising, 

these neurocognitive and genomic measures are not ready for routine clinical use. Further 

validation on independent cohorts is needed, particularly cohorts that include youth with 
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comorbid disorders followed over longer periods of time. The costs of these measures also 

need to be weighed against gain in predictive power. Nonetheless, the findings suggest 

that neurocognitive and genomic tools warrant further exploration as we work towards 

individualized treatments informed by likely prognosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Associations between symptom course groups and cognitive, polygenic risk white matter 

and anatomic features. ** = adjusted p-value < 0.05; * = unadjusted p-value < 0.05
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Figure 2. 
The importance of each feature type in classification. The average for the importance scores 

for each type of feature (cognition, polygenic risk, anatomic, white matter microstructural) is 

shown. Values for individual features are given in Supplement A7. The first four bar groups 

(never-affected, worsening, stable, and improving) indicate the average feature importance 

in all pairwise comparisons involving that group. The final bar group (‘average’) indicates 

the average importance of feature type across groups.
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Table 1.

The gender composition, age at study entry and end, number and interval between clinical observations and 

psychostimulant medication use for each symptom course group.

Symptom course groups

Never affected Improvers Stable Worsening Tests of group differences

Total number 129 110 63 60 -

Male
Female

79 (61%)
50 (39%)

81 (74%)
29 (26%)

44 (70%)
19 (30%)

42 (70%)
18 (30%)

χ2 =4.52
p = 0.21

Age at baseline: mean (SD) 
years

8.7 (3.0) 8.2 (2.0) 8.1 (2.4) 7.6 (2.8) F(3,358)=2.49, p=0.06

Age at last observation 13.3 (3.1) 13.8 (2.7) 12.6 (2.9) 12.0 (3.1) F(3,358)=6.75, p=0.0001 [Improvers=never 
affected]> [stable=worsening]

Clinical 2 assessments 3 4 or 
more

38 (30%) 25 (23%) 24 (38%) 19 (32%) χ2=6.64, p=0.36

29 (22%) 22 (20%) 13 (21%) 15 (25%)

62 (48%) 63 (57%) 26 (41%) 26 (43%)

Inter-observation interval 
Mean (SD) years

1.97 (0.9) 2.16 (1.22) 2.15 (1.08) 2.02 (0.97) F(3,358)=0.85, p=0.47

Baseline inattention 0.1 (0.5) 6.2 (2.2) 6.3 (2.9) 2.3 (2.5) F(3,358)=281, p<0.00001, Never affected 
<worsening <[stable=improvers]

Baseline hyperactivity
impulsivity

0.1 (0.4) 5.26 (2.7) 4.6 (2.1) 3.0 (3.1) F(3,358)=109, p<0.00001, Never affected 
<worsening <[stable=improvers]

Intelligence quotient 115 (16) 108 (13) 107 (16) 106 (15) F(3,358)=8.1, p<0.00001, Never affected 
>[worsening=stable=improvers]

Psychostimulant treatment 
during study

None Intermittent Constant NA 23 (24%) 19 (33%) 15 (33%) χ2=3.97, p=0.41

NA 54 (56%) 24 (41%) 22 (49%)

NA 19 (20%) 15 (26%) 8 (18%)
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