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Abstract

The metastatic process is arduous. Cancer cells must escape the confines of the primary tumor, 

make their way into and travel through the circulation, then survive and proliferate in unfavorable 

microenvironments. A key question is how cancer cells overcome these multiple barriers to 

orchestrate distant organ colonization. Accumulating evidence in human patients and animal 

models supports the hypothesis that clusters of tumor cells can complete the entire metastatic 

journey in a process referred to as collective metastasis. Here we highlight recent studies 

unraveling how multicellular coordination, via both physical and biochemical coupling of cells, 

induces cooperative properties advantageous for the completion of metastasis. We discuss 

conceptual challenges and unique mechanisms arising from collective dissemination that are 

distinct from single cell-based metastasis. Finally, we consider how the dissection of molecular 

transitions regulating collective metastasis could offer potential insight into cancer therapy.
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INTRODUCTION

There are a number of reasons why it is difficult to directly observe key steps of the 

metastatic process in human patients: the location of most human tumors in internal organs 

deep inside the body, the long latency associated with the emergence of clinically evident 

metastatic disease (up to decades) (Pan et al., 2017), and the limited ability to detect 

microscopic metastases which already contain millions of cancer cells at the time of 

detection with current imaging technologies (Erdi, 2012). Nonetheless, snapshots obtained at 

the time of surgery, blood or tumor biopsies, and imaging provide valuable clues. These 

snapshots indicate a variety of forms of single or cluster-based dissemination across 

different cancer types. Importantly, experimental studies have shown that single versus 
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multicellular disseminating tumor cells have remarkable divergences in phenotypes, 

migratory mechanisms, and success rates during metastasis. Multicellular organization has 

broad impacts on the capabilities of tumor cells at multiple points in the metastatic process, 

allowing them to migrate in cooperative and heterogeneous collectives, to better survive the 

stress of vascular circulation, to evade certain types of immune targeting, and to generate 

intercellular pro-proliferative signaling networks which drive overt metastasis formation 

(Figure 1). Though much remains to be uncovered, recent studies have elucidated multiple 

molecular mechanisms behind each of these features of collective metastasis and unveiled 

new avenues for development of anti-metastatic therapeutics.

Frequent observations of collective organization during local invasion by primary tumors

An early step in metastasis is local invasion of tumor cells into the surrounding tissues. 

Many normal epithelial tissues (and neoplastic derivatives such as carcinoma in situ) exist as 

multicellular collectives fenced behind a basement membrane. Invasive carcinoma is defined 

by the breach of basement membrane and migration of tumor cells into the surrounding 

tissue microenvironment and is associated with markedly higher rates of metastatic 

progression (Hu et al., 2008; Yu et al., 2011). Accordingly, the mechanisms of tumor 

invasion have been an area of intensive research for decades (Friedl and Alexander, 2011; 

Friedl et al., 1995; Lambert et al., 2017; Liotta and Kohn, 2001).

In human tumors, pathologists have long noted the presence of tumor “nests” adjacent to 

primary tumors. One such study in 1960 noted that the tissue bed surrounding tumors was 

often populated by groups of cells more frequently than single tumor cells, and speculated 

that these nests might be able to give rise to further tumor growth and dissemination 

(Leighton et al., 1960). The authors suggested that these aggregates were functioning as 

integrated units which worked cooperatively through supracellular organization and 

interactions with the microenvironment, not merely physical groupings of fully independent 

single cells. They went so far as to recommend development of “aggregate disrupting” 

agents to sensitize tumor nests to treatment.

Quantitative morphometric studies of invasion are challenging because they require either 

multiple parallel sections or thick reconstructions of tumor borders to determine if 

disseminated single cells are truly isolated. 3D reconstructions often reveal hidden 

connections between single cells and nearby tumor cells, revealing they are actually clusters, 

or between clusters and the main tumor body, revealing they are actually extensions from the 

primary tumor (Bronsert et al., 2014; Enderle-Ammour et al., 2017; Jensen et al., 2015; 

Kudo et al., 2013; Tian et al., 2020; Yoshizawa et al., 2020). In one such study, 3D 

reconstructions were used to directly quantify the presence of single and clustered tumor 

buds at tumor stromal borders in human pancreatic, colorectal, lung, and breast 

adenocarcinomas. After assessing over 5000 tumor buds and over 260,000 cancer cells, they 

did not observe any individual cells that were not connected to other tumor cells, indicating 

100% of adjacent invaded tumor cells were part of collective units (Bronsert et al., 2014). 

Likewise, another study examined ductal and lobular human breast cancer samples to assess 

3D morphology of peritumoral cancer cells (Khalil et al., 2017). Over 99% of invasive 
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ductal carcinoma cells were in multicellular groups in the peritumoral area, and extent of 

collective invasion correlated with poorer prognosis.

Clusters can also be detected in the process of collectively invading into local 

lymphovascular channels, and this is frequently associated with poor prognosis. This feature, 

termed lymphovascular invasion (LVI), denotes the presence of tumor cells in peritumoral 

vessels or vessels within the tumor mass and frequently manifests as cohesive multicellular 

emboli (Mohammed et al., 2011). The presence of tumor emboli within lymphatic or blood 

vessels is correlated with poorer prognosis in pancreatic ductal adenocarcinoma (Takahashi 

et al., 2020), urothelial carcinoma (Cheng et al., 2009), sporadic colorectal cancer (Lim et 

al., 2010), and breast cancer (Hamy et al., 2018; Schoppmann et al., 2004). In inflammatory 

breast carcinoma, tumor emboli are particularly abundant in dermal lymphatics. These 

emboli strongly express the cell adhesion molecule E-cadherin, associate with the peau de 
l’orange phenotype observed clinically, and are prone to metastasize (Jolly et al., 2017; 

Robertson et al., 2010).

At the same time there are notable counterexamples in which invading tumor cells favor 

discohesion and single cell dissemination. For instance invasive lobular carcinomas, a breast 

cancer subtype accounting for 5–15% of cases (Weigelt et al., 2010), are associated with loss 

of function mutations in E-cadherin, single file morphology, and tendency toward 

individualization to rounded cancer cells (though collective organization of lobular 

carcinoma is reported in some studies) (Bruner and Derksen, 2018; Ciriello et al., 2015; 

Khalil et al., 2017). Another breast cancer subtype, metaplastic carcinoma, accounting for 

<5% of breast cancers (Weigelt et al., 2010), is associated with highly mesenchymal spindle 

cell morphology and gene expression indicative of epithelial-to-mesenchymal transitions 

(EMT) (Hennessy et al., 2009; McCart Reed et al., 2019; Taube et al., 2010). Taken together 

recent morphometric studies suggest a major, but importantly not universal, tendency toward 

multicellular organization in cancers derived from epithelial tissues.

Circulating tumor cell clusters vary greatly in their size and prevalence in blood

Locally invasive tumors often show increased propensity to metastasize to distant sites. The 

main routes of escape for tumor cells are drainage via blood vessels and via lymphatics. 

Since the first descriptions of circulating tumor cells (CTCs) in the blood (Ashworth, 1869), 

there has been extensive interest in enumerating and isolating rare circulating tumor cells, 

including circulating tumor cell clusters (CTC clusters). Technological developments in the 

last 15 years have greatly facilitated direct isolation and analysis of bona fide circulating 

tumor cells in patients (Aceto et al., 2015; Au et al., 2017; Ferreira et al., 2016; Giuliano et 

al., 2018; Pantel and Alix-Panabières, 2019). Studies of patient blood samples across the 

most common cancer types have since conclusively demonstrated that both single and 

clustered tumor cells are present in the vasculature (Aceto et al., 2014; Chang et al., 2016; 

Hou et al., 2012; Lee et al., 2017; Long et al., 2016b; Mu et al., 2015; Paoletti et al., 2015; 

Vona et al., 2004; Wang et al., 2017; Zhang et al., 2017; Zheng et al., 2017).

Overall, these studies indicate that CTCs occur at low concentrations in the peripheral blood. 

In particular, the number of CTCs appears highly variable per patient. In some cases, 

metastatic patients will have CTC counts in the 100s to 1000s per 7.5 mL blood draw (Hou 
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et al., 2012; Jansson et al., 2016; Krebs et al., 2011). However, many other metastatic 

patients will have few or no detectable CTCs. In breast cancer, for example, multiple studies 

show that roughly 50% of metastatic patients will have fewer than 5 detectable CTCs per 

7.5mL of blood (Cristofanilli et al., 2004; Cristofanilli et al., 2019; Larsson et al., 2018; 

Szczerba et al., 2019). But a number of factors affect CTC and CTC cluster detection rate. A 

typical tube of blood from a human cancer patient is approximately 7.5 to 10 mL, 

corresponding to an instantaneous sampling of less than 0.3% of the total blood volume. 

Thus, some patients with zero reported CTCs could represent false negatives due to 

insufficient sampling of the blood volume. To some extent, larger volume collection methods 

such as leukapheresis can overcome this sampling barrier, but at present these more invasive 

methods are not likely to be integrated into routine practice (Andree et al., 2018; Fehm et al., 

2018; Fischer et al., 2013; Kim et al., 2019). Further, CTCs are undersampled temporally. 

CTC counts vary with cancer treatment, and can markedly drop with tumor shrinkage or rise 

with tumor progression (Crosbie et al., 2016; Nagrath et al., 2007; Yan et al., 2017; Yu et al., 

2013). In addition, the vascular source has an important effect on CTC recovery. Compared 

with collection from the peripheral veins, blood collection from different draining venous 

and arterial beds can produce markedly different CTC counts, with increased collection of 

CTCs from draining veins proximal to the tumor (Buscail et al., 2019b; Crosbie et al., 2016; 

Kim et al., 2019; Nagrath et al., 2007; Reddy et al., 2016; Sun et al., 2018). In principle, the 

steady-state number of tumor cells in the blood could be reduced by features that shorten 

their half-lives in the blood. For instance, the greater hydrodynamic resistance and more 

rapid arrest of large CTC cluster microemboli compared to circulating single cells could 

decrease their accumulation and detection in the blood (Aceto et al., 2014; Au et al., 2016a; 

Gkountela et al., 2019). Ultimately, if these technical barriers for detecting CTCs can be 

overcome by improvements in technology, a clearer picture may emerge of the biological 

variation in CTC abundance within and between patients.

In this context, circulating tumor cell (CTC) clusters are even rarer than single CTCs, 

accounting for roughly 1 to 17% of detected CTCs in patients and CTC cluster detection 

varies greatly depending on the tumor type, stage, and CTC enumeration methodology 

(Amintas et al., 2020; Cho et al., 2012; Szczerba et al., 2019). The reported proportions of 

patients with detected CTC clusters range widely from 5 to 54% in breast cancer (Cho et al., 

2012; Jansson et al., 2016; Larsson et al., 2018; Mu et al., 2015; Paoletti et al., 2015; 

Szczerba et al., 2019; Wang et al., 2017), 18 to 81% in pancreatic ductal adenocarcinoma 

(Amantini et al., 2019; Buscail et al., 2019a; Catenacci et al., 2015; Chang et al., 2016), and 

26 to 50% in lung cancer (Hou et al., 2012; Manjunath et al., 2019; Murlidhar et al., 2017; 

Sawabata et al., 2020). The size of CTC clusters is also highly variable; clusters over 20 

cells have been identified in the blood of patients across common cancer types, though they 

are more commonly reported as clumps of between 2 to 6 cells (Long et al., 2016b; Molnar 

et al., 2001; Sarioglu et al., 2015). Though large microemboli seem likely to occlude or 

arrest in capillaries, a recent study found that breast cancer CTC clusters as large as 20 cells 

can squeeze through 5 to 10 micron vessels in microfluidic chambers and zebrafish models 

(Au et al., 2016a). Importantly, accruing evidence suggests that patient populations in which 

these CTC clusters are detected often have greater rates of disease progression and poorer 

treatment response.
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Circulating tumor cell clusters correlate with poorer clinical outcomes

Across many cancer types, CTC clusters are associated with worse clinical outcomes 

including disease progression and early mortality (Chang et al., 2016; Costa et al., 2020; 

Divella et al., 2014; Hou et al., 2012; Jansson et al., 2016; Kulasinghe et al., 2018; Larsson 

et al., 2018; Long et al., 2016b; Mu et al., 2015; Murlidhar et al., 2017; Okegawa et al., 

2018; Paoletti et al., 2019; Sawabata et al., 2020; Wang et al., 2017; Zheng et al., 2017). In a 

number of these studies the presence of CTC clusters is an independent prognostic factor by 

Cox proportional hazards, yielding prognostic information beyond the presence of single 

CTCs alone (Table 1). CTC cluster counts also vary with clinical stage, with increasing 

detection often corresponding to metastatic progression. For example, a study in pancreatic 

cancer found that the mean number of detected CTC clusters per blood draw increased with 

disease progression from 0 to 9.2 to 15.2 to 71.2 through stages I-IV, respectively (Chang et 

al., 2016). In addition, studies have demonstrated that CTC cluster counts fluctuate in 

individual patients, often increasing with disease progression and decreasing with response 

to therapy (Larsson et al., 2018; Wang et al., 2017; Yu et al., 2013).

A potential confounding variable is that the frequency of single CTCs tends to co-vary with 

the frequency of CTC clusters. For example, retrospective analysis of samples collected in a 

large breast cancer clinical trial found that single and clustered CTC counts correlated such 

that CTC cluster count was not an independent prognostic factor when higher total CTC 

levels were taken into account (Paoletti et al., 2019). While more studies are indicated, at 

present the presence of clusters or an increase in their prevalence are concerning indicators 

of poor patient prognoses.

Increasing numbers of CTC clusters have also been postulated to directly cause patient 

morbidity even if they fail to generate distant metastases. CTC clusters can occlude vessels, 

as in pulmonary lymphangitic carcinomatosis when lung lymphatic vessels become 

obstructed and inflamed, in turn leading to respiratory distress (Klimek, 2019). Moreover, 

occlusion of vessels by tumor emboli in the brain can lead to cerebral infarction and has 

been speculated as a possible explanation for the preferential seeding of metastases in 

watershed regions, which are sites of narrowing of the vascular network to 50–150 μm 

arterioles (Delattre et al., 1988; Hwang et al., 1996). Thus, CTC clusters can have directly 

negative consequences on patient outcome in addition to seeding new secondary tumors.

CTC clusters are also found as heterotypic aggregates between tumor cells and platelets or 

immune cells encountered in the blood, but sometimes also with cells from the primary 

tumor microenvironment like fibroblasts and macrophages which have been carried along 

into the circulation (Duda et al., 2010; Jiang et al., 2017; Sarioglu et al., 2015). A recent 

study found that 8.6% of collected breast cancer CTCs were homotypic clusters but 3.4% 

were heterotypic white blood cell-CTC clusters, with the remaining 88% corresponding to 

single cell CTCs. In these heterotypic clusters roughly 25% of attached white blood cells 

were predicted to be T-cells. Of the remaining 75%, a large majority were neutrophils, which 

may have adhered to CTCs using VCAM1. Neutrophils conferred greater expression of cell-

cycle genes and enhanced aggression in these circulating tumor cells (Szczerba et al., 2019). 

Neutrophils are also implicated in extravasation of tumor cells through their secretion of 

IL-8 which modulates endothelial barriers (Chen et al., 2018). These studies and others 
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suggest that disrupting communication and aggregation between certain immune 

compartments and tumor cells in the circulation might benefit patients.

Platelets attached to CTCs can also play several important roles in promoting metastasis 

(Camerer et al., 2004; Haemmerle et al., 2017; Labelle et al., 2011). By coating CTCs, 

platelets can shield them from immune cells, from the physical stress of circulation, and 

inconveniently from some CTC detection methods when platelets mask tumor cell surface 

epitopes (Egan et al., 2014; Jiang et al., 2017). Cluster-platelet aggregation can also promote 

transendothelial migration and extravasation (Xiong et al., 2020). Moreover, platelet-derived 

TGFβ and NF-κB signaling can increase mesenchymal gene expression in CTCs and 

enhance metastasis (Labelle et al., 2011). These heterogeneous interactions with non-tumor 

blood cells can give CTCs a greater ability to survive in the bloodstream and generate new 

metastases.

Human studies and mouse models harbor evidence of metastases seeded by multiple cells

While clinical studies demonstrate that the presence of circulating clusters is often 

associated with poorer prognosis and metastatic progression, this does not provide direct 

evidence that metastases originate from circulating clusters of tumor cells. To answer this 

question, experimental models of metastasis are helpful to unambiguously trace the 

contribution of clusters to metastasis formation. Two such studies were recently carried out 

using breast cancer mouse models with primary tumors labeled with multiple fluorescent 

proteins to identify polyclonal (i.e. multi-color) metastases founded by multiple cells. By 

measuring the proportion of multi-color CTC clusters vs. single color individual CTCs, as 

well as identifying the fraction of metastases with multiple fluorescent tags (i.e. founded by 

multiple cells), the authors were able to back-calculate the metastatic potential of clusters vs. 

single cells in these systems. They found that CTC clusters were predicted to generate 50 to 

97% of all metastases despite accounting for a small fraction of all CTCs (Aceto et al., 2014; 

Cheung et al., 2016). Thus, the metastatic potential of CTC clusters was predicted to be 20 

to >50-fold higher than that of single cells in these models. In another study using a multi-

color mouse model of pancreatic cancer, 80% of macrometastases to the diaphragm or 

peritoneum were seeded by multiple cells, despite only ~15% of CTCs circulating as 

clusters (Maddipati and Stanger, 2015). Studies in other models have similarly identified 

enhanced aggression of clusters and polyclonal metastasis formation in breast, colorectal, 

and ovarian cancer (Echeverria et al., 2018; Janiszewska et al., 2019; Kok et al., 2021; Liu et 

al., 2019; Lo et al., 2020; Mizukoshi et al., 2020; Naffar-Abu Amara et al., 2020) (Table 2). 

These experimental findings all point to greatly increased metastatic efficiency in circulating 

tumor cell clusters and demonstrate that, at least in some cancer models, they give rise to the 

majority of metastases despite their rarity (Cheung and Ewald, 2016).

In human tumors, DNA sequencing and phylogenetic analysis of metastases compared to 

primary tumors can reveal if metastases were clonally seeded by a single cell or instead 

seeded by multiple cell clones from the primary tumor (Birkbak and McGranahan, 2020; 

Gundem et al., 2015). Still, an important consideration when interpreting these findings is 

that polyclonal seeding could occur either by metastasis of multiclonal clusters or serial 

seeding of single cells. Conversely, seeding by monoclonal clusters or later clonal sweeps 
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could result in monoclonal metastases despite a multicellular origin. Polyclonal metastases 

have been identified in prostate cancer (Gundem et al., 2015), lung cancer (Hu et al., 2020), 

colorectal cancer (Dang et al., 2020; Leung et al., 2017; Ulintz et al., 2018; Wei et al., 2017), 

ovarian cancer (McPherson et al., 2016), gastric cancer (Hirotsu et al., 2020), and 

intrahepatic cholangiocarcinoma (Dong et al., 2018). In rapid autopsy studies of metastatic 

breast cancer patients, 63 to 73% of patients had evidence of polyclonal metastasis (Siegel et 

al., 2018; Ullah et al., 2018). Further, this polyclonal organization can be observed from the 

first phases of neoplasia. In breast cancer, the invasion of genetically multiclonal clusters of 

cells is observed when ductal carcinoma in situ (DCIS) cells breach the mammary duct and 

escape into surrounding tissues (Casasent et al., 2018). Individual cells from DCIS regions 

(abnormal cells inside ducts) and invasive regions (outside ducts) were carefully collected 

using laser-capture microdissection followed by single cell sequencing. Tracking of clonal 

compositions of these areas indicated that many mutations were acquired at the DCIS stage, 

and that these multiclonal groups of DCIS cells co-migrated together as clusters to form 

invasive ductal carcinoma regions (Casasent et al., 2018). A similar study likewise 

individually microdissected regions of DCIS and invasive ductal carcinoma then subjected 

these samples to DNA sequencing. In 18 of 25 cases, sequencing indicated that invasive 

carcinomas were polyclonal, that is arising from multiple founding cells (Pareja et al., 2020). 

Genomic analysis has additionally demonstrated polyclonal seeding of lymph node 

metastases in colorectal and breast cancer (Ulintz et al., 2018; Ullah et al., 2018). These 

genetic findings further support a model of metastatic dissemination propagated by 

multiclonal groups of cells, rather than individual clones.

Still, these observational human studies cannot determine what proportion of polyclonal 

metastases were seeded simultaneously by clusters of cells, or serially by single cells. In 

mouse models of breast cancer, however, polyclonal metastases derived from cluster-based 

seeding are observed more frequently than metastases arising from serial seeding of 

individual cells. In three recent studies, tumor cells with different fluorescent tags were 

separately inoculated into the left and right mammary fat pads to generate two single-color 

tumors. If serial seeding of metastases were a frequent event, a high proportion of the 

metastases would be expected to be multi-color, that is derived from single cells from both 

the left and right tumor. However, when lung metastases were assessed, only 0 to 14% of 

them were two-color (Aceto et al., 2014; Cheung et al., 2016; Liu et al., 2019; Lo et al., 

2020). These experiments indicate that the majority of polyclonal seeding in these models is 

not derived from serial seeding of cells but rather from cells which group together at the 

primary tumor site. While further and deeper sequencing of metastatic tumors will better 

elucidate seeding patterns, these experimental studies suggest that tumor cell clusters may be 

an important source for polyclonal metastases in human patients.

COOPERATIVE INTERACTIONS DURING COLLECTIVE CELL METASTASIS

Cooperation is the observation that individuals within a group coordinate their activities, 

resulting in collective benefit. In nature, cooperation is observed across biological time and 

length scales ranging from the population dynamics of T-cells (Polonsky et al., 2018) to hair 

follicle regrowth (Chen et al., 2015) to nest-site selection of honeybees (Seeley and Visscher, 

2004). In each of these examples, communities of individuals use cooperation to their 
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advantage to overcome obstacles, share information, or neutralize threats. For example 

during tissue development and wound repair, intercellular cooperation between local niche 

cells and stem cells maintain the correct balance of renewal and proliferation, a dialogue 

shaped by the physical topology of cells and their cell-cell contacts, extrinsic environmental 

signals like injury or inflammation, and bidirectional niche cell/stem cell signaling (Chen et 

al., 2015; Shyer et al., 2015; Xin et al., 2016). The field of microbiology serves as another 

instructive example; recent findings have upended the model that bacteria behave as “lone 

agents” and instead identified important cooperative behaviors like biofilm formation 

mediated by intercellular communication and quorum sensing (Ben-Jacob et al., 2012; 

Lambert et al., 2011; Papenfort and Bassler, 2016). Unlike stem cell/niche cell interactions 

with sender-receiver dynamics, in this instance all cells are competent to produce a quorum 

signal. When enough cells in the population express that signal its concentration passes a 

key threshold, inducing a community-level switch in phenotype. Tuning the degree of “self 

communication” vs. social or “neighbor communication” can generate emergent signaling 

circuits and population-level responses in natural or synthetic biological systems (Chen et 

al., 2015; Montaudouin et al., 2013; Youk and Lim, 2014). Further, in ecology cooperative 

interactions can be used to explain population dynamics that differ from logistic growth 

models. These divergences can be generated by “Allee effects” in which interactions 

amongst members of a population, such as cooperative feeding and shared contributions to 

defence, generate threshold effects whereby populations must reach an intermediate size 

before achieving maximum growth (Korolev et al., 2014).

In the field of cancer research, we are increasingly appreciating the degree to which 

cooperativity can promote disease progression (Tabassum and Polyak, 2015). Cancer cells 

are often associated with “selfish behavior” and uncontrolled growth arising from mutations 

releasing cells from the constraints of their original developmental programming (Archetti 

and Pienta, 2019). But the recognition that cancer cells maintain physical contact as clusters 

throughout the metastatic cascade suggests that intercellular cooperation might confer 

advantages during this process. Remarkably, recent findings demonstrate that the simple 

shift from single cells to clusters results in rapid and profound changes to cell state, 

accompanied by markedly greater likelihood of metastatic colonization. Here we review the 

multiple ways that multicellularity enables cooperative behaviors during the metastatic 

process and highlight the emerging molecular mechanisms supporting clusters’ heightened 

survival, outgrowth, and overall metastatic fitness.

Cellular specialization and intercellular communication in tumor cell collectives during 
invasion

Locally invading cancer cells face a multitude of challenges as they disperse from the 

primary tumor. Within a 3D context, these include pathfinding, coping with changing local 

environments, matrix remodeling, and metabolic demand (Yamada and Sixt, 2019). An 

individual invasive cell must acquire properties to overcome all these obstacles, often 

simultaneously, while retaining the capacity to later proliferate and expand into a secondary 

tumor. In clusters, these demands can be surmounted in part through cell specialization and 

intercellular communication.
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A common motif across both normal collective migration and collective invasion by cancer 

cells is the emergence of distinct cellular states along the axis of migration; that is to say, 

there are “front” and “rear” cells within clusters which can have important differences in 

their phenotypes. At the extreme end of this spectrum, migrating clusters can arrange into 

single-file chains which is observed in melanoma and breast cancer invasion (Haeger et al., 

2020; Khalil et al., 2017). Nonlinear nest-like groups of cells can also arrange themselves 

with one or more “leader” cells at the front-most edge of the cluster directing migration and 

remaining connected to several “followers” behind. Leaders, as their name implies, are 

usually thought to determine the direction of migration of the cluster. They can accomplish 

this by sensing the microenvironment through ECM-integrin signaling and responding to 

chemoattractants, and in turn can modify the path in front of them through traction forces or 

secretion of matrix metalloproteinases (Colak-Champollion et al., 2019; Haeger et al., 2014; 

Trepat et al., 2009). Follower cells, in turn, may assist leader cells via pro-survival signaling 

and maintaining the direction of migration, and can provide much of the actual traction force 

needed for movement (Konen et al., 2017; Trepat et al., 2009; Yamada and Sixt, 2019).

There are many different forms this leader-follower pattern can take depending on the 

biological context. During lateral line morphogenesis in zebrafish, multiple leader cells and 

followers within the migrating cluster maintain distinct but cooperative phenotypes through 

differential expression of chemokine and growth factor receptors (Aman and Piotrowski, 

2008; Mishra et al., 2019). Another example during development is Drosophila border cell 

migration, in which non-motile polar cells activate JAK-STAT signaling in leading border 

cells to promote their motility (Mishra et al., 2019; Silver and Montell, 2001). In mammals, 

a prototypic example of this organization occurs during normal vascular sprouting; “tip” 

cells connected by cell-cell junctions to “stalk” cells lead multicellular cohorts of endothelial 

cells via VEGF chemotaxis (Gerhardt et al., 2003). Though the number of cells in each 

group and the molecular distinctions between them vary greatly, this leader-follower 

dichotomy is repeatedly observed across different species in both normal and disease 

contexts.

Functional experiments have confirmed that this leader-follower organization can be 

important for successful invasion and metastasis. A study in breast cancer found that basal 

cells expressing keratin-14 frequently led collectively invading strands in both mouse 

models and human tumor samples. Keratin-14 knockdown significantly reduced collective 

invasion and subsequent metastasis by clusters, indicating that disrupting the leader cell-

associated gene expression of tumor cell clusters can greatly suppress their metastatic 

potential (Cheung et al., 2013). Another study found that laser ablation of leader cells 

interrupted forward invasion of collective strands in 3D culture (Zhang et al., 2019b). 

However, within 12 hours a new leader cell typically emerged and resumed invasion. The 

authors noted that new leader cells arose from follower cells and replaced existing leader 

cells even without laser ablation, suggesting that follower-leader states can dynamically 

interchange. Denser collagen matrices, which required greater energy consumption by leader 

cells, also hastened the emergence of new leader cells to replace the previous “tired” leaders 

(Zhang et al., 2019b). A number of other studies have likewise found that removal of leader 

cells or disruption of their function significantly impairs collective migration (Gao et al., 

2017; Khalil et al., 2020; Kim et al., 2017; Yang et al., 2019). Many experimental techniques 
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have been developed to further isolate and characterize the molecular properties of leader 

and follower cells. These approaches help identify leader vs. follower distinctions that 

confer disparate functions and facilitate cooperativity, including differences in transcription, 

metabolism, epigenetic modifications, senescence, and gene mutations (Commander et al., 

2020; Kim et al., 2017; Konen et al., 2017; Summerbell et al., 2020; Zhang et al., 2019b; 

Zoeller et al., 2019). For example, after culturing cells transduced with the photoconvertible 

fluorophore Dendra2 in 3D ex vivo culture systems which promote collective invasion, 

photoconverted leader cells have been separated from non-leader cells by flow sorting for 

further phenotypic and genomic analyses (Konen et al., 2017). When specific markers for 

leader cells are known, such as Keratin-14 in breast and ovarian cancer, leader cells can 

instead be identified by differential expression through gene promoter-driven fluorescence 

expression or antibody-based methods (Bilandzic et al., 2019; Cheung et al., 2013; Cheung 

et al., 2016; Hwang et al., 2019b; Quan et al., 2020; Yang et al., 2019). Live imaging 

alternatively allows actively migrating leader cells to be analyzed in situ without disrupting 

their dynamic interactions with follower cells. Pairing live time-lapse microscopy with other 

techniques such as fluorescent metabolic indicators (Commander et al., 2020; Zhang et al., 

2019b), traction force microscopy (Riahi et al., 2015; Trepat et al., 2009), organelle-specific 

dyes (Commander et al., 2020), and co-culture with non-tumor cells (Gaggioli et al., 2007; 

Hanley et al., 2020; Hwang et al., 2019a) can provide additional layers of information 

clarifying the role of leader cells during collective migration and invasion.

Similar experimental systems can also be used interrogate cooperative interactions between 

leader and follower cells to identify the signaling or communication that emerges when 

clustered cells segregate into these two identities. Cell mixing or co-culture experiments, 

leader or follower cell-specific gene knockdown, conditioned media treatment, and other 

techniques have been used to identify the molecular sources of leader-follower cooperative 

phenotypes. Experiments assessing isolated vs. mixed leader and follower cells have been 

particularly informative; one study found that mixing increasing proportions of purified 

leader cells with follower cells resulted in a dose-dependent increase in invasion. Leader-cell 

conditioned media could induce invasion of follower cells, supporting the hypothesis that 

secreted factors facilitate leader-follower communication (Konen et al., 2017). In lung 

cancer cells, VEGF was upregulated in leader cells, which in turn stimulated the motility of 

follower cells (Konen et al., 2017). These purified leader cells grew slowly compared to 

follower cells, but their growth was rescued by follower-conditioned media, suggesting both 

compartments generate important secreted signals. And, in thyroid cancer cells, CXCL12 

secretion by leader cells increased the survival and anoikis-resistance of co-cultured cells 

(Kim et al., 2017). Communication between leaders and followers may also occur through 

modulation of existing soluble signaling molecule gradients. During melanoma migration, 

follower cells breakdown local LPA to form a chemotactic sink, generating an outward-

facing chemotactic gradient that invasive cells follow (Muinonen-Martin et al., 2014). Thus 

follower-leader groups can participate in multiple modes of bidirectional signaling to 

modulate or support each other’s phenotypes.

In addition to secreted molecules, leader and follower cells can communicate directly at or 

through cell-cell junctions. One group recently demonstrated gap junction intercellular 

communication (GJIC) between leader and follower cells using fluorescence recovery after 
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photobleaching. Leader and follower cells containing calcein dye were photobleached, but 

quickly recovered fluorescent calcein signal donated by neighboring cells indicating active 

intercellular transfer (Khalil et al., 2020). Cell-cell junctions can also facilitate juxtacrine 

signaling of receptors and ligands on adjacent cells. For instance, juxtacrine Notch1-Dll4 

signaling between leader and follower cells can prevent the initiation of additional leader 

cells (Riahi et al., 2015). Cell-cell junction molecules themselves can communicate 

important information between leaders and followers. E-cadherin signaling between motile 

cells and polar cells during border cell migration communicates the direction of movement 

through positive feedback with Rac (Cai et al., 2014). As leader cells move forward, tension 

accumulates at cadherin junctions with follower cells. This tension can transduce a number 

of downstream signals, including relocalization of cytoskeletal proteins like merlin, 

ultimately increasing the migratory polarization of migrating cells (Das et al., 2015). In 

some instances, leader cells can also generate a peripheral actomyosin cable which prevents 

the initiation of new leader cells amongst their followers (Reffay et al., 2014). These 

findings affirm the concept that migrating clusters are often not just physically linked, but in 

many instances are communicating through mechanical or chemical signals downstream of 

cell-cell adhesion.

Though leader-follower arrangements have been identified in different forms of 

developmental collective migration, there are intriguing exceptions in which leader cells are 

not detected, or in which steering and pathfinding are actually driven by cells at the rear of 

the cluster (Colak-Champollion et al., 2019). Likewise, some cancers appear to collectively 

invade without leader-follower phenotypes. A recent study found that colorectal cancers can 

form large multicellular spheres with reversed (apical surface, basal core) polarity which 

migrate in an amoeboid-like manner without generating adhesive cellular protrusions or 

forming leader cells (Zajac et al., 2018). Another example is the normal development of 

mammary ducts, which is accomplished by the collective migration and bifurcation of 

multilayered bulb-like structures called terminal end buds (TEBs) which similarly lack 

protrusions and leader cells (Paine and Lewis, 2017). Developmental TEB migration shares 

common features with breast cancer invasion. In both cases multicellular groups of cells 

invade through the mammary stroma, secrete MMPs to facilitate migration, generate mixed 

luminal/basal cell populations, have reduced apical-basal polarization, and are assisted by 

local non-epithelial cells including fibroblasts and macrophages (McCaffrey et al., 2012; 

Paine and Lewis, 2017; Scheele et al., 2017; Wiseman et al., 2003). These studies highlight 

that collective migration can be carried out through various means of supracellular 

organization. But a unifying theme across disparate mechanisms of collective invasion and 

migration is that the diversity of phenotypic states within cell clusters can generate 

intercellular cooperativity and important pro-invasive features.

Still, yet another form of intercellular cooperation during invasion is through interaction 

with local non-tumor cells, extensively reviewed elsewhere (Binnewies et al., 2018; Egeblad 

et al., 2010; Hirata and Sahai, 2017; Lyssiotis and Kimmelman, 2017; Sahai et al., 2020). 

For instance, two-way paracrine signaling in which cancer cells secrete CSF1 and 

macrophages secrete EGF promotes breast cancer cell invasion (Patsialou et al., 2009). 

Macrophages can additionally contribute to invasion through breakdown or modification of 

the ECM (Finkernagel et al., 2016) or direct cytosolic transfer to tumor cells (Hanna et al., 
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2019; Roh-Johnson et al., 2017). Fibroblasts can promote collective invasion in several 

ways, including forming migration tracks within the ECM (Gaggioli et al., 2007), increasing 

expression of invasive and leader-cell associated genes (Hanley et al., 2020; Matsumura et 

al., 2019), and forming heterotypic N-cadherin/E-cadherin contacts with cancer cells which 

allow fibroblasts to promote and even lead collective invasion (Labernadie et al., 2017). 

Broadly, cooperative interactions amongst tumor/tumor or tumor/non-tumor cell collectives 

are increasingly appreciated to be critical mediators of invasion.

Cell-cell adhesion induces pro-survival signaling during early metastatic colonization

Cell-matrix attachment, namely through integrin-ECM interactions (Miranti and Brugge, 

2002), is a fundamental regulator of epithelial cell survival (Miranti and Brugge, 2002; 

Taddei et al., 2012). Loss of integrin-ECM signaling results in downstream signals including 

the release of sequestered Bim protein, which can then translocate to the mitochondria and 

promote intrinsic apoptosis, or upregulation of Fas and Fas-L expression, which activate 

extrinsic apoptosis (Taddei et al., 2012). When cancer cells lose these signals in settings 

either without sufficient ECM, such as vascular or lymphatic channels, or without 

appropriate ECM, such as distant tissues with distinct and non-permissive matrix 

components, they become susceptible to programmed cell death (Celià-Terrassa and Kang, 

2016; Piskounova et al., 2015; Valiente et al., 2014). But in certain contexts, cell-cell 

adhesion can override pro-apoptotic signals, preserving metastatic cell survival in these 

environments (Al Habyan et al., 2018; Kantak and Kramer, 1998; Liu et al., 2019; Zhao et 

al., 2010)

In some cases, cell-cell adhesion helps cells evade death by activating integrin signaling 

even when ECM is not present. In clustered carcinoma cells the cell-surface protein PVRL4, 

which can bind PVRL1 on adjacent cells (Pavlova et al., 2013), activates α6β4 integrin 

signaling. This in turn maintains expression of lipid repair enzyme GPX4, preventing lipid 

perodixation and subsequent cell death via ferroptosis (Brown et al., 2018). Clustering of 

integrins with other receptors at cell-cell contacts can also activate downstream pro-survival 

signaling. For example, integrins can interact directly with EGFR or its ligands at cell-cell 

contact sites, and activate downstream signaling (Nakamura et al., 1995; Yu et al., 2000). 

This ECM-independent induction of signaling is particularly important in fluid metastatic 

microenvironments, such as when ovarian cancer cells metastasize by shedding into the 

peritoneal fluid. Upregulation of E or N-cadherin and formation of multicellular aggregates 

protects ovarian cancer cells from anoikis in this liquid environment by activating PI3K and 

EGFR pathways (Hudson et al., 2008; Klymenko et al., 2017; Rayavarapu et al., 2015; 

Reddy et al., 2005). By either promoting integrin activation or bypassing it to activate 

downstream oncogenic signaling pathways, cell-cell adhesion provides an alternative route 

to pro-survival signaling when ECM contact is absent or non-permissive.

Oxidative stress is another major initiator of cell death during metastasis, and can greatly 

lower metastatic potential of tumor cells (Piskounova et al., 2015). Clustering helps cells 

mitigate reactive oxygen species (ROS) by several mechanisms. Clustering of detached cells 

can promote mitophagy, resulting in the clearance of damaged mitochondria and reduced 

ROS (Labuschagne et al., 2019). Recent studies in mouse models of breast cancer found that 
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reducing expression of E-cadherin or p120-catenin increases local invasion, but ultimately 

reduces successful metastasis (Ilina et al., 2020; Kurley et al., 2020; Padmanaban et al., 

2019) E-cadherin downregulated tumor cells had increased levels of oxidative stress and 

apoptosis and poorer overall metastasis formation. E-cadherin expression ultimately reduced 

ROS-promoting signals via modulation of TGFβ signaling, promoting survival and 

increasing metastatic colonization (Padmanaban et al., 2019). Though molecular 

mechanisms are still being uncovered, these studies suggest that cell-cell adhesion in tumor 

cell clusters can help circumvent major causes of apoptosis during metastasis such as ECM 

detachment and oxidative stress in multiple ways.

Multicellularity can modify certain tumor-immune cell interactions, promoting immune 
evasion

During dissemination and colonization, tumor cells can be targeted for destruction by 

immune cells patrolling tissues. Indeed immune escape is a critical step for successfully 

forming overt metastases (Mohme et al., 2017). Tumor cells can escape immune cells 

through many different mechanisms, making sensitizing tumors to the immune system 

challenging. These mechanisms include secreting cytokines or growth factors that can 

recruit tumor-promoting immune cells or inhibit the activity of anti-tumor immune cells; 

cancer cells can evade immune cells by avoiding antigen presentation; or tumor cells can co-

opt nearby non-tumor cells, inducing them to become immunosuppressive (Beatty et al., 

2015; Binnewies et al., 2018; Ennishi et al., 2019). Each of these heterotypic interactions, or 

combinations thereof, can help tumors escape one of the body’s most potent protections 

against metastasis (Binnewies et al., 2018).

It is still largely unknown whether single cells or clusters utilize distinct mechanisms of 

immune escape. Still, there are hints at cluster-specific mechanisms of immune evasion, 

particularly in regard to natural killer (NK) cells. NK cells play a key role in the targeting of 

metastases, and their infiltration into tumors often correlates with better patient prognoses 

(de Andrade et al., 2014; Malladi et al., 2016; Souza-Fonseca-Guimaraes et al., 2019). One 

recent study found that natural killer cells effectively killed single tumor cells, but not 

clusters (Lo et al., 2020). This depended partly on clusters’ ability to downregulate NK cell 

activating ligands, which include EMT promoting genes, and upregulate NK inhibitory 

ligands, which include cell-cell adhesion genes (Lo et al., 2020). In fact many cell-cell 

adhesion molecules function as NK cell inhibitory signals; classical E, N, and R-cadherins 

are ligands for the inhibitory KLRG1 receptor expressed on NK cells (Li et al., 2009). 

Downregulation of cell-cell adhesion, as in EMT, increases sensitivity to NK killing (Lo et 

al., 2020; López-Soto et al., 2013). This suggests that NK cells may be fundamentally better 

suited to kill aberrant post-EMT single cells rather than tumor cell clusters. However, a 

different study found that NK cells were able to specifically target and induce apoptosis in 

basal leader cells in collectively invading breast cancer strands, which could be exacerbated 

by antibody-dependent cell-mediated cytotoxicity. But after prolonged exposure to tumor 

cell clusters, NK cells were reprogrammed to a metastasis promoting state (Chan et al., 

2020). Further studies are needed to assess how collectively invading clusters or 

micrometastases evade targeting by NK cells and shift them into more permissive cell states. 

Wrenn et al. Page 13

Clin Exp Metastasis. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Altogether, these studies suggest that the metastatic advantage of clusters may be modulated 

by the immune or microenvironmental milieu, an important area of future investigation.

In addition to NK cells, the pro and anti-tumorigenic attributes of macrophages, T-cells, 

neutrophils, and other immune populations are known to be major determinants of 

metastatic colonization (Binnewies et al., 2018; Kitamura et al., 2015). We do not yet 

understand if and how their response to single cells or multicellular clusters differs, though 

recent studies point at some potentially interesting lines of questioning. One such study used 

an unbiased shRNA screen to identify CD44, which can mediate breast cancer tumor cell 

cluster cell-cell adhesion (Liu et al., 2019), as a novel positive regulator of the inhibitory 

immune checkpoint gene PDL1 (Kong et al., 2020). Another class of cell-cell adhesion 

molecules identified in tumor cell clusters, nectins, also may promote immune evasion. 

Nectin-2 can bind to TIGIT expressed on T-cells, resulting in T-cell inhibition (Deuss et al., 

2017; Yu et al., 2009). Circulating tumor cells are also vulnerable to immune attack while in 

transit in the bloodstream. Tumor cells may be able to evade circulating immune cells by 

multiple mechanisms including expression of PD-L1 (Mazel et al., 2015; Yue et al., 2018), 

upregulation of “don’t eat me” signals to avoid phagocytosis by macrophages (Baccelli et 

al., 2013; Baccelli et al., 2014; Steinert et al., 2014), or platelet coating and transfer of 

platelet-derived MHC I to tumor cells (Placke et al., 2012). But whether clusters and single 

cells utilize similar or distinct mechanisms of immune evasion in the blood remains unclear. 

Given the profound clinical impact of immune checkpoint blockade and chimeric antigen 

receptor T cells for many cancer types an important future direction is to develop a better 

understanding of how clustering impacts immune evasion.

Intercellular signaling promotes metastatic colonization and outgrowth by tumor cell 
clusters

The reproducible observations in many models that tumor cell clusters are intrinsically more 

proliferative and less apoptotic than single tumor cells suggests that cellular signaling 

pathways regulating those states are altered by clustering. Correspondingly, in normal cells 

cell-cell adhesion has long been known to strongly influence proliferation and survival 

(Benham-Pyle et al., 2015; Garcia et al., 2018; Livshits et al., 2012). Early findings 

suggested that single cells from certain tissues are apoptotic by default, unless rescued by 

the “social signaling” of adjacent cells – a mechanism which prevents lone cells from 

surviving in incorrect tissue locations (Raff, 1992). Other early studies in embryonic 

development noted “community effects”, in which direct interactions with neighboring cells 

were critical for promoting survival and differentiation (Gurdon, 1988). Using transplant 

experiments, researchers found that transplanting single cells early in development into 

different tissues could induce them to differentiate into the tissue present at that site. 

However, if cells were transplanted as a group they retained their original tissue type 

(Gurdon et al., 1993). Extensive studies since have shown that adhesion to neighboring cells, 

and the geometry of those adhesions, have profound effects on survival, proliferation, and 

differentiation of developing tissues (Gilmour et al., 2017; Xin et al., 2016).

Likewise, it has been speculated that cell-cell interaction is a prerequisite needed to achieve 

certain community-level effects and cooperative “decision making” in tumor cell 
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communities (Ben-Jacob et al., 2012; Deisboeck and Couzin, 2009; Hickson et al., 2009; 

Jolly et al., 2018; Korolev et al., 2014). However, many of the specific mechanisms of 

intercellular signaling active in disseminated clusters, micrometastases, and overt metastases 

remain to be elucidated. But increasing evidence indicates that by disseminating as a 

cohesive group, tumor cells in clusters may be able to activate cell-cell signaling networks 

that promote metastasis.

Paracrine and interclonal signaling—Paracrine signaling between cells plays a key 

role in development in which morphogen gradients, chemoattractants, and other secreted 

molecules determine the placement and formation of tissues (Wartlick et al., 2011). These 

paracrine signals can operate over incredibly long distances, sometimes forming gradients 

across an entire organism. Alternatively, they can operate in a spatially restricted, short-

range manner such as JAK-STAT signaling during border cell migration (Silver and Montell, 

2001) or tethering of TGFβ to the extracellular matrix (Maeda et al., 2011). Though long-

distance secretion and paracrine interactions can have an important role in cancer (Costa-

Silva et al., 2015), short-range signal exchanges are also possible between adjacent tumor 

cells. Paracrine signaling molecules between nearby cells in this manner maintains high 

local signal concentrations and effective signaling induction (Müller and Schier, 2011). This 

can result in a minority of cells in the cluster shifting the phenotype of their neighbors. For 

example Twist1 and Snail1 expressed in EMT-high breast cancer cells can induce EMT gene 

expression and promote aggression in neighboring non-EMT cells though paracrine 

secretion and activation of Hedhehog signaling (Neelakantan et al., 2017). Thus the close 

spatial proximity of cells in a tumor cell cluster can facilitate a particularly rapid and 

spatially concentrated form of paracrine signaling.

Heterogeneity within clusters may result in producer-receiver dynamics in paracrine 

signaling circuits when subgroups within the cluster differentially express ligands and 

receptors. These kinds of interclonal interactions can result in emergent cooperative, neutral, 

or competitive dynamics between tumor cells (Kok et al., 2021; Martín-Pardillos et al., 

2019; Marusyk et al., 2014; Tabassum and Polyak, 2015). Intercellular receptor-ligand 

interactions have been implicated in promoting primary or metastatic tumor cell cooperation 

and outgrowth via Wnt secretion (Cleary et al., 2014), cytokine production (Cleary et al., 

2014; Janiszewska et al., 2019), and EGFR ligand exchange (Hobor et al., 2014; Naffar-Abu 

Amara et al., 2020; Wrenn et al., 2020b). A recent study using breast cancer xenograft 

models found that polyclonal mixtures of IL11 and FIGF secreting clones generated 

significantly greater metastatic growth than either clone alone (Janiszewska et al., 2019). 

Another study isolated clonal populations from an ovarian patient derived xenograft cell 

line. A multiclonal mixture generated significantly greater tumor burden after injection than 

10 of 11 constituent clones – the only clone with an equivalent rate of growth had a 

particularly high degree of ERBB2 amplification which supported its anchorage-

independent growth. However, alone that ERBB2-high clone could not generate solid 

peritoneal metastases unless exposed to the growth factor amphiregulin which was secreted 

by other clones (Naffar-Abu Amara et al., 2020). These findings highlight the powerful 

effects of beneficial interclonal interactions on metastatic outgrowth.
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Direct signaling at cell-cell junctions—One emergent property of tumor cell clusters 

is that cells in such close proximity can signal directly to their adherent neighbors at sites of 

cell-cell contact (Toda et al., 2019). Perhaps the most obvious cluster-dependent signaling 

mechanism which this could enable is juxtacrine signaling, in which membrane-bound 

molecules on two apposing cells bind one another. Notch signaling, for example, is a well-

described mechanism of juxtacrine signaling which can promote metastatic success (Boareto 

et al., 2016; Jackstadt et al., 2019). During normal development and homeostasis, membrane 

bound Notch ligands bind the Notch receptor, resulting in receptor cleavage and transport of 

the C-terminal domain of the receptor to the nucleus where it can alter cellular transcription 

(Siebel and Lendahl, 2017). The Notch pathway encompasses five different ligands and four 

different receptors, resulting in many potential combinations with specific signaling outputs 

(Meurette and Mehlen, 2018). In tumor cells, Notch ligands like JAG1 have been implicated 

in increased tumor cell growth and dissemination (Choi et al., 2008; Riahi et al., 2015) as 

well as lumen formation in colon cancer cells (Kawai et al., 2020). In triple negative breast 

cancer, Notch overexpression increased the proportion of K14+ to K14− cells nearly 3-fold 

by increasing rates of symmetric division (Granit et al., 2018). In another recent study using 

lung cancer cells, JAG1 was highly enriched in leader cells and anti-JAG1 antibody 

treatment reduced collective invasion. And in ovarian tumor cell clusters, juxtacrine 

interactions between JAG1 and Notch3 result in increased proliferation (Choi et al., 2008). 

Notch signaling can also occur through heterotypic interactions with cells in the TME 

(Biktasova et al., 2015; Lin et al., 2017) or modify the TME itself, including through 

downstream TFGβ signaling and neutrophil recruitment (Jackstadt et al., 2019). In addition 

to the Notch pathway, ligands from several other pathways known to promote growth or 

metastasis such as ERBB, Ephrin, Hedgehog, and integrin signaling can each function in a 

membrane-bound, juxtacrine manner (Friedl and Mayor, 2017; Lu et al., 2014; Pettigrew et 

al., 2014; Singh and Harris, 2005).

Adjacent tumor cells can also form gap junctions which permit the direct diffusion of 

signaling molecules between their cytosols (Hitomi et al., 2015). Intercellular 

communication through gap junctions has been shown to increase migration in prostate 

cancer cells (Zhang et al., 2015), to promote stemness in glioblastoma cells (Hitomi et al., 

2015), to facilitate intercellular calcium transients in invasive glioma cells (Gritsenko et al., 

2020; Osswald et al., 2015), to enhance EGF gradient sensing during collective migration 

(Ellison et al., 2016), and to promote anchorage-independent growth of breast cancer cells 

(Gava et al., 2018). Gap junction proteins can also form hemi-channels which modify 

metastatic behavior through signaling in the extracellular space. A recent study found that 

invading leader cells released adenosine into the extracellular space through connexin-43 

hemichannels, and adenosine then activated Akt signaling through the adenosine receptor 1 

(ADORA1) to promote collective invasion (Khalil et al., 2020). The unique ability of gap 

junctions to facilitate direct cytosol-to-cytosol transmission or rapid cytosol-to-extracellular 

space release makes them an intriguing target to disrupt tumor cell-cell communication 

(Aasen et al., 2016).

3D cell arrangment and morphology-dependent signaling—Development of 3D 

culture models has improved our ability to recapitulate the all-encompassing interactions of 

Wrenn et al. Page 16

Clin Exp Metastasis. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tumor cells with one another and their environment during ex vivo experiments (Shamir and 

Ewald, 2014; Simian and Bissell, 2017). In addition to allowing 3D cell-cell or cell-matrix 

adhesions to form, 3D culture also facilitates important changes in shape as tumor cells 

combine to form complex structures resembling spheres, cysts, strands, or buds (Jamieson et 

al., 2017; Padmanaban et al., 2020; Sachs et al., 2018; van de Wetering et al., 2015). In 

normal cells such shape changes can alter cellular functions greatly (Gilmour et al., 2017), 

as when lateral line cells form rosettes with a central lumen concentrating FGFs to regulate 

collective migration (Durdu et al., 2014), when gut epithelia buckle to form concentrated 

pockets of Shh signaling (Shyer et al., 2015), or when cell-cell contacts in embyros fracture 

which determines the first axis of symmetry (Dumortier et al., 2019). Given the critical role 

cell placement and shape plays in normal homeostasis and development, it seems likely that 

these features could similarly shape tumor biology and signaling during metastasis.

We recently described a form of pro-metastatic signaling in tumor cell clusters similarly 

dependent on their collective 3D architecture. We find that breast cancer tumor cell clusters 

form “nanolumina”, open intercellular spaces lined by microvilli-like structures and gated at 

either end by cell-cell junctions (Wrenn et al., 2020b). These intercellular cavities have been 

previously observed in normal and tumor mammary epithelia (Ewald et al., 2012; 

Mazzucchelli et al., 2019; Tarin, 1969), but not ascribed with major functional importance or 

signaling properties. We identified a critical function for nanolumina during primary and 

metastatic tumor outgrowth, during which they act as concentrated reservoirs of the growth 

factor epigen (Epgn), whose expression is induced upon clustering, which promotes tumor 

cell cluster proliferation. Cell-cell junctions restrict the permeability of nanolumina, 

preventing entrance of some molecules and egress of others. This creates a private signaling 

compartment where pro-growth signals can be maintained and exchanged between cells at 

high concentrations without diffusing into the local microenvironment. Therefore, the 

collective production and sensing of epigen by tumor cells in clusters represents a pro-

growth signaling mechanism dependent on their 3D morphology and multicellular 

organization.

Importantly, we found that targeting this intercellular structure can reduce metastatic 

outgrowth. Epigen suppression or treatment with IFNγ to induce nanolumenal paracellular 

permeability both significantly suppressed metastatic outgrowth, with Epgn knockdown 

reducing metastatic outgrowth of tumor cell clusters in the lungs by over 94%. Interestingly, 

dependence on epigen signaling and nanoluminal morphology varied amongst subtypes of 

breast cancer. We found that high epigen expression and nanolumina with restricted 

permeability were present in basal-like 2 triple negative breast cancers but not 

mesenchymal-like triple negative breast cancers. Basal-like 2 breast cancers have poor 

treatment response and a limited number of available therapies (Lehmann et al., 2011; 

Masuda et al., 2013; Wang et al., 2019). Reducing epigen expression or disrupting 

nanolumenal permeability reduced metastatic outgrowth in clusters generated from basal-

like 2 cancer cells. These findings indicate that tumor cell clusters from specific subtypes of 

breast cancer, but not others, may rely on cooperative nanolumenal signaling generated by 

their 3D topology. We have much yet to learn about the role of nanolumina and nanolumenal 

trafficking of signaling molecules during metastasis. Further examination of these structures, 
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including assessing their prevalence across other normal and malignant tissues, may 

generate important insights as to how multicellular morphology regulates signaling.

In summary, the heterogeneity, direct cell-cell contacts, and 3D arrangement of cells in a 

tumor cell clusters can each facilitate modified or novel mechanisms of intercellular 

signaling during metastatic colonization that are not achievable by single cells. In addition to 

improving our understanding of the means by which cells can metastasize, these emergent 

signaling mechanisms may represent potential therapeutic targets in patients with cluster-

based dissemination.

UNRESOLVED QUESTIONS REGARDING SINGLE CELL VS. COLLECTIVE 

CELL METASTASIS

The field of collective metastasis remains an emerging area and many questions are still 

unanswered. Below we highlight a few questions we find particularly intriguing and discuss 

current perspectives on them based on recent findings.

How do bulky clusters enter and exit the bloodstream? Do they use the same mechanisms 
as single cells?

The exact details of tumor cell intravasation across different cancer types are still unclear, 

though the mechanisms used during metastasis are increasingly better understood (Bockhorn 

et al., 2007; Reymond et al., 2013). Cells may either approach blood vessels through random 

migration, or through active chemotaxis as in breast cancer when perivascular macrophages 

secrete EGF which attracts tumor cells (Roussos et al., 2011). To actually enter the 

circulation they must pass through surrounding basement membrane and past the tightly 

connected endothelial cells which form the vessel walls in a process of transendothelial 

migration known as diapedesis. Migration through these layers is difficult, but can be 

improved through different mechanisms; cells may secrete proteases like MT4MMP which 

can disrupt vessel integrity (Chabottaux et al., 2009), or squeeze through existing holes in 

the basement membrane (Baluk et al., 2003; Madsen and Sahai, 2010). Likewise local 

production of factors such as VEGF and TGFβ can weaken the endothelial barrier in mouse 

models of cancer, facilitating easier entry (Anderberg et al., 2013). Intravasation of tumor 

cells may also be assisted by other cells, particularly macrophages (Patsialou et al., 2009; 

Roh-Johnson et al., 2014). The collusion of perivascular macrophages, tumor cells, and cells 

expressing the actin regulatory MENA protein has been implicated in creating “doorways” 

through which tumor cells can pass into blood vessels (Karagiannis et al., 2017; Pignatelli et 

al., 2016). Thus, single tumor cells have a number of means by which to enter the 

circulation, with or without collaborating non-tumor cells.

However, the molecular and cellular events giving rise to multicellular tumor emboli are less 

clear. During diapedesis, cells squeeze through narrow openings ~3 μm wide between 

endothelial junctions (Baluk et al., 2003), a feat that seems difficult if not impossible for a 5-

cell circulating cluster. An alternative hypothesis is that clusters may instead be shed directly 

into fragile adjacent or tumor-transecting blood vessels without the need for diapedesis 

(Bockhorn et al., 2007). Cluster shedding may also be facilitated by the formation of mosaic 
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vessels, in which tumor cells displace endothelial cells and allow direct contact of the tumor 

mass with the bloodstream (Chang et al., 2000; Silvestri et al., 2020). Bypassing the need for 

transendothelial migration may protect tumor cells from the stress of migrating through 

ECM, pericytes, and endothelial cells, and instead allow tumor cell clusters immediate entry 

into the circulation despite their increased size.

Once in the circulation, tumor cells are surrounded by red blood cells and leukocytes and 

flowing at high speeds through vessels as large as the aorta and as small as <10 μm wide 

capillaries (Au et al., 2017; Au et al., 2016b). This environment generates substantial shear 

force which can increase cellular stress or even cause necrosis and cell fragmentation 

(Follain et al., 2020). Tumor cells must rapidly adapt to or exit this environment to move to 

the next phase of metastatic seeding (Follain et al., 2020; Gensbittel et al., 2021). In order to 

extravasate, tumor cells first slow down significantly either by generating adhesions with 

endothelial walls or by vessel occlusion (Follain et al., 2018; Kienast et al., 2010). In 

zebrafish models, which facilitate time lapse intravital imaging of cell circulation throughout 

an entire organism, tumor cells preferentially arrest in vessels with flow velocities below 

roughly 400–600 μm/second (Follain et al., 2018). There is also some evidence that clusters 

travel through vessels more slowly, facilitating longer interactions with endothelial cells 

(Choi et al., 2015; Patil et al., 2019). Some models suggest that clusters can also take 

advantage of different mechanisms of circulatory exit. Clusters may use endothelial 

remodeling to extravasate, in which endothelia enclose the arrested tumor cell cluster then 

expel it into the tissue (Allen et al., 2019; Follain et al., 2018). This mechanism was also 

observed to facilitate the extravasation of clusters of cardiac stem cells, hinting at a normal 

developmental role (Allen et al., 2017). CTC clusters were far more likely to use endothelial 

remodeling to extravasate than single cells in zebrafish models, and far more proliferative 

than single cells after extravasation (Allen et al., 2019). Despite intriguing differences in 

their means of exit, actual rates of extravasation between single cells and clusters appear 

similar (Allen et al., 2019). And while zebrafish provide an excellent model for live imaging 

of an intact circulatory system, further intravital observations of cluster entry and exit from 

the circulation in mammalian models will strengthen the human disease relevance of these 

models.

What is the relative efficiency of cluster-based and single-cell metastasis at each step of 
the metastatic cascade?

Multiple studies have used experimental metastasis assays to show that clustering of tumor 

cells increases their potential to generate distant metastases up to 500-fold more than equal 

numbers of single tumor cells (Table 2). But taking a step back, it is less obvious why 

clustering should provide increased efficiency compared with single tumor cells at earlier 

steps of metastasis. For example, one might predict that invasion of clusters is far less 

efficient simply because the small size of single cells allows them to navigate more 

restrictive environments (Mak et al., 2013; Wolf et al., 2013). In agreement, measured 

speeds of collective invasion are quite slow when compared to single cell migration; clusters 

often travel just 0.1–1 μm per minute (Friedl et al., 2012). But, while slower, migratory 

clusters may be better than single cells at following chemotactic cues. Clusters of mammary 

cells can sense gradients of EGF that are undetectable by single cells (Ellison et al., 2016) In 
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glioma, inhibition of intercellular cooperation through downregulation of p120 cadherin 

impairs migratory persistence (Gritsenko et al., 2020). Lymphoid malignancies can also 

form multicellular aggregates that undergo faster and more directional chemotaxis as 

clusters (Malet-Engra et al., 2015). This increased sensitivity is partly due to the increased 

size of cell clusters, which allows them to sample a larger range of signal gradients. Clusters 

of cells could also accomplish directional migration by generating and sensing their own 

chemokine gradients, instead of relying solely on long-range signals (Donà et al., 2013). In 

principle, collective invasion could represent a balance between competing demands. Larger 

clusters may be slower and less able to negotiate dense environments, but they can generate 

cooperative intercellular signals.

Still, the relative rarity of CTC clusters compared to individual CTCs in patients indicates 

that, though collective organization is often heavily favored in the peritumoral area, 

individualized cells outnumber clustered cells once in the circulatory system. The increased 

barriers to intravasation by clusters mentioned above are one plausible contributor to this 

shift. Another reason for the low steady-state proportion of CTC clusters in the blood could 

be more rapid arrest. Although tumor cell clusters can traverse microfluidic vessels as small 

as capillaries (Au et al., 2016a) the measured half-life of CTC clusters in a mouse model of 

breast cancer was shorter than single cells, at 6–10 minutes vs. 25–30 minutes (Aceto et al., 

2014). One breast cancer study found that the ratio of cells from tumor-draining vessels 

(local circulation) vs. heart puncture (systemic circulation) was over two-fold higher for 

CTC clusters than CTC single cells, suggesting enhanced rates of early arrest for tumor cell 

clusters (Szczerba et al., 2019). Still, clusters may be able to deform into single-file shapes 

that permit passage through narrow vessels and capillaries (Au et al., 2016b). Overall, these 

findings suggest that both single and clustered CTCs are cleared from the blood stream fairly 

rapidly, usually on the order of minutes to hours (Aceto et al., 2014; Meng et al., 2004; 

Sasportas and Gambhir, 2014).

But differences in metastatic success continue diverging considerably once cells have left the 

circulatory system. Prior studies, using mostly single tumor cells, have shown that the vast 

majority of cells are expected to die or enter dormancy within days of initial seeding 

(Chambers et al., 2002; Glaves et al., 1988; Luzzi et al., 1998; Yoshida et al., 1993). 

Recently, we observed that for every 1,000,000 single MMTV-PyMT breast cancer cells 

injected into mice, only 2.4 macrometastases formed after 3 weeks (Wrenn et al., 2020b). In 

contrast, for every 1,000,000 clustered cells, injected as small ~5–10 cell clusters, we 

observed over 1260 macrometastases. Closer examination at earlier time points revealed 

only 3% of the number of cells present in the lungs shortly after tail vein injection of single 

cells were detectable in the lungs 48 hours after injection. In contrast, in cluster-injected 

mice 30% of the number of arrested clusters present shortly after injection were present in 

the lungs 48 hours after injection. This ten-fold increase in early survival and persistence at 

metastatic sites could give clustered cells a major advantage over single tumor cells when 

seeding lung tissues.

During the final step of metastasis, colonization, disseminated tumor cells must not only 

survive but proliferate to establish overt metastases. Though it is possible for cells to begin 

proliferating shortly after seeding a metastatic site, some cancers are characterized by long 
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latent periods in which metastatic cells remain viable, but dormant, after dispersal to other 

tissues (Carlson et al., 2019; Ghajar, 2015; Ghajar et al., 2013; Risson et al., 2020). Dormant 

single cells are detected more commonly than clusters, and the presence of cell-cell adhesion 

in fact can promote escape from dormancy (Ruppender et al., 2015). Degree of cell-cell 

adhesion may also regulate entrance into a proliferative state; in a recent study we found that 

breast cancer tumor cell clusters in 3D culture were largely growth arrested below a 

threshold size of ~10 cells, but above that size experienced rapid outgrowth (Wrenn et al., 

2020a). As mentioned previously, a wide variety of cell-cell adhesion dependent 

mechanisms of signaling can feed into signaling pathways which regulate clusters’ 

proliferation. We identified the growth factor epigen as one such signal shared between 

clustered cells at metastatic sites. When Epgn was knocked down, injected clusters were 

equally as competent as control clusters to seed the lungs and persist for 3 weeks. However, 

Epgn knockdown reduced the outgrowth of those clusters in this metastatic environment 

over 15-fold. The signals regulating outgrowth in disseminated clusters and micrometastases 

are still mysterious, but our findings show that in some contexts intercellular signaling can 

be a major contributor to the massively increased outgrowth of metastasizing clusters vs. 

single cells.

What are the intersections between epithelial-mesenchymal transitions and collective 
metastasis?

The involvement of epithelial-to-mesenchymal transitions in tumor progression and 

metastasis has been the subject of intensive research for decades (for informative recent 

reviews see (Derynck and Weinberg, 2019; Pastushenko and Blanpain, 2019; Yang et al., 

2020). Recent findings have shown that, in both normal and cancer contexts, cells can 

undergo incomplete, partial, or hybrid EMT (Jolly et al., 2019; Williams et al., 2019; Yang et 

al., 2020). Rather than being a binary on/off state, EMT is a continuum of transitions 

between fully epithelial and fully mesenchymal extremes (McFaline-Figueroa et al., 2019; 

Meyer-Schaller et al., 2019; Pastushenko and Blanpain, 2019). Importantly, partial or hybrid 

EMT states have been described in circulating tumor cell clusters (Sun et al., 2018; Zeinali 

et al., 2020), and the prevalence of hybrid EMT phenotypes can vary with disease 

progression and treatment (Chebouti et al., 2017; Yu et al., 2013). Single cell RNA 

sequencing of human head and neck squamous cell carcinomas also identify cells with 

partial EMT phenotypes in a subset of patient samples (Puram et al., 2017). Further, partial 

EMT can also be achieved by mechanisms independent of transcriptional repression such as 

by protein internalization of E-cadherin (Aiello et al., 2018).

In principle, clustered tumor cells with partial EMT phenotypes could maintain aspects of 

the epithelial program necessary for metastatic outgrowth (important for later steps of 

metastasis) alongside mesenchymal features, such as “loosening” of cell-cell contacts and 

enhanced motility (important for tumor dissemination and earlier steps of metastasis). But 

recent studies also suggest even greater complexity. For example, loss of the epithelial gene 

E-cadherin increases invasion but reduces systemic tumor dissemination, at least in some 

breast cancer models (Padmanaban et al., 2019). Further, in colon cancer PDX models, 

metastatic colonization of tumor cell clusters was reduced by knockdown of either E-

cadherin or Zeb1, indicating a reliance on both epithelial and mesenchymal gene expression 
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(Mizukoshi et al., 2020). These studies suggest further work is warranted to dissect functions 

of classically epithelial and mesenchymal genes at both earlier and later steps of metastasis. 

In addition, these observations support experimental and theoretical studies indicating that 

hybrid EMT state tumor cells could possess intrinsically more aggressive tumorigenic and 

metastatic behavior (George et al., 2017; Grosse-Wilde et al., 2015; Jolly et al., 2014; 

Kröger et al., 2019).

An alternative but not mutually exclusive mechanism is that EMT-high tumor cells cooperate 

with EMT-low tumor cells to promote metastasis. For example, clusters collected from 

malignant ascites in ovarian cancer patients demonstrate heterogeneity in EMT state and this 

heterogeneity can promote therapy resistance (Kan et al., 2020). Likewise, tumor cells with a 

more migratory, mesenchymal-like phenotype can facilitate the metastatic success of less 

invasive cells through various means including heterotypic cluster formation and paracrine 

signaling (Calbo et al., 2011; Campbell et al., 2020; Neelakantan et al., 2017; Tsuji et al., 

2008). Together these studies support an important role not just for partial EMT, but for the 

cooperation of cells on different ends of the EMT spectrum to collectively accomplish 

invasion, survival, and outgrowth during metastasis. Further studies are needed to 

disentangle the molecular mechanisms connecting partial EMT, cooperativity, and metastatic 

potential.

How can cluster-based metastasis be interrupted therapeutically?

The unique properties of tumor cell clusters that promote metastasis could provide 

promising potential targets for clinical disruption. One such strategy would comprise 

treatments which block collective invasion by inhibiting leader cell activity. Leader cells 

may be targeted in multiple ways, such as suppressing leader-cell specific protein functions 

or metabolic states (Cheung et al., 2013; Commander et al., 2020; Khalil et al., 2019; Zhang 

et al., 2019a). Tumor cells with leader cell characteristics, e.g. basal keratin positive tumor 

cells, are also associated with micro-metastases at distant sites (Cheung et al., 2013; Lawson 

et al., 2015). Therapeutic targeting of leader cells could prevent invasion at the primary site, 

and possibly curb formation of metastases in distant organs, though this hypothesis remains 

to be tested rigorously.

A number of studies have also posited that killing or at least disaggregating CTC clusters in 

the circulation could benefit patients (Choi et al., 2015; Gkountela et al., 2019; Wei et al., 

2018). Still, caveats to this strategy need to be carefully considered. Disaggregating CTC 

clusters could produce more potential seeds of metastasis, since they might be broken apart 

into viable single cells or simply smaller clusters. Additionally, CTC clusters are identified 

and held together by common cell-cell adhesion molecules such as E-cadherin (Cheung et 

al., 2016; Na et al., 2020; Padmanaban et al., 2019), Epcam (Allard et al., 2004), CD44 (Liu 

et al., 2019), desmosomal proteins (Aceto et al., 2014), or claudins (Li et al., 2019). 

Targeting any of these genes would be challenging given that normal cells expressing the 

same genes could also be impacted. But further study may reveal distinct properties of tumor 

cell-cell adhesions, such as specific activation states (Na et al., 2020), that allow them to be 

targeted with less collateral damage to normal epithelia.
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Inhibiting the growth of micrometastases is also an important strategy to reduce metastasis-

associated mortality. This is largely because metastasis outgrowth can generate fatal health 

outcomes, but also because for many patients their primary tumor may have already seeded 

micrometastases before diagnosis and treatment (Hu et al., 2019; Hüsemann et al., 2008; 

Janni et al., 2011; Tang et al., 2021). We might be able to harness the immune system to 

target disseminated clusters and micrometastases to prevent their expansion. The last decade 

has seen immense progress in cancer immunotherapy through checkpoint blockade 

therapies, CAR-T cells, and other personalized immunotherapies (Riley et al., 2019). It is 

plausible that the immune system could be modified to better target cluster-based metastasis, 

for example by ex vivo engineering of NK cells to more effectively kill clusters (Chan et al., 

2020; Daher and Rezvani, 2018; Lo et al., 2020; Shimasaki et al., 2020). More detailed 

molecular insights into the activating and immunosuppressive signals generated by tumor 

cell clusters are needed first to develop these therapeutic approaches.

Another promising strategy may be to focus on the cooperation amongst cells that 

collectively promotes their metastatic potential, instead of targeting the individual cells 

themselves. For instance, therapeutics that block critical secreted paracrine molecules, 

disrupt juxtracrine interactions, or destroy nanolumina and other structures that facilitate 

intercellular communication may be effective. Resetting these clustered cell states to 

resemble those of individual cells may be able to mitigate the greatly increased metastatic 

efficiency that cells acquire after establishing cell-cell cohesion. A recent study found that 

interrupting integrin signaling generated by collectively invading sarcoma cells could 

enhance the efficacy of radiotherapy (Haeger et al., 2020). Alternatively, the highly 

interconnected nature of cancer cell collectives may itself generate therapeutic 

vulnerabilities. For instance, cell-cell contact can increase the potency of ionizing radiation 

or passage of toxic molecules when cells are electrically coupled by gap junctions (Calì et 

al., 2015; Fick et al., 1995). Disrupting cell-cell communication, or exploiting it to transmit 

anti-metastatic signals, may bring cells below molecular thresholds needed to acquire a 

highly proliferative, aggressive phenotype (Korolev et al., 2014). Importantly, as we have 

outlined above, intercellular cooperativity promotes metastasis throughout the entire 

metastatic cascade. Therefore multiple anti-collective therapies may be developed and used 

throughout the invasion, circulation, and colonization phases of metastasis. Still, It remains 

to be seen whether such strategies could be adapted to destroy collectively metastasizing 

cancers. But as more critical intercellular interactions are identified in cancer cell 

collectives, some may turn out to be fruitful clinical targets.

CONCLUSION

Here we have featured recent findings in the emerging field of collective metastasis 

regarding the manners in which single cell and cluster-based metastasis diverge. Already 

these findings suggest several key advantages generated specifically by cell-cell adhesion 

during metastasis. These emergent properties, dependent on the physical and biochemical 

coupling of tumor cells, occur throughout the metastatic cascade from beginning to end 

(Figure 1).
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• Tumor cells, particularly from epithelial-like cancers, are frequently organized as 

multicellular collectives during invasion, circulation, and metastatic seeding.

• Clustered organization can dramatically enhance the likelihood of successful 

metastatic colonization in animal models and frequently correlates with poorer 

prognoses in human patients.

• Intracluster heterogeneity during collective invasion generates leader-follower 

dynamics, potentially facilitating segregation of tasks and generating superior 

chemotaxis.

• Cell-cell adhesion signaling can override pro-apoptotic cues, such as the loss of 

adequate integrin-ECM interactions, or prevent attack by natural killer cells.

• Signaling mechanisms dependent on cell clustering such as short-range paracrine 

secretion, juxtacrine interactions, or nanolumina formation promote proliferation 

and metastatic colonization.

At present, a myriad of questions about the divergences between individual and collective 

metastasis remain unanswered. Overall tumor cell cluster biology remains in its infancy, but 

we anticipate that studies over the next several years will shed considerably more light on 

this process. Continually improving new technologies such as intravital imaging, single-cell 

sequencing, and CTC cluster isolation will be indispensable in unraveling these processes. 

As data accumulate and models of cluster-based dissemination in different cancer types 

crystallize, tractable therapeutic targets to disrupt collective metastasis and improve patient 

outcomes may reveal themselves.
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Figure 1. 
Our emerging understanding suggests key divergences between cluster-based collective 

metastasis and single cell-based mechanisms throughout the metastatic cascade.
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Table 1.

Clinical correlation of CTC clusters with poorer patient prognosis across common cancer types

Citation Cancer type # of patients OS HR (95% CI) PFS HR (95% CI) Were clusters an 
independent 
prognostic factor?

(Jansson et al., 2016)
Breast

a 50 7.0 (1.7 – 28.0) 1.8 (0.5 – 6.5) Yes

(Wang et al., 2017)
Breast

b 128 4.7 (1.9 – 11.6) 3.0 (1.7 – 5.3) Yes

(Larsson et al., 2018)
Breast

b 156 4.1 (2.0 – 8.3) 2.6 (1.5 – 4.8) Yes

(Paoletti et al., 2019)
Breast

b 549 15.1 (11.3 – 18.1) vs. 19.9 

(17.1 – 21.8)
†

NR No

(Costa et al., 2020)
Breast

b 54 4.5 (1.6 – 12.8) 4.0 (1.8 – 8.7) Yes

(Divella et al., 2014) Colorectal 103 5.9 (2.9 – 86.2) NR Yes

(Zheng et al., 2017)
Gastric

b 86 4.5 (1.7 – 12.0) 2.9 (1.2 – 6.8) Yes

(Sawabata et al., 2020)
Lung

b 104 8.9 (2.4 – 32.9) 4.4 (1.1 – 18.1) Yes

(Hou et al., 2012)
Lung (SCLC)

b 97 2.9 (1.7 – 5.2) 2.1 (1.2 – 3.5) Yes

(Long et al., 2016a)
Melanoma

b 128 5.1 (2.0 – 19.0) NR Yes

(Lee et al., 2017) Ovarian 54 ns ns No*

(Chang et al., 2016)
PDAC

b 63
8.2 (2.1 – 32.7)

††
487 (12.4 – 12884.9)

†† Yes

(Okegawa et al., 2018)
Prostate

b 98 4.2 (2.4 – 5.6) 4.4 (2.4 – 7.3) Yes

Summary of recent studies assessing the prognostic significance of circulating tumor cell clusters. OS = overall survival. PFS = progression free 
survival. HR = hazard ratio. CI = confidence interval. NR = not reported. ns = no significant difference.

a =
longitudinal time-dependent analysis of CTC cluster presence.

b =
baseline analysis of CTC cluster presence.

† =
median survival in months (with 95% CI) of patients with vs. without detected CTC clusters.

†† =
analysis of patients with unfavorable CTC cluster counts (greater than the mean of all cases: >30 clusters/2 mL blood).

* =
CTC-cluster positivity correlated with platinum resistance.
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Table 2.

Summary of experiments comparing the metastatic potential of single and clustered tumor cells.

Citation Model Method Findings

(Watanabe, 1954) Mouse bronchogenic 
carcinoma

Jugular injection into mice 92% take rate for clusters, 0% for single cells

(Fidler, 1973) B16 mouse melanoma Tail vein injection into 
mice

~3-fold more lung metastases formed in cluster-
injected mice after 2 weeks

(Liotta et al., 1976) T-241 fibrosarcoma Tail vein injection into 
mice

13 to 25-fold more lung metastases formed in 
cluster-injected mice after 12 days

(Aceto et al., 2014) MDA-MB-231-LM2 human 
breast cancer cell line

Orthotopic transplant into 
mice

~50-fold more lung metastases formed by CTC 
clusters from tumor transplants relative to single 
CTCs

4T1 mouse breast cancer cell 
line

Orthotopic transplant into 
mice

~23-fold more lung metastases formed by CTC 
clusters from tumor transplants relative to single 
CTCs

(Maddipati and 
Stanger, 2015)

KCPX mouse model of 
pancreatic cancer

Intraperitoneal injection 
into mice

>2-fold more metastases formed in cluster-injected 
mice after 3 weeks

KCPX mouse model of 
pancreatic cancer

Retro-orbital injection into 
mice

>15-fold more lung metastases formed in cluster-
injected mice after 3 weeks

KCPX mouse model of 
pancreatic cancer

Multi-color spontaneous 
mouse tumor model

80% of large metastatic lesions to peritoneum and 
diaphragm arose from multiple cells

(Cheung et al., 2016) MMTV-PyMT mouse model 
of Luminal B breast cancer

Orthotopic transplant into 
mice

Estimated >97% of lung metastases were derived 
from clusters (95% CI: 74–100%)

MMTV-PyMT mouse model 
of Luminal B breast cancer

Tail vein injection into 
mice

>100-fold more lung metastases formed by cluster-
injected mice after 3 weeks

(Zajac et al., 2018) Colorectal cancer PDX Intraperitoneal injection >20-fold higher tumor burden in cluster-injected 
mice after 40 days

(Allen et al., 2019) B16F10 mouse melanoma 
cell line

Tail vein injection into 
mice

~2-fold higher BLI signal of cluster-injected mice 
after 10 days

A375 human melanoma cell 
line

Tail vein injection into 
mice

~3-fold higher BLI signal of cluster-injected mice 
after 10 days

(Liu et al., 2019) Breast cancer PDX Orthotopic transplant into 
mice

54% of lung metastases were polyclonal 6–8 weeks 
after transplant (based on 2-color fluorescence)

Breast cancer PDX Tail vein injection into 
mice

>5-fold higher BLI signal of cluster-injected mice 
after 8 weeks

(Lo et al., 2020) 4T1 mouse breast cancer cell 
line

Tail vein injection into 
mice

~8-fold higher BLI signal of cluster-injected Balb/c 
mice after 7 days vs. single cells

AT3 mouse breast cancer cell 
line

Tail vein injection into 
mice

~500-fold higher BLI signal of cluster-injected 
C57BL/6 mice after 25 days vs. single cells

(Wrenn et al., 2020) MMTV-PyMT mouse model 
of Luminal B breast cancer

Tail vein injection into 
mice

141 to 532-fold more lung metastases formed in 
cluster-injected mice after 3 weeks

(Wrenn et al., 2020) MMTV-PyMT mouse model 
of Luminal B breast cancer

Intracardiac injection into 
mice

7.6-fold more metastases to systemic organs in 
cluster injected mice after 6 weeks

Summary of studies assessing the metastatic potential of single or clustered tumor cells in various mouse models of cancer.
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