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Background. N6-methyladenosine (m6A) is the most common internal modification present in mRNAs and long noncoding RNAs
(lncRNAs), associated with tumorigenesis and cancer progression. However, little is known about the roles of m6A and its regulatory
genes in nonsmall cell lung cancer (NSCLC). Here, we systematically explored the roles and prognostic significance of m6A-as-
sociated regulatory genes in NSCLC. Methods. .e copy number variation (CNV), mutation, mRNA expression data, and cor-
responding clinical pathology information of 1057 NSCLC patients were downloaded from the cancer genome atlas (TCGA)
database..e gain and loss levels of CNVswere determined by utilizing segmentation analysis andGISTIC algorithm..eGSEAwas
conducted to explore the functions related to different levels of m6A regulatory genes. Logrank test was utilized to assess the
prognostic significance of m6A-related gene’s CNV. Results. .e genetic alterations of ten m6A-associated regulators were identified
in 102 independent NSCLC samples and significantly related to advanced tumor stage. Deletions or shallow deletions corresponded
to lowermRNA expressionwhile copy number gains or amplifications were related to increasedmRNA expression ofm6A regulatory
genes. Survival analysis showed the patients with copy number loss of FTO with worse disease-free survival (DFS) or overall survival
(OS). Besides, copy number loss of YTHDC2 was also with poor OS for NSCLC patients. Moreover, high FTO expression was
significantly associated with oxidative phosphorylation, translation, and metabolism of mRNA. Conclusion. Our findings provide
novel insight for better understanding of the roles ofm6A regulators and RNA epigeneticmodification in the pathogenesis of NSCLC.

1. Introduction

Lung cancer is one of the most prevalent malignant tu-
mors and also the most lethal cancer with an approximate
5-year survival rate of 16% all over the world [1]. .e latest
cancer statistic data indicate that there will be 19,300,000
new tumor patients and more than 10,000,000 deaths in
2020 [1, 2]. Nonsmall cell lung cancer (NSCLC) is the
most prevalent type of lung tumor which accounts for 80%
of all cases. In the past decades, a series of therapeutics
including chemotherapy, surgery, radiotherapy, and im-
munotherapy were applied to lung tumor patients;
however, the prognosis of patients is still unfavorable and
is especially poor in advanced NSCLC [3]. NSCLC has
become a serious health problem worldwide. Hence, to

further explore the molecular pathogenesis underlying
NSCLC to develop effective diagnostics and therapies is
urgently needed.

.e genetic and epigenetic alterations of nucleotides
were involved in various regular bioprocesses such as reg-
ulation of gene expression, variable splicing, and protein
translation, which play essential roles in the occurrence and
progression of various diseases [4–6]. RNAs nucleotides
modification is a common epigenetic alteration and more
than 100 chemically modified nucleotides in different RNAs
have been identified [7, 8]. Among these, methylation of N6-
methyladenosine (m6A) is the most prevalent internal form
of messenger RNAs (mRNAs) and long noncoding RNAs
(lncRNAs) modification in eukaryotes [9]. Previous studies
have shown that m6A modification is present in more than
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7,600 mRNAs and in over 300 noncoding RNAs [10]. It is
known as m6A modification closely related to RNA splicing,
localization, stability, export, RNA-protein interactions,
alternative polyadenylation, and translation [11–13]. .e
cellular m6A methylation is mediated by a group of regu-
latory enzymes including “writers” Wilms’ tumor 1-asso-
ciated protein (WTAP), methyltransferase-like 3 (METTL3)
and METTL14, “erasers” fat mass and obesity-associated
protein (FTO) and alkB homolog 5 (ALKBH5), and
“readers” YTH domain containing 1 (YTHDC1/2) and YTH
N6-methyladenosine RNA binding protein 1/2/3 (YTHDF1/
2/3) [14–16]. Generally, m6A methylation is increased by
writers, erased by FTO or ALKBH5, and deciphered by
YTHDF1/2/3 or YTHDC1/2.

In recent years, growing evidences indicated that m6A
dysregulation plays critical roles in tumorigenesis and
cancer progression through diverse molecular mechanisms
[14–18]. Meanwhile, the expression level of m6A-related
regulatory proteins has been shown to be critically involved
in tumorigenesis [19–21]. Knockout of m6A methyl-
transferase can regulate cancer occurrence by affecting the
activity of p53 signaling pathway [22]. More recently,
downregulation of FTO reduced lung cancer cell prolifer-
ation and invasion and promoted cell apoptosis [23, 24].
Another study also revealed thatMETTL14 by regulating its
mRNA targets promotes leukemogenesis through mRNA
m6A modification [25]. All these results show that m6A
modification factors play essential roles in the occurrence of
a variety of cancers. However, the connection between m6A-
related regulatory factors and NSCLC remained not very
clear. In the present work, we systematically explored the
expression pattern of m6A regulators in NSCLC based on the
data from TCGA database. We also analyzed the association
betweenm6A-related genetic alterations and clinical features
including age, sex, pathological stage, disease-free survival
(DFS), and overall survival (OS).

2. Materials and Methods

2.1.AcquisitionofNSCLCData. .eCNV,mutation, mRNA
expression information, and corresponding clinicopatho-
logical information of 1057 NSCLC patients were obtained
from the TCGA database (GDC data portal) (https://
cancergenome.nih.gov/).

2.2. Data Preprocessing and Copy Number Variations
Identifying. .e gain and loss levels of copy number vari-
ations (CNVs) were determined by utilizing segmentation
analysis and GISTIC algorithm.

.e NSCLC samples were grouped into two classes:
without CNVs and mutation of ten m6A regulators and with
CNVs and/or mutation. .e expression of mRNA in each
CNV groups was calculated using R package “DESeq2.”

2.3. Gene Set Enrichment Analysis (GSEA). .e GSEA was
implemented to explore the functions related to different
levels of m6A regulatory genes.

.e JAVA program with MSigDB v6.1 was used to
execute GSEA. All samples were sorted into low- and high-
FTO level groups. .en, significant enrichment of gene sets
was calculated with a false discovery rate (FDR) value less
than 0.25 and a normalized P value less than 0.05.

2.4. Survival Analysis. All NSCLC samples were grouped by
with or without deletion/gain of each m6A regulator gene
and then a survival analysis was conducted by utilizing R
packages “survival” (https://cran.r-project.org/web/
packages/survival/index.html) and R package “survminer”
(https://cran.r-project.org/web/packages/survminer/index.
html). .e prognosis value of the CNV of m6A regulatory
gene was assessed by logrank test. Moreover, the
Kaplan–Meier plotter (https://kmplot.com/analysis/) was
used to analyze the prognosis value of each m6A regulator.

2.5. Statistical Analysis. All data were processed by utilizing
R (4.0)..e relationship between the CNV ofm6A regulators
and clinical-pathological features was investigated with chi-
square test or Kruskal–Wallis rank sum test. All P values less
than 0.05 were treated to be statistically significant.

3. Results

3.1. Mutations and CNV Events of m6A Regulators in NSCLC
Samples. In total, 1057 NSCLC specimens with sequencing
data were included in the present research. Among these, the
genetic alterations of m6A moderators were identified in 102
independent samples (Figure 1). In detail, the m6A “reader”
genes YTHDF3 (8.8%, 93/1057), YTHDF1 (7.85%, 83/1057),
and YTHDC2 (5.58%, 59/1057) are the top three genes in the
CNVs frequency (Table 1, Figure 2(a)). Moreover, the CNVs
of NSCLC-driven genes EGFR, KRAS, and TP53 were
assessed and the results were 13.43%, 10.69%, and 6.53%
(Table 1, Figure 2(a)), respectively. Subsequently, we
counted all CNV patterns in NSCLC samples and found that
the copy number loss events are the most of all CNVs (264/
495) (Table 1, Figure 2(b)). .e shallow deletions of
YTHDC2 are the most frequent copy number loss of these
ten m6A regulators, while the gain of YTHDF3 DNA copy
number is themost common change in the CNVs of tenm6A
regulatory genes (Table 1, Figure 2), suggesting a key sig-
nificance of m6A reader genes in RNA m6A methylation in
NSCLC patients.

3.2.Associationbetween theAlterations ofm6ARegulators and
Clinical-Pathological Characteristics. To investigate the
connection between genetic variations of m6A regulators
and the clinicopathological characteristics of NSCLC pa-
tients, we implemented a correlation analysis. .e results
showed that genetic alterations of m6A-related regulators
were obviously correlated to advanced tumor stage
(P< 0.05) (Table 2). Given that EGFR, TP53, and KRAS play
crucial roles in tumorigenesis and progression of lung
cancer, we examined the connection between m6A-related
regulators and the variations of the above three tumor-
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related genes. We found that the variations of m6A regu-
latory genes were obviously linked to EGFR and TP53 al-
teration (P< 0.05) (Table 3). In detail, only 54 samples were
missing from alterations of m6A regulators among the 316
patients with EGFR alteration and 57 samples were absent in
321 patients with TP53 alteration (Table 3). However, var-
iations of m6A regulators did not correlate significantly with
KRAS mutation (P> 0.05) (Table 3).

Subsequently, we further explored whether alterations in
m6A-related genes affect mRNA expression. .e results
suggested that the expression of mRNA was significantly
related to different CNV types in NSCLC patients. Deletions

or shallow deletions were corresponding to lower mRNA
expression while copy number gains or amplifications were
linked to increased mRNA expression of the ten m6A
regulators (Figure 3).

3.3. Prognostic Significance of CNVs in m6A Regulatory Genes
for NSCLCPatients. .e prognostic significance of CNVs in
the m6A regulators for DFS and OS among NSCLC patients
was investigated, there was no significant correlation be-
tween patients with/without CNVs of m6A-related regula-
tors and OS or DFS (Figures 4(a)-4(b)). However, further
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Figure 1: CNVs and mutations of top ten m6A regulators in NSCLC patients.

Table 1: CNV patterns in NSCLC patients (N� 1057).

Gene Diploid Deep deletion Shallow deletion Copy number gain Amplification CNV sum Percentage

Eraser ALKBH5 999 0 45 11 2 58 5.49
FTO 1004 2 30 20 1 53 5.01

Writer
METTL14 1034 1 21 1 0 23 2.18
METTL3 1032 1 20 1 3 25 2.37
WTAP 1004 1 39 12 1 53 5.01

Reader

YTHDF1 974 0 8 67 8 83 7.85
YTHDF2 1027 0 24 6 0 30 2.84
YTHDC1 1039 0 12 1 5 18 1.70
YTHDC2 998 1 53 4 1 59 5.58
YTHDF3 964 0 6 81 6 93 8.80

Others
EGFR 915 4 12 82 44 142 13.43
KRAS 944 4 9 72 28 113 10.69
TP53 988 4 55 8 2 69 6.53
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Figure 2: CNVs of ten m6A regulators in NSCLC. (a) CNV ratio of m6A regulators in NSCLC samples. (b) Number of gain or loss of DNA
copy number of m6A-related regulators in NSCLC patients.

Table 2: Clinical features of patients with NSCLC who are with or without genetic alterations of m6A regulators.

Parameters With mutation and/or
CNVs

Without mutation and/or
CNVs P value

Age ≤60 90 176 0.217
>60 223 524

Gender Female 123 283 0.787
Male 190 417

Primary diagnosis

Acinar cell carcinoma 6 16 0.07
Adenocarcinoma, NOS 102 210

Adenocarcinoma with mixed subtypes 37 71
Basaloid squamous cell carcinoma 5 9

Bronchiolo-alveolar carcinoma, mucinous 2 3
Bronchiolo-alveolar adenocarcinoma, NOS 1 2

Bronchiolo-alveolar carcinoma, nonmucinous 6 12
Clear cell adenocarcinoma, NOS 1 1
Micropapillary carcinoma, NOS 0 3
Mucinous adenocarcinoma 1 12

Papillary adenocarcinoma, NOS 6 16
Papillary squamous cell carcinoma 1 3

Signet ring cell carcinoma 0 1
Solid carcinoma, NOS 2 4

Squamous cell carcinoma, keratinizing, NOS 3 9
Squamous cell carcinoma, small cell,

nonkeratinizing 1 3

Squamous cell carcinoma, NOS 139 325

Tumor stage
Not reported 3 8 0.001∗
Stage I-II 242 559

Stage III-IV 68 133

Tissue or organ of
origin

Lower lobe, lung 99 251 0.137
Lung, NOS 14 37

Main bronchus 4 5
Middle lobe, lung 14 23

Overlapping lesion of lung 6 5
Upper lobe, lung 176 379

NOS, not otherwise specified.
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Table 3: Relationship between EGFR/KRAS/TP53 and m6A genes.

Gene With alteration in 10 m6A genes Without alteration in 10 m6A genes χ2 P value
EGFR WT 262 629 6.598 0.010

n� 1023 Alteration 54 78
TP53 WT 264 694 96.505 <0.001

n� 1024 Alteration 57 9
KRAS WT 283 647 2.039 0.153

n� 1036 Alteration 40 66
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Figure 3: Continued.
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analysis showed copy number loss of FTO with worse DFS
and OS (Figures 4(c)-4(d)). Besides, copy number loss of
YTHDC2 is also with poor OS for NSCLC patients

(Figure 4(e)). Furthermore, we further found low FTO ex-
pression was closely related to poor OS of lung cancer
patients by using Kaplan–Meier plotter (Figure 4(f )).
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Figure 3: .e relation between CNV types and m6A regulator expression.
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Figure 4: Continued.
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3.4. Enrichment Analysis of FTO Gains of Function. Given
that there is close correlation between CNVs and m6A
regulator FTO and NSCLC prognosis, a GSEA was executed
to investigate the gene enrichment in patients with different
FTO mRNA expression. .e results showed that high FTO
expression was significantly associated with multiple key
biological processes, including oxidative phosphorylation,
ribosome, translation, 3′-UTR-mediated translational reg-
ulation, metabolism of mRNA, and influenza life cycle
(Figure 5), which provides new clues for understanding the
pathogenesis of NSCLC.

4. Discussion

RNA modification is an emerging branch of epigenetics that
is increasingly attracting the interest of related researchers.
Currently, RNA modification is thought to be widespread in
almost all forms of RNA, including mRNAs, lncRNAs,
rRNAs, tRNAs, micro-RNAs, and small nucleolar RNAs
[26–28]. Previous studies have shown that RNA modifica-
tions include multiple forms, such as pseudouridine, N7-
methyladenosine, 2′-O-methylation, N1-methyladenosine,
N6,2-O-dimethyladenosine (m6A), and 5-methylcytosine
[29, 30]. Among them, m6A methylation is the most
commonmRNAmodification form and it participates in the
regulation of numerous biological processes in eukaryotes
[29–31]. .e cellular m6A status is dynamically regulated by
methyltransferases, binding proteins, and demethylases. .e
alterations of these regulatory factors lead to dysregulation
of m6A methylation and hence play an essential role in the
progression of various diseases [31–33].

Bioinformatics analysis plays a fundamental role in
disease diagnosis and pathogenesis research [34–36]. In this
study, we used bioinformatics approaches to systematically
identify the roles and prognostic values of m6A-related
regulatory factors in NSCLC. A total of 1057 NSCLC
samples with CNV information and clinical data from
TCGA were included. Of these, 102 independent samples
were identified as having the genetic variations of m6A-
related regulators. Compared with clear cell renal cell car-
cinoma (ccRCC) and acute myeloid leukemia, the frequency
of alterations in ten m6A-related genes in lung cancer is less
[37, 38]. Among all CNV patterns in NSCLC, the copy
number loss was the most important part of all CNV events,
which was similar as the CNV patterns in ccRCC [37] and
acute myeloid leukemia [38]. For all m6A regulators, dele-
tions are the most important part of CNVs in “eraser” and
“writer” genes, but the number of gain of CNV events in
“eraser” genes is higher than those of “writer” genes, which
eventually decreased the m6A level in NSCLC cells. Previous
studies have shown that m6A levels were downregulated in
various tumors, such as glioblastoma and breast cancer
[39–41]. .is may also be explained by the opposite effect on
m6A status for“eraser” and “writer” genes.

Furthermore, we found that copy number gains or
amplifications were positively correlated with mRNA levels
of the 10 m6A-related regulators while deletions or shallow
deletions were negatively related to mRNA levels, implying
that alterations in CNVs affect m6A-related genes expression
in NSCLC. Further analysis revealed that alterations of m6A-
related regulators were positively linked to cancer stage of
NSCLC. .ese results suggested that CNVs of m6A
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Figure 4: Survival analysis of NSCLC patients with CNVs of m6A-related regulators. ((a)-(b)) OS and DFS for NSCLC patients who have
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Figure 5: Continued.
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regulatory genes are involved in the regulation of tumor
progression by affecting methylation modification of RNAs.
A recent study found that overexpression of m6A methyl-
transferase METTL3 facilitates tumor development through
AFF4/NF-κB/MYC signal pathway in bladder cancer [42].
Another study also indicated changes in the expression of
m6A regulatory genes by regulating corresponding genes to
promote breast cancer progression [41]. We also found that
the changes of m6A modulators were significantly associated
with EGFR and TP53 alteration. EGFR is an important
oncogene, and its mediated pathways play crucial roles in
tumor occurrence and development [43–45], while TP53 is a
classic tumor suppressor gene [46]. Based on these findings,
we speculate that dysregulated m6A status induced EGFR
activation and TP53 inactivation to facilitate the tumori-
genesis and progress of NSCLC.

Moreover, we explored the prognostic value of m6A
regulator alterations in NSCLC. For all ten m6A-related genes,
only copy number loss of eraser gene FTO and reader gene
YTHDC2was significantly associated with poor survival status
for NSCLC patients. Besides, the results of Kaplan–Meier
plotter analysis also indicate that low FTO expression is related
to worse OS of lung cancer patients. Taking together, the
present results showed that the FTO levels are inversely related
to the survival time of patients with NSCLC. However, studies
have revealed that FTO as an m6A demethylase participates in
promoting the growth of lung cancer cells in vitro [23, 24].
.ese findings revealed that m6A regulatory genes are a
“double-edged sword” in tumorigenesis, which could lead to
not only tumor suppression but also tumor progression..us,
restoring the balanced state of RNAmethylation in tumor cells
is a new anticancer strategy.

.e present study displayed that m6A-related regula-
tory genes were also associated with multiple signaling

pathways and biological processes of NSCLC occurrence
and development. .e results of the GSEA suggested that
the expression of FTO was significantly related to oxidative
phosphorylation, ribosome, translation, 3′-UTR-mediated
translational regulation, and metabolism of mRNA.
Similar to our results, a previous study reported that FTO
expression was positively related to dextrose oxidation
rates and levels of genes related to oxidative phosphory-
lation in skeletal muscle [47]. It has been shown that
oxidative phosphorylation plays significant roles in lung
cancer proliferation, invasion, metastasis, and drug re-
sistance [48–50]. .erefore, it is likely that genetic alter-
ations of FTO regulate the progression of NSCLC by
affecting cellular oxidative phosphorylation levels. .e
specific molecular mechanism deserves to be explored
through further work. In addition, several biological
processes regulated by the m6A regulators have been
identified, including RNA metabolism, translational reg-
ulation, and protein translation [23, 51], which are con-
sistent with our GSEA results.

In conclusion, our work systematically displayed the
genetic alterations, expression patterns, potential roles, and
prognostic significance of m6A-related regulators in NSCLC
and found that the alterations of m6A regulators are highly
related to the malignant clinicopathological characteristics
including survival. .ese results help us to find out the
functions of m6A RNA methylation in the pathogenesis of
NSCLC. However, these findings need to be validated with
further clinical and molecular biology experiments.

Data Availability

Publicly available datasets were analyzed in this study. .ese
data can be found at https://www.cancer.gov/.
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Figure 5: GSEA outcomes of different expression level of FTO. (a) Oxidative phosphorylation, (b) ribosome, (c) translation, (d) 3′-UTR-
mediated translational regulation, (e) metabolism of mRNA, and (f) influenza life cycle.
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