Table 1.
Layer | Features (Train) | Features (Inference) | Kernel Size | Stride |
---|---|---|---|---|
Input | 512 × 512 × 3 | 512 × 512 × 3 | - | - |
Padding | 712 × 712 × 3 | 712 × 712 × 3 | - | - |
Conv1_1 + relu1_1 | 710 × 710 × 64 | 710 × 710 × 64 | 3 × 3 | 1 |
Conv1_2 + relu1_2 | 710 × 710 × 64 | 710 × 710 × 64 | 3 × 3 | 1 |
Pool1 | 355 × 355 × 64 | 355 × 355 × 64 | 2 × 2 | 2 |
Conv2_1 + relu2_1 | 355 × 355 × 128 | 355 × 355 × 128 | 3 × 3 | 1 |
Conv2_2 + relu2_2 | 355 × 355 × 128 | 355 × 355 × 128 | 3 × 3 | 1 |
Pool2 | 178 × 178 × 128 | 178 × 178 × 128 | 2 × 2 | 2 |
Conv3_1 + relu3_1 | 178 × 178 × 256 | 178 × 178 × 256 | 3 × 3 | 1 |
Conv3_2 + relu3_2 | 178 × 178 × 256 | 178 × 178 × 256 | 3 × 3 | 1 |
Conv3_3 + relu3_3 | 178 × 178 × 256 | 178 × 178 × 256 | 3 × 3 | 1 |
Pool3 | 89 × 89 × 256 | 89 × 89 × 256 | 2 × 2 | 2 |
Conv4_1 + relu4_1 | 89 × 89 × 512 | 89 × 89 × 512 | 3 × 3 | 1 |
Conv4_2 + relu4_2 | 89 × 89 × 512 | 89 × 89 × 512 | 3 × 3 | 1 |
Conv4_3 + relu4_3 | 89 × 89 × 512 | 89 × 89 × 512 | 3 × 3 | 1 |
Pool4 | 45 × 45 × 512 | 45 × 45 × 512 | 2 × 2 | 2 |
Conv5_1 + relu5_1 | 45 × 45 × 512 | 45 × 45 × 512 | 3 × 3 | 1 |
Conv5_2 + relu5_2 | 45 × 45 × 512 | 45 × 45 × 512 | 3 × 3 | 1 |
Conv5_3 + relu5_3 | 45 × 45 × 512 | 45 × 45 × 512 | 3 × 3 | 1 |
Pool5 | 23 × 23 × 512 | 23 × 23 × 512 | 2 × 2 | 2 |
Conv6 + relu6 + Drop6 | 17 × 17 × 4096 | 17 × 17 × 4096 | 7 × 7 | 1 |
Conv7 + relu7 + Drop7 | 17 × 17 × 4096 | 17 × 17 × 4096 | 1 × 1 | 1 |
Conv8 | 17 × 17 × 3 | 17 × 17 × 3 | 1 × 1 | 1 |
Deconv9 | 576 × 576 × 3 | 576 × 576 × 3 | 64 × 64 | 32 |
Cropping | 512 × 512 × 3 | 512 × 512 × 3 | - | - |
Output Class Map | 512 × 512 × 1 | 512 × 512 × 1 | - | - |