Skip to main content
. 2021 Aug 2;13(15):3891. doi: 10.3390/cancers13153891

Table 1.

The architecture of the proposed deep learning model.

Layer Features (Train) Features (Inference) Kernel Size Stride
Input 512 × 512 × 3 512 × 512 × 3 - -
Padding 712 × 712 × 3 712 × 712 × 3 - -
Conv1_1 + relu1_1 710 × 710 × 64 710 × 710 × 64 3 × 3 1
Conv1_2 + relu1_2 710 × 710 × 64 710 × 710 × 64 3 × 3 1
Pool1 355 × 355 × 64 355 × 355 × 64 2 × 2 2
Conv2_1 + relu2_1 355 × 355 × 128 355 × 355 × 128 3 × 3 1
Conv2_2 + relu2_2 355 × 355 × 128 355 × 355 × 128 3 × 3 1
Pool2 178 × 178 × 128 178 × 178 × 128 2 × 2 2
Conv3_1 + relu3_1 178 × 178 × 256 178 × 178 × 256 3 × 3 1
Conv3_2 + relu3_2 178 × 178 × 256 178 × 178 × 256 3 × 3 1
Conv3_3 + relu3_3 178 × 178 × 256 178 × 178 × 256 3 × 3 1
Pool3 89 × 89 × 256 89 × 89 × 256 2 × 2 2
Conv4_1 + relu4_1 89 × 89 × 512 89 × 89 × 512 3 × 3 1
Conv4_2 + relu4_2 89 × 89 × 512 89 × 89 × 512 3 × 3 1
Conv4_3 + relu4_3 89 × 89 × 512 89 × 89 × 512 3 × 3 1
Pool4 45 × 45 × 512 45 × 45 × 512 2 × 2 2
Conv5_1 + relu5_1 45 × 45 × 512 45 × 45 × 512 3 × 3 1
Conv5_2 + relu5_2 45 × 45 × 512 45 × 45 × 512 3 × 3 1
Conv5_3 + relu5_3 45 × 45 × 512 45 × 45 × 512 3 × 3 1
Pool5 23 × 23 × 512 23 × 23 × 512 2 × 2 2
Conv6 + relu6 + Drop6 17 × 17 × 4096 17 × 17 × 4096 7 × 7 1
Conv7 + relu7 + Drop7 17 × 17 × 4096 17 × 17 × 4096 1 × 1 1
Conv8 17 × 17 × 3 17 × 17 × 3 1 × 1 1
Deconv9 576 × 576 × 3 576 × 576 × 3 64 × 64 32
Cropping 512 × 512 × 3 512 × 512 × 3 - -
Output Class Map 512 × 512 × 1 512 × 512 × 1 - -