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Abstract

High-speed optical systems are revolutionizing biomedical imaging in microscopy, DNA 

sequencing, and flow cytometry, as well as numerous other applications, including data storage, 

display technologies, printing, and autonomous vehicles. These systems often achieve the 

necessary imaging or sensing speed through the use of resonant galvanometric optical scanners. 

Here, we show that the optical performance of these devices suffers due to the dynamic mirror 

distortion that arises from the variation in torque with angular displacement. In one of two 

scanners tested, these distortions result in a variation of signal-to-noise (Strehl) ratio by an order of 

magnitude across the field of view, degrading transverse resolution by more than a factor of 2. 

This mirror distortion could be mitigated through the use of stiffer materials, such as beryllium or 

silicon carbide, at the expense of surface roughness, as these cannot be polished to the same 

degree of smoothness as common optical glasses. The repeatability of the dynamic distortion 

indicates that computational and optical corrective methods are also possible.

1. INTRODUCTION

Resonant galvanometric optical scanners [1–3] are used in numerous applications, including 

intraoperative imaging [4–6], microscopy [7–9], retinal imaging [10–12], optical coherence 

tomography [13–15], underwater imaging [16], DNA sequencing [17], flow cytometry [18], 

data storage [19], virtual reality and high-resolution display technology [20–22], high-

resolution printing [23,24], data recognition [25], quality control [26], and autonomous 

vehicles [27–29]. The mirrors in these devices deflect a beam of light while oscillating 

sinusoidally at the resonant frequency of the galvanometer, allowing them to operate at high 

frequencies with low power demands, low vibrations, small footprints, and even in harsh 

environments [16,27–33]. Due to the sinusoidal nature of the oscillation, their angular 

acceleration is proportional to their angular displacement (beam deflection). As a result, the 

torque changes dynamically throughout the scan proportionally to the angular displacement 

[34], and therefore, so does the resulting induced wavefront aberration. While the maximum 

acceptable wavefront aberration varies with application, a widely used criterion is that the 

wavefront root-mean-squared (RMS) should be smaller than one-fourteenth of the 

wavelength of the light used, or equivalently, a Strehl ratio equal to or greater than 0.8 
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(Maréchal’s criterion) [35]. High-resolution imaging techniques such as structured 

illumination microscopy [36] or stimulated emission depletion microscopy [37] could have 

even more stringent requirements.

Brosens’s formula [34,38], derived for a rectangular mirror oscillating sinusoidally around 

its central axis, shows the dependence of the mirror deformation δ (see Fig. 1 left diagram) 

due to the dynamic torque in terms of the mirror substrate thickness t, density ρ, modulus of 

elasticity E, the Poisson’s ratio ν and diameter D, as well as the sinusoid amplitude θ and 

frequency f :

δαρf2D5θ
Et2 1 − v2 . (1)

Irrespective of the departure of a scanner deformation from Brosens’s mechanical model, 

this proportionality informs us of the relative impact of the relevant physical parameters and 

can therefore be used to compare mirror substrates and/or resonant scanners. While building 

custom scanners is rare, at least one manufacturer, Electro-optical Products Corporation 

(EOPC; Ridgewood, NY, USA), allows the use of customer-provided mirrors. Surprisingly, 

the shape and amplitude of the dynamic wavefront distortions of commercial resonant 

galvanometric optical scanners are not known, or least reported [39] and as a result the real-

world performance of these systems is not well documented. A custom Shack–Hartmann 

wavefront sensor (SHWS) was used to characterize the mirror distortion in two widely used 

resonant scanners depicted in Fig. 1-a 7.9 kHz CRS scanner by GSI Lumonics (now 

Cambridge Technology, Bedford, MA, USA) [8,40–50] and a 15.1 kHz SC-30 by EOPC 

[9,11,12,51–69] utilizing a custom mirror. The Shack–Hartmann wavefront sensor was 

selected both for convenience, as it was available to us, and because of our extensive 

experience with this type of sensor. We first present measurements of mirror distortions as a 

function of angular displacement, then we discuss the implications of these distortions for 

imaging, and finally, we propose two corrective methods, one computational and one optical.

2. METHODS

A. Experimental Setup

A custom SHWS [70] that accounts for focal shift [71] due to the low Fresnel number of its 

lenslets (geometrical focal length, fl = 9.35 mm, and lenslet pitch, Dl = 203 μm) was used to 

measure resonant scanner mirror distortions. In the optical setup, depicted in Fig. 2, 

collimated light from a 680 nm superluminescent diode from Superlum (Carrigtwohill, Co. 

Cork, Ireland) is focused onto a piece of paper after reflection on the resonant scanner 

mirror. The scanner deflection moves the focused spot across the paper, effectively erasing 

the phase (wavefront) information of the first pass of the light through the optical system 

[72]. In this way, the SHWS, which is optically conjugate to the resonant scanner mirror 

surface sees a de-scanned wavefront generated by the light focused on the paper. This de-

scanning is desirable because the tip and tilt that would be seen by the wavefront sensor in a 

single-pass setup would be orders of magnitude larger than the mirror distortions to be 

measured.
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The dynamic wavefront aberrations were measured at different portions of the scan by 

collecting light passing through a slit approximately 400 μm in width and optically 

conjugate to the image plane. To mitigate undesired reflections from the slit edges, the light 

source was electronically modulated to turn on only when the focused beam is within the 

slit. In this way, the slit allowed us to confirm that the data was indeed captured at the 

desired scanner mirror orientation. An alternate single-pass strategy by Brown et al. [39] that 

used a pulsed laser diode synchronized with a torsion bar scanner showed non-diffraction-

limited wavefront distortions.

B. Data Collection

The angular orientations at which the dynamic wavefront distortion was measured were 

determined by first capturing SHWS images while the slit was moved across the entire 

motor range and recording the total image intensity. The images are brighter at the edges of 

the resonant scanner field of view, due to the lower angular velocity. By measuring the 

location and separation of the intensity peaks after averaging five measurements, we found 

these to be repeatable with a 3σ-error lower than 0.1°.

Background-subtracted SHWS images were captured at 13 uniformly spaced slit locations 

within the central 90% of the scanner field of view, first with the scanning moving 

clockwise, and counterclockwise later. The resulting wavefront aberration maps captured 

both the dynamic distortion of the resonant scanner mirror and the static wavefront 

aberrations from both elements in the optical setup and the resonant scanner mirror itself.

The static aberrations were measured by capturing additional measurement with the resonant 

scanner motor rotated around the mirror rotation axis, and its amplitude set to its minimum 

value (~0.2°). This small amplitude is needed for the wavefront phase information of the 

beam reaching the paper to be erased by the moving of the focused spot across the rough 

surface of the paper.

C. Wavefront Estimation

Reference search boxes for centroiding were determined using lattice vectors evaluated from 

an average of all SHWS images captured at different positions of the scan. An iterative 

fractional centroid finding algorithm [73–75] was used to determine the centroids of each 

SHWS lenslet image. In the first iteration, the center of a pixel that contained the peak 

intensity value was chosen as the initial centroid and in subsequent iterations, the centroid 

was evaluated with a search box of width equal to the diffraction-limited spot width (2λfl/
Dl), which is re-centered on the centroid estimated in the previous iteration. The 

displacement of the centroids along the x and y dimensions due to dynamic distortions of the 

resonant scanner at each normalized half-scan angle position were obtained by subtracting 

the centroids of the images capturing the static aberrations from those of the dynamic plus 

static SHWS aberrations. Assuming that the lenslets were uniformly illuminated [76], the 

local wavefront slopes were calculated as the ratio of the centroid displacements and the 

lenslet focal length. Circles were fitted to the SHWS images and 90% of the mirror area was 

used as the pupil for wavefront estimation, as shown by the red circles in Fig. 2 above. This 

resulted in pupil diameters of 4 mm (311 lenslets) and 5 mm (480 lenslets) for 15.1 kHz and 
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7.9 kHz scanners, respectively. We then evaluated the averaged Zernike polynomial 

gradients up to the 15th order over square lenslets [77] and used these to least squares fit the 

estimated local wavefront slopes. The calculations were validated against zonal 

reconstruction based on Southwell’s slope geometry [78] and optometric trial lenses. We 

note that the wavefront RMS reproducibility error is 5.3 nm, which is close to the oblique 

trefoil and vertical astigmatism values reported for the 7.9 kHz resonant scanner. The point 

spread function (PSF) was evaluated using the discrete Fourier transform of the complex 

amplitude distribution of the field incident at the pupil of the SHWS [79] and the Strehl ratio 

was then estimated from the normalized on-axis intensity.

3. RESULTS

The dynamic wavefront distortion of the 7.9 kHz resonant scanner measured within the 

central 90% of a 6.1° scanning angle over a circular pupil, 5 mm in diameter, is shown in 

Fig. 3. The distortion reaches a maximum wavefront RMS error of 28 nm. When 

decomposed into Zernike polynomials using the axis of rotation as the y-coordinate axis, 

and the x axis passing through the mirror center, oblique astigmatism dominates the 

distortion comprising 74% of the wavefront RMS, as can be seen in the top row of 

wavefronts in Fig. 3(b). Oblique trefoil (5%) and vertical astigmatism (3%) are the two next 

most substantial aberrations. The strong anti-symmetric components of the wavefront 

relative to the x axis might appear unexpected given the mirror symmetry, but it can be 

explained by the fact that the mirror is attached to the scanner axle at only one end. The 

attached end of the mirror “follows” the axle rotation, while the opposite end lags, 

effectively twisting the mirror surface. The magnitude of the dynamic distortion, and in 

particular the magnitudes of oblique astigmatism and trefoil are linear with angular 

displacement (correlation coefficient ≥0.98 for oblique astigmatism), repeatable across trials 

to within 27% (5.8 nm), and repeatable between the clockwise and counterclockwise 

rotations to within 1% (0.2 nm). For scanning amplitudes equal to or smaller than the one 

tested here, the mirror dynamic distortion in this scanner is below Maréchal’s criterion for 

the 680 nm light used in our measurements as well as Strehl ratio and PSF calculations, 

shown in Figs. 3(f) and 3(g). Here it is important to note that although the angular 

displacement and the angular acceleration change sinusoidally with time, the angular 

acceleration varies linearly with angular displacement, and thus, the linear relationship 

between aberration amplitude and total wavefront RMS and angular displacements is 

expected.

The dynamic wavefront distortion of the 15.1 kHz resonant scanner, measured over the 

central 90% of a 4.9° field of view and a 4 mm circular pupil, is about 7 times larger, as it 

can be seen in Fig. 4. As expected from Eq. (1), the mirror distortion in this scanner is larger 

than the 7.9 kHz scanner, due to the thinner mirror substrate and the higher resonant 

frequency, despite the smaller diameter and field of view. The maximum wavefront RMS 

near the edge of the scan is 186 nm, dominated by oblique astigmatism (88%) and oblique 

trefoil (4.5%), both being linear with angular displacement (0.99 correlation coefficients). 

These wavefront aberrations are repeatable across measurements to within 3.5% (4.6 nm) 

and between clockwise and counterclockwise rotation within 3.3% (1.5 nm). When 

evaluating the Strehl ratio and full width at half-maximum of the radially averaged PSF at 
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the test wavelength, we find that the mirror distortion results in a 10-fold reduction of the 

Strehl ratio, when compared to that at the center of the scanning range. Also, the radially 

averaged width of the PSF, often used as a measure of image resolution, broadens by more 

than a factor of 2. The dashed curves in Figs. 4(f) and 4(g) also show how the optical 

performance would improve to better than Maréchal’s criterion with the correction of 

oblique astigmatism alone.

Measurement of the dynamic wavefront RMS across four different fields of view (see Fig. 5) 

show that the mirror distortion is independent of the amplitude of the resonant scanner 

oscillation, only depending on the mirror angular displacement from its central position.

To illustrate how the resonant scanning mirror’s dynamic distortion affects an imaging 

system, we captured an image of a flat piece of paper in a custom adaptive optics confocal 

scanning ophthalmoscope [12], which for all practical purposes can be thought of as a 

reflectance confocal microscope with a piece of paper as sample. This instrument uses a 

15.1 kHz EOPC scanner with a mirror identical to the one tested with the SHWS and was 

operated at ~5° field of view with a 4 mm circular pupil. Paper was selected as a target due 

to its intricate structure when seen at high magnification. A raw image was captured using 

light from a 790 nm superluminescent diode from Superlum (Carrigtwohill, Co. Cork, 

Ireland) with pixels uniformly spaced across the paper with 1:1 aspect ratio. This raw image 

shows an ~70% intensity reduction toward the left and right edges (see top left panels of Fig. 

6), where the resonant scanner mirror is most distorted. This is consistent with the calculated 

reduction in Strehl ratio shown in Fig. 4, considering that the confocal detector is 1.0 Airy 

disk in diameter, as opposed to a point detector. The variation in intensity across image 

columns can be approximated as a sinusoidal curve, as the cyan line shows. A second image 

with uniform intensity across columns was created by normalizing the intensity of each 

column (see bottom left panel in Fig. 6). Then, the power spectrum of each column was 

calculated (bottom center panel in Fig. 6). The spectra show the attenuation of spatial 

frequency contrast at both the left and right edges of the image, within the optical bandwidth 

of the system (bottom right panel in Fig. 6). The spatial frequencies between 1 and 30 

cycles/deg, which correspond to the lowest 50% of the optical bandwidth are attenuated by 

~70%, while the 30–60 cycles/deg vary smoothly between a reduction of 70% and 0%, with 

the latter reached at the end of the optical band, where noise dominates. The attenuation of 

effectively all spatial frequencies after accounting for the lower photon count at the confocal 

detector means that image contrast of objects of any scale will be attenuated, and thus harder 

to resolve due to the dynamic distortion of the resonant scanner mirror.

4. DISCUSSION AND SUMMARY

The dynamic distortion in two widely used resonant galvanometric optical scanners was 

measured and found to be dominated by oblique astigmatism that is linear with angular 

displacement. According to Maréchal’s resolution criterion, the distortion in the 7.9 kHz 

scanner was found to be negligible for 680 nm light, although according to Brosens’s 

mechanical modeling, its 12 kHz version (not tested) would not be so. Despite the small 

distortion, these scanners are often avoided in research and clinical settings due to the 

audible, and very uncomfortable, sound they generate when operating and that is not easily 
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mitigated even with well-engineered casing. This means that the high-frequency scanners, 

similar to the 15.1 kHz scanner, are often preferred both because of the higher imaging 

speeds and higher resonant frequency, which although still audible by younger individuals is 

substantially more tolerable [80]. Our data shows that this higher scanning rate comes at the 

considerable price of almost an order of magnitude larger mirror distortion, at least when 

using a mirror 4.5 mm in diameter. According to Brosens’s formula, an ~30% reduction in 

mirror size would suffice to mitigate aberrations below Maréchal’s criterion. This pupil 

reduction would come at the expense of sacrificing resolution or having to change the 

optical magnification, which would increase static aberrations or optical system complexity.

The repeatable nature of these distortions and their proportionality to angular displacement 

(see Fig. 5) suggest that corrective methods other than redesigned galvanometer mirrors 

using harder and/or lighter materials, such as beryllium or silicon carbide, or beam diameter 

reduction are possible. For example, a computational solution could be implemented as 

image deconvolution with a field-varying point spread function [81–83]. Although 

computationally demanding and likely to introduce image artifacts, this approach can correct 

for oblique astigmatism, oblique trefoil as well as other dynamic, and even static, 

aberrations. This approach is appealing because it can be used in existing instruments 

without any hardware modification. When the optical system can be modified, however, an 

optical correction could be applied by intentional tilting of optical elements with power. 

Nodal aberration theory [84–86] indicates, the tilting of elements with power can be used to 

introduce linear astigmatism, that is astigmatism with amplitude that is linear with the field 

coordinate and also linear coma, that is, the aberrations that dominate the mirror distortion in 

resonant galvanometric scanners [85,87]. This approach is appealing because it is a 

permanent solution that does not require data manipulation and could even be customized to 

account for differences in individual units. Importantly, and irrespective of the correction 

methods, and as illustrated by the curves in Figs. 4(f) and 4(g), the correction of oblique 

astigmatism alone will in most cases be sufficient to restore diffraction-limited imaging 

performance in scanners held by a single hinge.

In summary, dynamic wavefront aberrations and their correction must be considered when 

using resonant galvanometric scanners for applications in which optical performance is 

critical, both in terms of transverse resolution and signal-to-noise ratio.
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Fig. 1. 
Brosens’s model [34,38] assumes an axle along the center of a rectangular scanner and the 

tested 7.9 kHz and 15.1 kHz scanners were held by a single hinge.
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Fig. 2. 
Experimental setup diagram for measuring the dynamic wavefront distortions of resonant 

scanners.
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Fig. 3. 
Dynamic wavefront distortions over a 5 mm pupil diameter in the 7.9 kHz resonant scanner 

operating at 6.1° across the sinusoidal oscillation are shown in (a). The total wavefront 

distortions are shown in (b), and oblique astigmatism subtracted wavefronts in (c). The plots 

of the variation of wavefront RMS, Zernike coefficients, Strehl ratio (at 680 nm) and 

increase in the FWHM of the PSF (at 680 nm), across the field of view, are shown in (d)–(g). 

The green shaded region in (f) satisfies the Maréchal criterion. The inset diagrams in (g) 

show PSFs at three different scanner mirror orientations.
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Fig. 4. 
Dynamic wavefront distortions over a 4 mm pupil diameter in the 15.1 kHz resonant scanner 

operating at 4.9° across the sinusoidal wave are shown in (a). The total wavefront distortions 

are shown in (b), and oblique astigmatism subtracted wavefronts in (c). The plots of the 

variation of wavefront RMS, Zernike coefficients, Strehl ratio (at 680 nm) and increase in 

the FWHM of the PSF (at 680 nm), across the field of view, are shown in (d)–(g). Additional 

curves in (f) and (g) using dashed lines show the theoretical Strehl ratio and PSF FWHM 

predicted if oblique astigmatism was corrected. The green shaded region in (f) satisfies the 

Maréchal criterion. The inset diagrams in (g) show PSFs at three different scanner mirror 

orientations.
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Fig. 5. 
Wavefront RMS of the dynamic wavefront distortions for different maximum scan 

amplitudes of the 15.1 kHz resonant scanner, illustrating how the mirror distortion depends 

on the angular displacement, and not on the oscillation amplitude.
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Fig. 6. 
Images of the paper before and after column-wise intensity normalization (top) captured 

with a custom reflectance confocal microscope with a 15.1 kHz resonant scanner and 5° 

field of view, and their corresponding column-wise power spectra (bottom). Note the dark 

left and right edges indicating the lower Strehl ratio due to the resonant scanner mirror 

distortion and the attenuation of higher spatial frequencies in the same areas (arrows).
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