Hindawi

Computational Intelligence and Neuroscience
Volume 2021, Article ID 1896953, 7 pages
https://doi.org/10.1155/2021/1896953

Review Article

Usages of Spark Framework with Different Machine

Learning Algorithms

Mohamed Ali Mohamed

, Ibrahim Mahmoud El-henawy, and Ahmad Salah

Computer Science Department, Faculty of Computers and Informatics, Zagazig University, Zagazig, Egypt

Correspondence should be addressed to Mohamed Ali Mohamed; mohamedaliismail@gmail.com and Ahmad Salah;
ahmad@hnu.edu.cn

Received 7 July 2021; Accepted 24 July 2021; Published 30 July 2021
Academic Editor: Ahmed Mostafa Khalil

Copyright © 2021 Mohamed Ali Mohamed et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Sensors, satellites, mobile devices, social media, e-commerce, and the Internet, among others, saturate us with data. The Internet of
Things, in particular, enables massive amounts of data to be generated more quickly. The Internet of Things is a term that describes
the process of connecting computers, smart devices, and other data-generating equipment to a network and transmitting data. As
a result, data is produced and updated on a regular basis to reflect changes in all areas and activities. As a consequence of this
exponential growth of data, a new term and idea known as big data have been coined. Big data is required to illuminate the
relationships between things, forecast future trends, and provide more information to decision-makers. The major problem at
present, however, is how to effectively collect and evaluate massive amounts of diverse and complicated data. In some sectors or
applications, machine learning models are the most frequently utilized methods for interpreting and analyzing data and obtaining
important information. On their own, traditional machine learning methods are unable to successfully handle large data
problems. This article gives an introduction to Spark architecture as a platform that machine learning methods may utilize to
address issues regarding the design and execution of large data systems. This article focuses on three machine learning types,

including regression, classification, and clustering, and how they can be applied on top of the Spark platform.

1. Introduction

Big data is a term used to describe large, varied, and complex
data collections that provide difficulties in terms of storing,
processing, and presenting them for future processes or
results. In 2021, Statista predicts that 74 zettabytes of data
will be produced [1]. According to IDC, the total quantity of
data in the globe will exceed 175 ZB by 2025, indicating a 61
percent compound annual growth rate [2]. Big data analytics
is the process of analyzing massive amounts of data in order
to discover hidden patterns and relationships. Big data re-
search is at the forefront of current research and industry.
Online transactions, emails, videos, audio files, pictures,
click streams, logs, posts, web searches, medical records,
social networking activities, scientific data, sensors, and cell

phones and their applications all contribute to the creation
of this data. They are stored in databases that grow in size
and complexity quickly, making them difficult to gather,
build, store, manage, distribute, analyze, and show using
conventional database software tools. Big data has been
defined in a number of ways by researchers, businesses, and
individuals. The most common definitions of big data are
Velocity, Volume, and Variety [3].

Apache Spark is a massively parallel in-memory pro-
cessing solution that supports batch and stream data pro-
cessing. Apache Spark’s primary aim is to use in-memory
computing to speed up batch data processing. For in-
memory analytics, Spark has the potential to be 100 times
faster than Hadoop MapReduce framework. Apache Spark’s
core engine provides fundamental cluster computing with

mailto:mohamedaliismail@gmail.com
mailto:ahmad@hnu.edu.cn
https://orcid.org/0000-0001-5545-9757
https://orcid.org/0000-0003-3433-7640
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1896953

in-memory functionality, such as fault recovery, memory
management, job scheduling, and communication with
databases [4].

The Spark application consists of five major components:
worker nodes, cluster managers, tasks, driver programs, and
executor processes. On a cluster, the Spark application works as
a separate group of processes that are controlled by a Spark-
Context object. This object is the Spark entry point, and it is
generated in a driver application, which is Spark’s primary
purpose. In cluster mode, SparkContext may interact with
several cluster managers to ensure that the application has
enough resources. YARN, Mesos, or Spark standalone clusters
may be used as a cluster management system.

To allow the scalability of data algorithms at a high speed,
the Spark engine provides an API for the main data ab-
straction used in programming such as the Resilient Dis-
tributed Dataset (RDD). RDD provides data analysis
activities, such as transformation and manipulation of data,
which may be utilized via the use of additional Spark li-
braries and tools. Spark’s fundamental data abstraction is the
RDD. It has a distributed collection of immutable objects,
which may run in a parallel way. Because an RDD is im-
mutable and cannot be altered once it is created, it is robust.
As it is transmitted through many compute nodes in the
cluster, an RDD is distributed. Every RDD is then divided
into many divisions, each of which may be calculated on a
separate node. This implies that the more divisions there are,
the more parallelism there will be. In their driver programs,
RDDs may be formed either by importing a dataset from
another source or by parallelizing the existing collection of
items [5].

Machine learning is a rapidly growing area of computer
methods. They are designed to absorb knowledge from their
environment to imitate human intelligence. Machine
learning has been used in a wide range of fields, including
computer vision, entertainment, and biology. A machine
learning algorithm is a computer software that performs
tasks using input data. The goal of machine learning is to
mimic how people learn to understand sensory (input) data
to accomplish a job [6].

Supervised, unsupervised, semisupervised, reinforce-
ment, evolutionary, and deep learning are all examples of
machine learning techniques. These techniques are used to
categorize the information gathered. We will focus on the
two most often used types of machine learning techniques,
supervised and unsupervised learning methods [7].

Supervised learning: algorithms respond appropriately
to all potential inputs when given a training set of examples
with suitable objectives. Supervised Learning is another
name for exemplar-based learning. Classification and re-
gression are two examples of Supervised Learning.

The main two tasks of supervised learning are classifi-
cation and regression. Classification is the process of
grouping data into predetermined groups or classes prior to
analysis. Classification is the process of classifying objects,
data, or ideas based on their shared features [8]. Regression
is a method that uses example data to infer relationships
between continuous inputs and outputs to generate pre-
dictions for fresh inputs [9].

Computational Intelligence and Neuroscience

Unsupervised learning: unsupervised learning is
methods looking for similarities between input data and
classify the data accordingly. Additionally, this is referred to
as an estimation of the density. There are no correct answers
or objectives in unsupervised learning. Clustering is a
technique that is used in unsupervised learning. Clustering:
it is the process of finding a structure or pattern within a
group of unlabeled datasets. Clustering techniques split a
given dataset into K clusters in such a manner that data
points within each cluster are linked to one another but are
different from data points in other clusters [10].

As per the new requirements for business analysis and
the massive amounts of data generated by all smart devices,
sensors, satellites, social media, and other sources, as well as
by new discoveries in various multidisciplinary sciences, the
currently applied methods of standalone data processing,
such as machine learning algorithms, face numerous chal-
lenges to meet these demands. All of these issues may be
summed up in a single phrase called big data or a set of
attributes such as volume, velocity, and variety. All of these
issues have an impact on machine learning’s ability to cope
with the new age of big data. Numerous platforms have been
developed to address these problems, including Hadoop and
Spark. We present Spark framework in this article as one of
the most applicable solutions to large data problems using
machine learning methods.

In this study, we show a range of approaches and tactics
for using machine learning techniques on top of the Spark
architecture, demonstrating how machine learning methods
can be utilized to deal with the problems of big data. The
following is the structure of this essay: Section 2 goes over
different applications and models of Spark and regression
methods for real-world problems. Section 3 shows the ap-
plied solutions of Spark and machine learning classification
methods. In Section 4, Spark and unsupervised clustering
machine learning algorithms are shown to be successful
solutions in many cases. Finally, the paper is concluded in
Section 5.

2. Regression Algorithms Using Spark

Radial basis function (RBF), general regression neural
network (GRNN), wavelet neural network (WNN), group
method of data handling (GMDH), and multilayer per-
ceptron (MLP) are all prominent neural network designs for
prediction. GRNN is superior to the other two designs, since
it entails single-pass learning and provides fairly acceptable
outcomes. Although GRNN employs single-pass learning, it
was incapable of handling large datasets due to the need for a
pattern layer, which is capable of retaining all cluster centers
after the clustering of all samples. As a consequence,
GRNN-++, a hybrid architecture, was introduced that scales
GRNN for huge data sets by invoking a parallel distributed
version of K-means++ dubbed K-means|| in the pattern
layer of GRNN. The proposed solution architecture was built
using Apache Spark’s distributed parallel computing ar-
chitecture in conjunction with HDFS. GRNN++ perfor-
mance was evaluated using a 613 MB gas sensor dataset with
tenfold cross-validation. The suggested GRNN++ algorithm

Computational Intelligence and Neuroscience

generates very little mean squared error (MSE). This paper’s
main objective was to provide a distributed and parallel
implementation of the conventional GRNN [11].

Predicting the magnitude of earthquakes is a difficult
issue that has been extensively researched throughout the
past decades. There are many statistical, geophysical, and
machine learning methods in the literature, but none of
them provide especially acceptable results. Recent years have
seen the emergence of sophisticated computing methods for
analyzing big data, enabling the study of enormous datasets.
These novel techniques use physical resources, such as
cloud-based systems. California is well known for being
among the world’s greatest seismic activity, and many data
are accessible.

California is well known for having among of the world’s
greatest seismic activity, and many data are accessible. Until
now, conventional machine learning techniques have been
used to forecast earthquakes. However, the examined
datasets were usually no more than a few MB in size. A 1GB
library was created for this purpose, including occurrences
from 1970 to 2017. Four regressors (linear models, gradient
boosting machine, deep learning, and random forest) were
used individually and in ensembles to forecast the maximum
magnitude over the next seven days. Due to the large
computing resources needed, it is essential to use big data
technologies and infrastructure. This method utilized the
Spark distributed computing framework and the R lan-
guage’s H,O package for cluster computing. Finally, Ama-
zon cloud computing infrastructures were used. Stacking-
based ensemble learning was used, which produced relative
errors of around 10% and absolute errors of about 0.5.
Techniques based on trees performed better, and, in general,
these methods achieved lower regression errors. The Apache
Spark framework, the R language’s H,O library, and Am-
azon cloud infrastructure were utilized, with extremely
promising results [12].

In recent years, high performance computing (HPC) has
become a popular subject. A supercomputer is one of the
world’s most popular HPC products. However, the con-
ventional supercomputer is no longer the dominant com-
puting platform, and its availability has shifted significantly
as a result of its high cost and limited accessibility. Thus, a
low-cost and easily accessible HPC system is needed. There
are three kinds of contemporary HPC systems that are more
accessible and affordable than conventional supercom-
puters. Grid, cloud, and cluster computing are all examples
of these. Cluster computing was developed to overcome
supercomputers’ dominance. Cluster computing is capable
of resolving issues that cannot be successfully addressed by
supercomputers. Typically, data mining is performed on a
stand-alone computer. However, depending on the size of
the dataset, mining the data on a single PC may take many
seconds, minutes, hours, or even days. A solution is required
to increase the efficiency of mining operations, particularly
in terms of processing time.

A data mining method was developed in a cluster en-
vironment to speed up the mining process in the research.
The performance of cluster computing was evaluated by
comparing it to different node counts and to standalone

computing. The research’s case study involved forecasting
flight delays using a linear regression method. All simula-
tions were run inside a virtual environment. The result
indicated that, by combining five PCs with identical spec-
ifications into a cluster environment, the performance of
computing was increased by up to 39.76 percent as com-
pared to a standalone environment. By adding more nodes
to the cluster, the process might be substantially accelerated
[13].

Spark provides over 180 configuration options to ensure
that periodic tasks run efficiently. Setting these settings has a
significant effect on the overall performance, since they were
initially set to default values when Spark was deployed. By
selecting the optimal setup, Spark’s performance might be
substantially boosted. However, since the ideal Spark con-
figuration is application-specific, implementing a single
configuration or changing a single parameter results in
suboptimal performance.

Not only are the Spark setup options simple, but they
also interact in complicated ways. Additionally, when the
input data collection is large, each run of the Spark program
takes a significant amount of time. These problems exac-
erbate the difficulty of forecasting the performance of Spark
applications in any arrangement. Performance models are
often a useful method to assist in resolving problems, since
they can anticipate much more quickly than an approach
that needs the program to be executed.

This research offered a method based on AdaBoost
projective sampling for efficiently and correctly forecasting
the performance of a given application on a particular Spark
setup. To reduce modelling overhead, traditional projective
sampling was used. In machine learning, the AdaBoost al-
gorithm is a type of ensemble learning. It creates and
combines many learners to complete learning tasks and has a
high prediction accuracy when dealing with complex high-
dimensional problems. The stage-level performance pre-
diction model was trained using data from the actual Spark
system. The model accepted the Spark settings as input and
generated a forecast of the model’s performance. The
method was evaluated using six standard Spark benchmarks,
each with five distinct input datasets. The findings indicated
that the average error of the model built using the proposed
method was just 9.02 percent, which was much less than the
average error of the current approaches [14].

This study discussed a technique for predicting time
series data using deep learning. The H20 big data analysis
framework’s deep feed forward neural network was utilized
in conjunction with the Apache Spark platform for dis-
tributed computing. Due to the fact that H,O does not
support multistep regression, a general-purpose technique
was offered to be utilized for prediction horizons of any
length, where h is the number of future values to be pre-
dicted. The approach entails subdividing the issue into h
forecasting subproblems, where / denotes the number of
samples to be forecasted concurrently. Thus, the optimal
prediction model for each subproblem may be determined,
enabling parallelization and adaptability to the big data
environment to be simpler. Additionally, a grid search was
used to determine the deep learning-based approach’s

optimum hyperparameters. The authors provide results
from a real-world dataset of energy usage in Spain from 2007
to 2016, using a ten-minute frequency sampling rate. The
accuracy and runtime were evaluated in relation to the
computer resources and dataset size, with the goal of
achieving a mean relative error of less than 2%. The method’s
scalability was evaluated in terms of time series length and
number of execution threads, and it demonstrated linear
scalability and excellent performance for distributed com-
puting. Finally, the methodology’s accuracy and scalability
have been compared to those of other previously published
methods. Deep learning has been shown to be one of the
most suitable techniques for processing large data time
series, alongside decision trees, in terms of scalability and
accuracy [15].

3. Classification Algorithms Using Spark

SARS-CoV-2 (COVID-19) spread quickly across the globe,
eventually resulting in a worldwide epidemic. It has had a
debilitating impact on public health. Thus, it is critical to
identify positive instances as soon as they are feasible to treat
the affected individuals promptly. Chest Computed To-
mography (CT) is one of the diagnostic tools for 2019-nCoV
acute respiratory illness. Advanced deep learning methods in
conjunction with radiological imaging may aid in the ac-
curate identification of the new coronavirus. Additionally, it
may help in overcoming the tough circumstances created by
a shortage of medical expertise and specialist physicians in
distant areas. This research demonstrated how to use Apache
Spark and KerasTensorFlow in conjunction with the Logistic
Regression method to identify COVID-19 in chest CT scans
automatically, utilizing the Convolutional Neural Network
(CNN) models VGG16, VGG19, and Xception. The model
correctly classified VGG16, VGG19, and Xception with an
accuracy of 85.64, 84.25, and 82.87 percent, respectively. This
approach enabled physicians to get a precise and definite
picture of the presence or absence of COVID-19 in chest CT
scans, enabling Moroccan medical professionals to utilize its
sophisticated capabilities as a diagnostic method in medical
imaging [16].

Data security refers to the process of safeguarding data
from security breaches and hackers. The intrusion detection
program is a software framework that continuously moni-
tors and analyzes network data to discover assaults using
conventional methods. These conventional infiltration
methods are very efficient when dealing with tiny amounts of
data. However, when the same methods are applied to large
data, the process of evaluating the data characteristics be-
comes inefficient, necessitating the usage of big data plat-
form such as Hadoop, Apache Spark, and Flink to build a
contemporary intrusion detection system (IDS). The ar-
chitecture of Apache Spark and a classification algorithm-
based IDS was described in this study, along with a tech-
nique for picking features from network security event data
using Chi-square. SGD was used to assess the performance
of Logistic Regression, Decision Trees, and SVMs in the
creation of an Apache Spark-based IDS using AUROC and
AUPR as metrics. Additionally, the training and testing

Computational Intelligence and Neuroscience

times for each method were set through all of the experi-
ments using the NSL-KDD dataset. The dataset is comprised
of the files KDDTrain+.txt and KDDTest+.txt. The dataset
contains 125,973 training and 22,544 testing instances, and
all instances in the training and testing files are utilized.
There are 41 characteristics and a single label for the class.

The performance and accuracy of various algorithms are
determined and utilized by IDS in a big data platform that
analyzes huge datasets. To determine if the data is normal or
manipulated, decision trees, SVMs, and Logistic Regression
are employed. The findings indicated that the decision tree
achieved a higher level of accuracy and logistic regression
required less time than other methods [17].

According to the development of sensors integrated into
mobile devices, the analysis of everyday human actions has
become more accessible and widespread. Numerous appli-
cations, such as health analysis, fitness monitoring, and user-
adaptive systems, have been created by delving deeply into
complicated human behaviors. The purpose of this article is
to provide a system for monitoring and recognizing the
activities of older people using the Apache Spark platform
for big data processing technology. To identify human be-
havior in the suggested framework, several classification
methods such as random forest classifier, decision tree, and
logistic regression, and from Apache Spark’s ML machine
learning package, were utilized. Two well-known datasets,
WISDM, smartphone accelerometers, and KAGGLE-UCI,
are utilized to validate the outputs of the proposed system.
The performance of classification-based methods for rec-
ognizing human activities is assessed in terms of accuracy,
Fl-score, training time, and testing time.

In the tests, it was discovered that a 70-30 dividing ratio,
which allocates 70 percent of the data to the training phase
and 30 percent to the testing phase, was the most convenient
configuration for dealing with a range of data. Thus, this
prevents the overtraining problem at the dataset, while still
ensuring that it is sufficiently trained for testing purposes.
The examination of the results revealed that Logistic Re-
gression with Cross-Fold Validation performed superior to
other methods in terms of F1-score and accuracy. When it
was evaluated against WISDM Time series data from the
human activity recognition accelerometer sensor, an accu-
racy of 72.10 percent was obtained. It achieved a maximum
accuracy of 91.02 percent when evaluated against time series
data from the KAGGLE-UCI Human Activity Recognition
Accelerometer-Sensor [18].

This study identifies VPN network traffic using time-
related characteristics extracted from Apache Spark and
artificial neural networks. Today’s Internet traffic is
encrypted utilizing VPN/Non-VPN protocols. This cir-
cumstance precludes the use of traditional deep packet
inspection techniques that analyze packet payloads. MAT-
LAB 2019b was used to carry out this study, since the
growing demand for VPN networks has triggered the de-
velopment of technology. The suggested approach eliminates
the redundant processing and flooding associated with
conventional VPN network traffic categorization. As the
proposed system is trained on 80% of the dataset, only 20% is
retained for testing and validation, using 10-fold cross-

Computational Intelligence and Neuroscience

validation and 50 training epochs. According to the authors,
this was the first research that introduced and used artificial
neural networks with the Apache spark engine to classify
VPN network traffic flow. VPN categorization accuracy is
96.76 percent, while utilizing ANN with Apache Spark
Engine. The suggested approach has a classification accuracy
of 92.56 percent for non-VPNs. This research established
that a method based on the CIC-Darknet2020 standard for
packet-level encrypted traffic categorization could not in-
clude packet header information since it enables high-
precision mapping of a packet to a particular application.
96.76 percent of all packets in the sample could be attributed
to an application when just non-VPN traffic was included
[19].

As data processing services have grown in popularity, it is
fairly uncommon for a computer system to have many
tenants that share the same computer resources, resulting in
performance anomalies caused by resource contention, faults,
workload unpredictable nature, software bugs, and a variety
of other main causes. For example, while application tasks
may show variations in execution time as a result of varying
dataset sizes, the inconstancy of the platform’s scheduling
problems, interruptions from other programs, and software
assertions from other users may lead to unusually long
running times viewed as abnormal by the end users.

Performance abnormalities detected late and manually
resolved in big data and cloud computing platforms may
result in infractions of performance and financial penalties.
To address this issue, an artificial neural network-based
method for anomaly detection was created and adapted for
the Apache Spark platform, which utilizes in-memory
processing. While Apache Spark has gained widespread
adoption in business because of its high performance and
flexibility, there is currently a lack of comprehensive
methods for detecting performance anomalies on this
platform. The proposed technique was based on artificial
neural networks for rapidly sifting through the data log in
Spark and the metrics of monitoring the operating system to
correctly identify and categorize abnormal behaviors
depending on the features of the Spark resilient distributed
datasets. The suggested approach is compared to three well-
known machine learning methods: support vector machine,
decision trees, and closest neighbor, as well as four versions
that take into account various monitoring datasets. As per
the findings, it is demonstrated that the suggested approach
outperforms existing methods, usually reaching 98-99
percent F-scores and providing much better accuracy in
detecting both the period during which anomalies happened
and their kind than other strategies [5].

4. Clustering Algorithms Using Spark

In general, current techniques for triangle counting are
incapable of handling large graphs. This work contributes by
presenting an adequate and flexible method for counting
triangles and calculating clustering coefficients on Apache
Spark framework to address the problems and obstacles
associated with large graphs. CCFinder was developed as a
straightforward, nevertheless effective, and scalable method

for computing the coeflicients of clustering on a local and
global scale, respectively, based on MapReduce paradigm
and the Spark platform. While Hadoop has been the most
well-known open-source MapReduce implementation, the
proposed method was built on Apache Spark infrastructure
because of its superior performance and optimization ca-
pabilities. Spark has a storage called Resilient Distributed
Datasets (RDDs), which allows users to preserve data across
jobs and provides fault tolerance even without the re-
quirement for replication. According to its major capability,
the method caches the reused data structure into distributed
memory, resulting in a significant speed boost. It is worth
noting that the method was not entirely dependent on the
functions of Map and Reduce, and it also used cogroup
operator, which is one of Spark capabilities. Cogroup op-
erator connects two RDDs to each other on the basis of their
keys, creating a new RDD with a shared key and two values
that match the inputs of RDDs.

The method was unique in the following ways. An ef-
fective data structure named (Filtered Ordered Neighbor
List) FONL was created, cached in Spark’s distributed
memory, and then utilized in the subsequent stages of
CCFinder. Each item inside the FONL includes just the
information needed that substantially lowers storage needs,
maximizes fine-grained parallelism, and enhances load
balancing. Even though the FONL data structure needs a
little amount of memory, if it cannot be completely cached
into distributed memory, the available hard drive space will
be utilized to retain the portions of the data structure that do
not fit in memory. CCFinder was able to quickly determine
the triangle count in a dedicated graph precisely by using the
FONL. The method of triangle counting is modified to
calculate the clustering coefficient, including the degree
information about the vertices in the proper locations.

CCFinder begins by constructing a list of neighbors to
every vertex. The FONL is constructed from the neighbor
listings that have been generated. Each FONL item consists
of a key-value pair, with the key component being a dis-
tinctive integer denoting a graph vertex. To stay away from
performing additional calculations (when counting trian-
gles), only neighbors of the related vertex (indicated by the
key part) with a degree higher than the level of the key vertex
are included in the component. Another data structure is
also produced from the FONL to be combined with FONL to
locate the triangles. CCFinder calculates clustering coeffi-
cients using the Spark abstraction. It produces less scram-
bled data and performs quicker than current similar
techniques during execution, since it creates as few things as
feasible and reuses cached data. To demonstrate the sug-
gested method’s efliciency and scalability, it was built on top
of a Spark cluster with 60 CPU cores and 500GB of memory
and tested on many common real-world graph datasets.
Directed and undirected graphs were considered. Twitter,
which has approximately 55.5 billion triangles, was antici-
pated to be the most difficult of these graphs. Scalability was
found to be adequate over a range of core counts. Addi-
tionally, the proposed method may be more efficient than
other distributed implementations such Nodelterator++
based on MapReduce and Cohen’s method [20].

Every day, as technology advances, a massive amount of
data containing valuable information, dubbed Big Data, is
produced. To handle such massive amounts of data, big data
platforms such as Hadoop, MapReduce, Apache Spark, and
others are required. Apache Spark, for example, outperforms
traditional frameworks like Hadoop MapReduce by up to
100 times. Scalable Machine Learning techniques are needed
to overcome space and temporal constraints in the pro-
cessing and interpretation of this data. Due to their cheap
processing needs, partitional clustering methods are fre-
quently used by academics for clustering big datasets. Thus,
the research examined the design and development of a
technique for partitional clustering using Apache Spark. The
research presented a partitional-based clustering method
called Scalable Random Sampling with Iterative Optimiza-
tion Fuzzy c-Means algorithm (SRSIO-FCM) that was built
on Apache Spark to address the difficulties of Big Data
Clustering. The efficacy of SRSIO-FCM is shown via com-
parison with a suggested scaled version of the Literal Fuzzy
c-Means (LFCM) algorithm dubbed SLFCM built on Apache
Spark. The comparison findings were expressed in terms of
the F-value measure’s ARI, objective function, run-time, and
scalability. The findings demonstrate SRSIO-enormous
FCM’s potential for Big Data clustering [21].

Fusion of sensor data is a crucial component of active
perception in autonomous robots in order for them to see
their environment properly, make appropriate adjustments
to improve their understanding of it, and provide actionable
insights. Despite the existence of a large body of research in
this area, just a few publications focus exclusively on un-
supervised machine learning, which is becoming more es-
sential in unlabeled, unknown environments.

The study offered an expandable self-organizing neural
design for environmental perception based on unsupervised
machine learning and multimodal fusion. The neural ar-
chitecture, inspired by its biological equivalent, is composed
of topographic maps for each modality and includes a new
scalable self-organization mechanism capable of handling
large volumes of high-velocity sensor input. Cross-modal
connections are utilized to express cooccurrence relation-
ships across modalities, and the reverse Hebbian projection
is employed for multimodal representation. Apache Hadoop
and Apache Spark created this scalable fusion method based
on unsupervised machine learning. It was tested on a large
multimodal dataset of human activity sensors to show ef-
ficient representation and multimodal fusion for active
perception. Additionally, the good cluster quality findings
indicate that multimodal fusion improved the outcomes
[22].

5. Conclusion

This article has given a thorough examination of the use of
the Spark framework in conjunction with machine learning
methods. The goal of this review is to demonstrate the value
of combining Spark, one of the most efficient distribution
system frameworks, with machine learning methods to
adapt to the requirements of large data systems. There were
three kinds of machine learning techniques: supervised

Computational Intelligence and Neuroscience

machine learning regression, supervised machine learning
classification, and unsupervised machine learning cluster-
ing, all of which were used with the Spark framework in
various areas.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] https://www.statista.com/statistics/871513/worldwide-data-
created.

[2] https://www.idc.com/getdoc.jsp?containerld=prUS47560321.

[3] S.Sagirogluand D. Sinanc, “Big data: a review,” in Proceedings
of the 2013 International Conference on Collaboration Tech-
nologies and Systems (CTS), IEEE, San Diego, CA, USA, May
2013.

[4] H. Benbrahim, H. Hachimi, and A. Amine, “Deep transfer
learning with Apache Spark to detect COVID-19 in chest
x-ray images,” Romanian Journal of Information Science and
Technology, vol. 23, pp. S117-5129, 2020.

[5] A. Alnafessah and G. Casale, “Artificial neural networks based
techniques for anomaly detection in Apache Spark,” Cluster
Computing, vol. 23, no. 2, pp. 1345-1360, 2020.

[6] 1. El Naqa and M. J. Murphy, “What is machine learning?” in
Machine Learning in Radiation Oncology, pp. 3-11, Springer,
Berlin, Germany, 2015.

[7] M. Fatima and M. Pasha, “Survey of machine learning al-
gorithms for disease diagnostic,” Journal of Intelligent
Learning Systems and Applications, vol. 9, no. 1, pp. 1-16, 2017.

[8] S. Vijayarani and S. Dhayanand, “Data mining classification
algorithms for kidney disease prediction,” International
Journal on Cybernetics & Informatics, vol. 4, no. 4, pp. 13-25,
2015.

[9] F. Stulp and O. Sigaud, “Many regression algorithms, one
unified model: a review,” Neural Networks, vol. 69, pp. 60-79,
2015.

[10] U. S. Shanthamallu, A. Spanias, C. Tepedelenlioglu, and
M. Stanley, “A brief survey of machine learning methods and
their sensor and IoT applications,” in Proceedings of the 2017
8th International Conference on Information, Intelligence,
Systems & Applications (IISA), IEEE, Larnaca, Cyprus, August
2017.

[11] S. Kamaruddin and V. Ravi, “GRNN++: a parallel and dis-
tributed version of GRNN under Apache Spark for big data
regression,” in Data Management, Analytics and Innovation,
pp. 215-227, Springer, Berlin, Germany, 2020.

[12] G. Asencio-Cortés, A. Morales-Esteban, X. Shang, and
F. Martinez-Alvareza, “Earthquake prediction in California
using regression algorithms and cloud-based big data infra-
structure,” Computers & Geosciences, vol. 115, pp. 198-210,
2018.

[13] C.Paramita, F. A. Rafrastara, U. Sudibyo, and R. I. W. Agung
Wibowo, “Performance evaluation of linear regression al-
gorithm in cluster environment,” International Journal of
Computer Science and Information Security (IJCSIS), vol. 18,
no. 3, 2020.

https://www.statista.com/statistics/871513/worldwide-data-created
https://www.statista.com/statistics/871513/worldwide-data-created
https://www.idc.com/getdoc.jsp?containerId=prUS47560321

Computational Intelligence and Neuroscience

[14] G. Cheng, S. Ying, B. Wang, and Y. Li, “Efficient performance
prediction for Apache Spark,” Journal of Parallel and Dis-
tributed Computing, vol. 149, pp. 40-51, 2021.

[15] J. F. Torres, A. Galicia, A. Troncoso, and F. Martinez-Alvarez,

“A scalable approach based on deep learning for big data time

series forecasting,” Integrated Computer-Aided Engineering,

vol. 25, no. 4, pp. 335-348, 2018.

H. Benbrahim, H. Hachimi, and A. Amine, “Peer review #1 of

“a deep learning algorithm to detect coronavirus (COVID-19)

disease using CT images (v0.1)”,” Walailak Journal of Science

& Technology, vol. 18, no. 11, pp. 1-14, 2021.

S. V. Siva reddy and S. Saravanan, “Performance evaluation of

classification algorithms in the design of Apache Spark based

intrusion detection system,” in Proceedings of the 2020 5th

International Conference on Communication and Electronics

Systems (ICCES), pp. 443-447, IEEE, Coimbatore, India, June

2020.

S. Gaur and G. P. Gupta, “Framework for monitoring and

recognition of the activities for elderly people from acceler-

ometer sensor data using apache spark,” in ICDSMLA 2019,

pp- 734-744, Springer, Berlin, Germany, 2020.

[19] S. A. Aswad and E. Sonuc, “Classification of VPN network

traffic flow using time related features on Apache Spark,” in

Proceedings of the 2020 4th International Symposium on

Multidisciplinary Studies and Innovative Technologies (ISM-

SIT), pp. 1-8, IEEE, Istanbul, Turkey, October 2020.

M. Alemi, H. Haghighi, and S. Shahrivari, “CCFinder: using

spark to find clustering coefficient in big graphs,” The Journal

of Supercomputing, vol. 73, no. 11, pp. 4683-4710, 2017.

N. Bharill, A. Tiwari, and A. Malviya, “Fuzzy based clustering

algorithms to handle big data with implementation on Apache

Spark,” in Proceedings of the 2016 IEEE Second International

Conference on Big Data Computing Service and Applications

(BigDataService), pp. 95-104, IEEE, Oxford, UK, March 2016.

M. Jayaratne, D. De Silva, and D. Alahakoon, “Unsupervised

machine learning based scalable fusion for active perception,”

IEEE Transactions on Automation Science and Engineering,

vol. 16, no. 4, pp. 1653-1663, 2019.

[16

(17

[18

[20

[21

[22

