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Abstract

Polarized light microscopy provides high contrast to birefringent specimen and is widely used as a 

diagnostic tool in pathology. However, polarization microscopy systems typically operate by 

analyzing images collected from two or more light paths in different states of polarization, which 

lead to relatively complex optical designs, high system costs, or experienced technicians being 

required. Here, we present a deep learning-based holographic polarization microscope that is 

capable of obtaining quantitative birefringence retardance and orientation information of specimen 

from a phase-recovered hologram, while only requiring the addition of one polarizer/analyzer pair 

to an inline lensfree holographic imaging system. Using a deep neural network, the reconstructed 

holographic images from a single state of polarization can be transformed into images equivalent 

to those captured using a single-shot computational polarized light microscope (SCPLM). Our 

analysis shows that a trained deep neural network can extract the birefringence information using 

both the sample specific morphological features as well as the holographic amplitude and phase 

distribution. To demonstrate the efficacy of this method, we tested it by imaging various 

birefringent samples including, for example, monosodium urate and triamcinolone acetonide 

crystals. Our method achieves similar results to SCPLM both qualitatively and quantitatively, and 

due to its simpler optical design and significantly larger field-of-view this method has the potential 

to expand the access to polarization microscopy and its use for medical diagnosis in resource 

limited settings.

Graphical abstract
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Polarized light microscopy is widely used as a diagnostic tool in pathology, as it introduces 

distinctive contrast to birefringent specimen.1 A number of diseases, such as squamous cell 

carcinoma,2 primary cutaneous amyloidosis,3 cerebral amyloid angiopathy,4 and senile 

cardiovascular amyloid5 can be diagnosed using various polarization imaging techniques. 

Since 1961, compensated polarized light microscopy (CPLM) has been the gold standard 

imaging technique to identify monosodium urate (MSU)6 crystals in synovial fluid samples7 

and is used to diagnose gout and pseudogout.8 CPLM operates by allowing linearly 

polarized white light illumination to pass through a full-waveplate designed for green light 

(commonly between 530 to 560 nm), which in combination with a linear polarizer/analyzer, 

generates a magenta background. The presence of a birefringent specimen within the light 

path changes the polarization state of the green light, which shifts the spectrum after the 

analyzer and results in the final image becoming yellow or blue.

While CPLM images are treated as the gold standard for MSU crystal detection, the effort is 

labor intensive as microscopes have limited fields-of-view (FOV), and therefore mechanical 

scanning is required to inspect the whole sample area. In addition to having a limited FOV, 

the CPLM technique suffers from limitations such as requiring manual alignment of the 

polarizer in relation to the analyzer, limited focal depth with higher-magnification 

objectives, and limited sensitivity when being used to detect small crystals or crystals with 

weak birefringence. As a result, CPLM analysis is sensitive to both the concentration of the 

crystals in synovial fluid9 and the experience of the diagnostician/technician.10 Finally, 

clinical CPLM reporting is limited to qualitative results (e.g., presence or absence of crystals 

on the slide and whether crystals are intra- or extracellular).

There are a number of alternative polarization microscopy methods which have been 

developed to produce quantitative images of birefringent specimen. These methods all use 

the same principles of operation: they collect images from two or more light paths with 

either the polarizer or the analyzer oriented differently in order to infer the Stokes/Jones 

parameters that define the birefringent specimen.11-15 Among these methods, Jones phase 

microscopy14 and polarization holographic microscopy (PHM)15 are two examples, where 

both systems take advantage of the amplitude and phase information of the reconstructed 

interferogram and measure spatially resolved Jones matrix components of anisotropic 

samples using four different polarization states. However, these types of systems in general 

require the use of relatively sophisticated and costly optical components to maintain a linear 

mapping between the measurements and the inferred Jones parameters.

Various methods have demonstrated that the retardance and orientation information 

channels, especially for biological samples, provide some of the most useful spatial features 

corresponding to birefringent specimen.16-18 Because of the reduction of the number of 

unknown parameters, these methods usually have simpler optical designs compared to, for 

example, PHM. Among these, a technique known as single-shot computational polarized 
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light microscopy (SCPLM)18 that uses a pixel-wise polarized image sensor with four 

polarization directions has been demonstrated to simplify the optical system required to 

image birefringent samples. Using this method, the retardance and orientation of the sample 

are explicitly solved, providing quantitative contrast for birefringent specimen. While these 

methods are quite effective, both PHM and SCPLM are lens-based imaging systems. 

Therefore, they suffer from the small field of view of objective lenses and a relatively high 

system cost. One method which can get past these limitations is wide-field lensfree 

differential holographic polarized microscopy.19,20 By taking advantage of the simple optical 

design and unit magnification of lensfree on-chip holographic systems, this method can 

achieve a FOV of >20–30 mm2.21-23 Furthermore, the technique is cost-effective, compact, 

and suitable for resource-limited settings.24,25 However, in order for this lensfree 

holographic imaging method to be used for the imaging of birefringent objects, two sets of 

raw holograms must be taken with illuminations in two different polarization states, which 

require precise image alignment, especially for the detection of small birefringent objects 

within the sample. Furthermore, this method does not resolve the retardance or orientation of 

the sample, leading to lower contrast compared to the SCPLM method.

In parallel to these advances in computational polarization microscopy, deep learning has 

emerged as a highly effective technique for solving inverse problems in microscopy.26,27 It 

has been applied to traditional inverse problems such as holographic image reconstruction,
28-30 reconstruction of color images,31 super-resolution,32 as well as to perform cross-

modality image transformations such as virtual labeling of histological tissues,33 live cells,34 

and to give brightfield image contrast to holographic images.35

Here, we build upon these advances and present a novel deep learning-based holographic 

polarization microscope (DL-HPM) which can provide the retardation and orientation of 

birefringent specimen using a single phase-retrieved hologram that encodes one state of 

polarization (Figure 1). This system requires only minor changes to the existing imaging 

hardware, that is, the addition of a polarizer/analyzer set to a standard inline lensfree 

holographic microscope. Our framework uses SCPLM images as the ground truth to train a 

deep neural network (Figure 1b), which uses this image data to learn how to transform the 

information encoded within a reconstructed hologram into an image that directly reveals the 

specimen’s birefringence retardance and orientation. In addition to achieving a comparable 

image quality to the SCPLM images (Figure 1c), this deep learning-enabled lensfree 

microscopy method has a FOV of >20 mm2 using a cost-effective optical design. The 

performance of DL-HPM is demonstrated using MSU and triamcinolone acetonide (TCA) 

crystal samples as well as a corn starch sample, matching the performance to SCPLM, both 

qualitatively and quantitatively.

We believe that the presented deep-learning based polarization microscopy approach could 

be widely used as a diagnostic tool in pathology and other fields that need to rapidly process 

and reveal the unique signatures of various birefringent crystals within complex specimen 

such as synovial fluid samples.
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RESULTS

We trained a deep neural network (see Methods) using six clinical samples containing MSU 

crystals, collected from six deidentified patients, to perform an image transformation from 

an input holographic image (amplitude and phase) to the birefringence retardance and 

orientation images at the output of the network. The slides were all reviewed using CPLM 

(Olympus BX-51) by our clinical expert (JF) for the presence of MSU crystals. This analysis 

found that the majority of the birefringent crystals within these samples are needle-shaped 

MSU crystals. Once trained, the neural network was blindly tested with two additional MSU 

slides from two new patients; Figure 2a shows the blind output of the DL-HPM method in 

comparison to the SCPLM method. The birefringent crystals within the FOV are colored 

using a calibrated colormap according to the CPLM convention, where the background is 

left in grayscale to enhance the contrast. Figure 2b further shows two representative zoomed-

in regions for both single MSU crystals (within a blood cell) and a crystal cluster. These 

images demonstrate that our deep learning framework is capable of accurately locating the 

birefringent objects and giving them a high color contrast with respect to the nonbirefringent 

cell background within the FOV.

To quantify the performance of our method, 3432 different birefringent objects were 

detected and analyzed. These objects were composed of individual MSU crystals (most 

common), MSU crystal clusters, or protein clusters (rare). We classified the birefringent 

objects according to their length and analyzed each of these categories separately. The 

classification was performed by first setting a 0.2 Rad threshold on the retardance channel in 

SCPLM target to convert it into a binary mask. Then, using these masks, connected 

component analysis was performed to classify each object into different length categories. 

For each detected birefringent object in the SCPLM, the same coordinates were also used to 

locate the corresponding birefringent object in the coregistered DL-HPM. The absolute 

retardance/orientation error was computed pixel-wise and averaged by the number of pixels 

for each detected birefringent object at its local region within a 5-pixel radius of any edge of 

the object.

The results of this quantitative analysis are reported in Figure 3a with sample FOVs 

provided for visual comparison in Figure 3b. The minimum length of the crystals included in 

this analysis was selected to be 2 μm, representing an object with at least 5 pixels in length. 

Objects smaller than this threshold had insufficient resolution to assign a crystal type 

accurately. In total, six length categories were selected: 2–4 μm (1077 objects), 4–6 μm (582 

objects), 6–8 μm (454 objects), 8–10 μm (466 objects), 10–20 μm (795 objects), and 20–50 

μm (58 objects). The error was first computed and averaged pixel-wise for each detected 

birefringent object, and then averaged object-wise to obtain the statistics reported in Figure 

3a. The overall object-wise averaged absolute error between the SCPLM results and the DL-

HPM results was 0.047 Rad in the retardance channel and 0.135 Rad in the orientation 

channel, where the retardance and orientation channels range from 0 to π/2 and 0 to π, 

respectively. In order to further compare the performance of the DL-HPM with SCPLM, we 

plot in Figure 4 the cross sections of the retardance and orientation channels for various 

crystals selected from the middle column of Figure 3b in each length category. These results 

reveal that DL-HPM can quantitatively transform the holographic amplitude/phase 
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information that is acquired at a single polarization state into birefringence retardance and 

orientation image channels, closely matching the results of SCPLM.

To further investigate the image transformation performed by the trained deep network, next 

we blindly tested it on two new types of birefringent samples that were never seen by the 

network during its training; for this purpose, we imaged TCA crystals and corn starch 

samples (Figure 5). The results revealed that DL-HPM can correctly identify birefringence 

in most of the TCA crystals and corn starch particles within the sample FOV. This is an 

indication that the presented DL-HPM method is learning a combination of the desired 

physical image transformation and a semantic segmentation which is related to 

morphological information of the samples. However, the network is observed to be less 

accurate when applied to these new types of samples compared to when it is tested upon 

samples of the same type with which it was trained. Therefore, transfer learning was used to 

improve its generalization for new types of samples. As expected, once the same network is 

further trained using transfer learning with these new types of samples, its blind inference 

performance can be improved, which is illustrated in Figure 6.

DISCUSSION

Our results have qualitatively and quantitatively demonstrated the effectiveness of the 

presented framework using multiple types of samples, also illustrating the capability of the 

networks to generalize from one sample type to another. However, the black box nature of 

deep neural networks often makes it challenging to determine how the transformation is 

actually performed. In this section, we perform an ablation study aiming to partially reveal 

the physical interpretation of the deep neural network and demonstrate that the network is 

learning to perform crystal segmentation based on both the morphological information and 

the physical relationship between the holographic amplitude/phase information and the 

birefringent retardance/orientation channels. For this analysis, we trained two additional 

networks using the MSU image data set: (1) using only the holographic amplitude channel 

as the input to the neural network to blindly perform the retardance/orientation inference; 

and (2) using only the holographic phase channel as the input to the neural network to 

blindly perform the retardance/orientation inference. Examples of the blind inference 

performance of these trained networks are shown in Figure 7.

In general, using only the amplitude or only the phase channel, as opposed to using both 

channels together, significantly degrades the inference performance of the network. The 

amplitude only network tends to accurately predict the crystals but generates images with 

significant error in the orientation channel, whereas the phase only network tends to predict 

the locations of the crystals in the retardance channel less accurately. One possible 

explanation for this observation is that the amplitude only network is learning morphological 

information to locate the crystals, as the holographic optical system was designed to 

introduce intensity contrast for birefringent samples19 and the additional phase information 

is required to fully reconstruct the orientation channel. Hence, both the amplitude and phase 

information channels are essential to accurately infer the retardance and orientation of 

birefringent samples. This conclusion is also supported by analyzing the formulation of 

HPM, which will be discussed next.
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The evolution of the polarization state in our optical setup (Figure 1a) can be analyzed using 

Jones calculus (see Methods), where for each pixel of the reconstructed holographic 

amplitude and phase images we can write

Arecon = a2 + b2

∣ cos β − sin β ∣

φrecon = atan 2(b, a) − η
2 − π

2
−atan 2[0, cos β − sin β]

(1)

where atan 2(y, x) is the four-quadrant inverse tangent function for point (x, y), Arecon is the 

normalized reconstructed amplitude, φrecon is the normalized reconstructed phase (with zero 

phase in the background), β represents the orientation of the linear polarizer with respect to 

the x-axis (see Methods), and a and b are defined as

a = − cos β sin η sin2 θ + sin β sin η cos2 θ
+ cos β cos θ sin θ + sin β cos θ sin θ

− cos β cos η cos θ sin θ − sin β cos η cos θ sin θ
b = cos β cos2 θ − sin β sin2 θ

+ cos β cos η sin2 θ − sin β cos η cos2 θ
− cos β sin η cos θ sin θ − sin β sin η cos θ sin θ

(2)

θ represents the orientation of the fast axis of the sample with respect to the x-axis, and η 
represents the relative phase retardance.

Unlike the SCPLM method, where the retardance, η, and the orientation, θ, are encoded in 

symmetrical equations with a straightforward analytical solution (detailed in the Supporting 

Information), eqs 1 and 2 encode the birefringence information in a much more convoluted 

form. Because of the experimental challenges in obtaining an accurate estimate of β as well 

as the potential phase wrapping related issues, independently solving eqs 1 and 2 in a pixel-

by-pixel manner could result in errors or spatial inconsistencies/artifacts at the output 

retardance and orientation images. Hence, it elevates the need for a more advanced solution 

and a robust method such as a deep neural network, which is trained to perform an image-to-

image transformation by making use of all the information from multiple pixels within a 

FOV simultaneously. Stated differently, through image data the deep neural network learns 

to solve eqs 1 and 2 over an input FOV, where all the pixels within the complex-valued input 

image (phase and amplitude) are simultaneously processed to generate the desired output 

image channels, that is, the retardance (η) and the orientation (θ) images.

CONCLUSION

We presented a deep learning-enabled holographic polarization microscope. This framework 

is advantageous as it only requires the measurement of a single polarization state which can 

be generated using a simple optical setup and is capable of accurately reconstructing the 

quantitative birefringent retardance and orientation information of the specimen. These 

information channels can dramatically simplify the automatic detection, counting, and 
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classification of birefringent objects within complex media. After necessary regulatory 

testing and approvals, our method can be the basis of a rapid point-of-care crystal detection 

and analysis instrument with automated crystal identification and classification capabilities, 

which could significantly simplify the clinical procedures used to diagnose diseases related 

to birefringent crystals, such as gout and pseudogout. Finally, we also expect our DL-HPM 

method to benefit a wider range of technical fields for both research and industrial 

applications, for example, surface defect detection and air quality monitoring.36

METHODS

Lensfree Polarization Imaging Setup.

The presented DL-HPM system utilizes a customized lensfree holographic polarization 

microscope to capture the input images (Figure 1a). This microscope is able to generate 

quantitative phase images as well as introduce an intensity contrast to birefringent objects 

(though it is unable to differentiate high-absorbance nonbirefringent objects19). The 

microscope uses a laser source filtered by an acousto-optic tunable filter (AOTF) for 

illumination at 530 nm (~2.5 nm bandwidth). The raw holograms were collected using a 

CMOS image sensor (IMX 081, Sony, 1.12 μm pixel size) at eight sample-to-sensor heights, 

which were used for multiheight phase recovery.37 A set of low-resolution holograms were 

captured at 6 × 6 lateral positions, which were used for pixel-super resolution. Using these 

images, a high-resolution holographic image was reconstructed and subsequently 

numerically back-propagated38 to the sample plane using an autofocusing algorithm.39 

Finally, the reconstructed hologram was normalized to obtain an average background 

amplitude of 1 and have an average background phase of 0. These normalized images were 

then passed through the neural network. Details of the holographic image reconstruction 

techniques including free space propagation, multiheight phase recovery, super resolution, 

and autofocusing are presented in the Supporting Information.

To enable detection of the birefringence within the sample, a left-hand polarizer and a 

customized analyzer were added in the holographic imaging system.19 Unlike traditional 

polarization microscopes, where a second circular polarizer (i.e., right-hand polarizer) can 

be used as the analyzer, holographic imaging systems require background light to form an 

interference pattern, and the direct use of another circular polarizer would completely reject 

the background light. Therefore, we designed the analyzer to use a λ/4 retarder film (75 μm 

thickness, Edmund Optics) and a linear polarizer (180 μm thickness, Edmund Optics) having 

the fast axis of the λ/4 retarder oriented to 25° with respect to the linear polarizer, creating a 

holographic polarization microscope. These films were affixed directly to the CMOS image 

sensor using an ultraviolet (UV)-curable adhesive (NOA 68, Norland Products, Cranbury, 

NJ) as shown in Figure 8b.

Polarization Encoding in the Holographic Imaging System.

In the analysis of our holographic imaging system, we assume that the sample, polarizer, and 

analyzer are thin and have negligible gaps between them. We further assume that the light 

diffracts from the analyzer onto the image sensor after being converted to linearly polarized 

light by the last layer of the analyzer. Therefore, after its reconstruction the hologram 
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becomes in-focus at the sample plane (the thicknesses of both the sample and the analyzer 

are assumed to be negligible).

The evolution of the polarization in our imaging system can be analyzed using Jones 

calculus.40 The light field in the presented framework was designed to be transmitted 

through a left-hand polarizer, birefringent sample, λ/4 retardation plate and a linear polarizer 

(Figure 8d). Each of these optical components can be formulated as

I. Input left-hand circularly polarized (LHCP) light:

Ein = 1
2

1
− i (3)

where i2 = −1, and LHCP is defined from the point of view of the source.

II. Birefringent sample:

Msample =

e−iη ∕ 2 cos2 θ + eiη sin2 θ (1 − eiη) cos θ sin θ
(1 − eiη)cos θ sin θ sin2 θ + eiη cos2 θ

(4)

where θ represents the orientation of the fast axis of the sample with respect to 

the x-axis, and η represents the relative phase retardance.

III. λ/4 retarder:

Mretarder =

e−iπ ∕ 4 cos2 α + i sin2 α (1 − i)cos α sin α
(1 − i)cos α sin α sin2 α + icos2 α

(5)

where α represents the orientation of the fast axis of the λ/4 retarder with respect 

to the x-axis.

IV. Linear polarizer:

Mlinear =
cos2 β cos β sin β

cos β sin β sin2 β
(6)

where β represents the orientation of the linear polarizer with respect to the x-

axis.

The output light field can then be expressed as

Eout = MlinearMretarderMsampleEin (7)

Equations 1 and 2 reported in Discussion are obtained by rearranging eq 7 and applying a 

background normalization step (detailed in the Supporting Information).
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Data Set Preparation.

The neural networks were trained using image pairs captured using both SCLPM and the 

holographic imaging systems. We used six clinical MSU samples for training and two 

additional MSU samples for testing. To ensure that the network training can generalize to 

new samples, the slides used to train the neural network were chosen to have different 

concentrations of MSU crystals (example FOVs of each slide are shown in Supporting 

Information Figure S1). In addition, a single TCA sample was used for both training and 

testing (where blind testing was performed on new regions); similarly, a single starch sample 

was used for blind testing. All samples were aligned to have the same angle relative to the 

polarizer-analyzer pair in each imaging system.

In order to train the neural network to learn the image transformation from a lensfree 

holographic imaging modality to a lens-based SCPLM system, an accurately coregistered 

training data set is required. This coregistration begins by bicubic down-sampling the target 

polarization images by a factor of 0.345/0.373 (obtained with the benchtop microscope) to 

match the pixel size of the holographic microscope; the ground truth images were created 

using SCPLM with an effective pixel size of 0.345 μm, whereas the holographic images used 

as the network input have an effective pixel size of 0.373 μm. Next, a rough matching 

between the two sets of images is obtained by finding the overlapping area with maximum 

correlation between the amplitude channels of the images. Once the images have been 

roughly aligned, global matching is performed by applying an affine transformation 

calculated using MATLAB’s multimodal image registration framework.41 This framework 

extracts features from the amplitude channel of the images and matches them with the affine 

matrix Next, large fields of view were cropped and matched to each other using an elastic 

pyramidal registration algorithm, which allows for pixel level matching42 based upon the 

amplitude channel of the images. As discussed above, these holograms were normalized to 

have an average background amplitude of 1, and an average background phase of 0, before 

being passed through the neural network. This normalization step helps the neural network 

to be applied more consistently to different samples. The orientation of areas of the 

polarization images without any birefringence are set to zero to eliminate noise in the labels. 

This is done by setting the orientation value of any pixel below a threshold in the 

corresponding retardance channel to zero.

Neural Network.

A Generative Adversarial Network (GAN) framework was used to perform the image 

transformation reported in this paper. In addition to this GAN loss, a mean absolute error 

(L1) loss was used to ensure that the transformation is accurate, and a total variation (TV) 

loss is used as a regularization term. GANs use two separate networks for their operation. A 

generator network (G(·)) is used to transform the holographic images into their polarization 

counterparts. A second network known as the discriminator (D(·)) is used to discriminate 

between the ground truth images (z) and the generated images (G(x)). The two networks 

learn from one another with the generator gradually learning how to create images that 

match the feature distribution of the target data set, while the discriminator gets better at 

distinguishing between ground truth images and their generated counterparts.

Liu et al. Page 10

ACS Photonics. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The overall loss function can be described as

lgenerator = L1{G(x), z} + λ1 × TV{G(x)} + λ2 × (1 − D(G(x)))2 (8)

where λ1 and λ2 are constants used to balance the various terms of the loss function. The L1 

loss, which ensures that the transformation performed by the network is accurate, was 

balanced to make up ~25% of the total loss function, whereas the total variation loss makes 

up ~0.5% of the overall loss function. The L1 loss is defined as

L1{G(x), z} = 1
M × N × K ∑

k
∑

i
∑

j
∣ zi, j, k − G(x)i, j, k ∣ (9)

where K is the number of image channels (k = 1 represents the retardance channel, and k = 2 

represents the orientation channel), M and N are the number of pixels on each axis, and i and 

j represent the pixel indices of the image. The total variation loss, used to regularize the loss 

function and reduce noise, is defined as

TV(G(x)) = 1
M × N × K ∑

k
∑

i
∑

j
∣ G(x)i + 1, j, k

− G(x)i, j, k ∣ + ∣ G(x)i, j + 1, k − G(x)i, j, k ∣
(10)

In order to train the discriminator a separate loss function is used, defined as

ldiscriminator = D(G(x))2 + (1 − D(z))2 (11)

Depending on the exact data set being used and the application of interest, the relative 

weights of the different portions of these loss functions, or even the makeup of the loss 

function itself can be changed. A comparison, illustrating the impact of using alternate loss 

functions, is reported in the Supporting Information Figure S2.

The generator network uses the U-net architecture,43 as shown in Figure 9a. The U-net 

architecture is selected as this architecture has been shown to be highly effective to 

transform features at multiple different scales. This U-net begins with a convolutional layer 

increasing the number of channels to 32 and is made up of four “down-blocks” followed by 

four “up-blocks”. Each down-block consists of three convolutional layers, which together 

double the number of channels. These layers are followed by an average pooling layer with a 

kernel size and stride of 2. After these down-blocks, an equal number of up-blocks are 

applied. The up-blocks begin by bilinear up-sampling the images and similarly apply three 

convolutional layers and reduce the number of channels by a factor of 4. Between the two 

sets of blocks, skip connections are added. The skip connections allow small scale data to 

pass through the network, avoiding the effects of the down-sampling by concatenating the 

output of each down-block with the input to each up-block. Following these blocks, a 

convolutional layer reduces the number of channels to two, which match the two channels of 

the polarization images.
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The discriminator network (Figure 9b) receives the generated images or the SCPLM images, 

and attempts to distinguish between the two. The discriminator is first made up of a 

convolutional layer which increases the number of channels from 3 to 32. This is followed 

by five blocks, each made up of two convolutional layers, the second of which doubling the 

number of channels and using a stride of two. Following these five blocks are two fully 

connected layers, which reduce the image to a single number which can have a sigmoid 

function applied to it.

Each convolutional layer uses a kernel size of 3 × 3 and is followed by the leaky rectified 

linear unit (LeakyReLU) activation function which is defined as

LeakyReLU = x for x > 0
0.1x otherwise (12)

In the training phase, we used the adaptable movement estimation (Adam) optimizer, with a 

learning rate of 10−4 for the generator and 10−5 for the discriminator. The network begins 

with the generator being trained 7 times for each training of the discriminator with this ratio 

being reduced by 1 every 4000 iterations down to a minimum of 3. The network was trained 

for 30 000 iterations of the discriminator, taking 5 h using a standard consumer GPU. This 

training was performed using a single 2080 Ti (Nvidia), with Python version 3.6.0 and 

TensorFlow Version 1.11.0. MATLAB version R2018a was used for preprocessing.

We should also emphasize that training a network model is a one-time effort. For each new 

application that a new model is required, it can be generated using similar measurement and 

training procedures. However, once the new model is trained, it is ready to be distributed to a 

large number of end users without requiring extra cost or resources.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Schematic for deep learning-based holographic polarization microscopy (DL-HPM). 

Raw holograms are collected using a lensfree holographic microscope with a customized 

polarizer and analyzer. A trained neural network is used to transform the reconstructed 

holographic amplitude and phase images into the birefringence retardance and orientation 

images. (b) Schematic for single-shot computational polarized light microscopy (SCPLM). 

Images are collected with a four-channel pixelated polarized camera under circularly 

polarized illumination. Birefringent retardance and orientation channels are computed using 

Jones calculus, and the amplitude image is obtained by averaging the four polarization 

channels. SCPLM is used as the ground truth information channel, providing the network 

training target for DL-HPM. (c) Blind testing of DL-HPM. A new clinical sample 

(containing MSU crystals) collected from a deidentified patient is tested using DL-HPM. 

Birefringent samples are given a pseudo color using the same convention according to the 

compensated polarized light microscopy. Similar image quality was achieved compared to 

SCPLM images. Scale bar: 50μm.
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Figure 2. 
Imaging performance of DL-HPM. (a) Images generated using DL-HPM compared against 

coregistered images captured using SCPLM for a blindly tested MSU sample. The 

birefringent MSU crystals are colored according to CPLM convention after obtaining the 

retardance and orientation channels using each method. The pseudocolored retardance and 

orientation information is also fused with the amplitude channel to show the high contrast 

against the nonbirefringent cell background achieved by both methods. (b) Two different 

zoomed-in regions cropped from (a).
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Figure 3. 
Quantitative performance of DL-HPM, compared against SCPLM results. (a) Mean and 

standard error of the mean (SEM) plots of the absolute error. DL-HPM achieves an overall 

object-wise averaged absolute error of 0.047 Rad in the retardance channel and 0.135 Rad in 

the orientation channel. (b) Sample birefringent objects. For each length category, the left 

image is the smallest object, the right image is the largest, while the middle one has the 

median size.
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Figure 4. 
Cross sectional plots of the retardance and orientation channels obtained by DL-HPM output 

and SCPLM target. The blue curve represents the output of DL-HPM, while the red curve 

represents the target from SCPLM.
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Figure 5. 
Imaging performance of DL-HPM on new types of birefringent samples. Visualization of 

birefringent TCA crystals and corn starch samples imaged using DL-HPM method, where 

the associated deep network is trained with only birefringent MSU crystals. Color bar: from 

left to top to right, represents π, π/2, 0 Rad in the orientation channel. Retardance is 

represented by the distance from the center of the color bar, ranging from 0 to 0.4.
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Figure 6. 
Comparison of two different deep neural networks for imaging TCA samples using DL-

HPM. The first network is trained with only MSU samples, and the second network is 

trained through transfer learning from the original MSU network with a training data set 

containing TCA samples. Color bar: from left to top to right, represents π, π/2, 0 Rad in the 

orientation channel. Retardance is represented by the distance from the center of the color 

bar, ranging from 0 to 0.4.
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Figure 7. 
DL-HPM reconstruction results using different input channels. The performance of DL-

HPM in general degraded when reducing the input channel to amplitude only or phase only 

information. Color bar for retardance, from black to white, represents 0 to 1 Rad. Color bar 

for orientation, from black to white, represents −π/2 to π/2. Color bar for pseudo colored 

crystals, from left to top to right, represents π, π/2, 0 Rad in the orientation channel. 

Retardance is represented by the distance from the center of the color bar, ranging from 0 to 

0.4. The circled crystals for the amplitude only network show that the network is capable of 

reconstructing the crystal features in the correct location, but the color is inaccurate due to 

the errors in the orientation channel. The circled crystals for the phase-only network are 

either entirely missing or have a retardance that is too low, rejected by the pseudo coloring 

scheme.
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Figure 8. 
(a) Photo of the four-channel pixelated polarizer camera. This camera is used in SCPLM. 

When illuminated with circularly polarized light, four channels with different polarization 

states are acquired using a single image. (b) Photo of the CMOS image sensor with a 

customized analyzer. This imager is used for DL-HPM. The analyzer film is directly bound 

to the CMOS image sensor, allowing a certain amount of background light to form the 

hologram, while also providing one polarization channel to sense the birefringent sample. 

(c) Polarization design for SCPLM. The red plot represents the light polarization state at 

each plane. The green plot represents an optical component that changes the polarization 

state. (d) Polarization design for DL-HPM..
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Figure 9. 
Network architecture. (a) Diagram of the generator portion of the network. (b) Diagram of 

the discriminator portion of the network.
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