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To advance the mission of in silico cell biology, modeling the
interactions of large and complex biological systems becomes
increasingly relevant. The combination of molecular dynamics
(MD) simulations and Markov state models (MSMs) has enabled
the construction of simplified models of molecular kinetics on
long timescales. Despite its success, this approach is inherently
limited by the size of the molecular system. With increasing
size of macromolecular complexes, the number of independent
or weakly coupled subsystems increases, and the number of
global system states increases exponentially, making the sam-
pling of all distinct global states unfeasible. In this work, we
present a technique called independent Markov decomposition
(IMD) that leverages weak coupling between subsystems to com-
pute a global kinetic model without requiring the sampling of all
combinatorial states of subsystems. We give a theoretical basis
for IMD and propose an approach for finding and validating such
a decomposition. Using empirical few-state MSMs of ion channel
models that are well established in electrophysiology, we demon-
strate that IMD models can reproduce experimental conductance
measurements with a major reduction in sampling compared with
a standard MSM approach. We further show how to find the opti-
mal partition of all-atom protein simulations into weakly coupled
subunits.

Markov state models | independent processes | molecular dynamics |
ion channels | optimal partition

The dynamics of proteins and their functions are of key impor-
tance for biology. Molecular dynamics (MD) simulations

are a popular method for interrogating the motions of pro-
teins in various environments. A well-known limitation of MD
is the timescale mismatch between simulations and real life.
Despite advances in computer hardware and algorithms, extreme
timescale simulations remain orders of magnitude shorter than
many relevant protein processes. Since one requires sufficient
numbers of observations to obtain statistical confidence, various
strategies have been developed to address this. One approach,
building Markov state models (MSM), enables the construc-
tion of simple models of long-timescale molecular kinetics from
many short off-equilibrium MD simulations (1–6)—see refs. 7
and 8 for thorough reviews. MSMs have successfully been built
to obtain compact and yet accurate representations of the kinet-
ics of full proteins (9–16), protein–ligand systems (17–22), and
even protein–protein systems (23).

Although MSMs have significantly helped to reduce the MD
sampling problem, the fundamental problem that arises from
modeling increasingly large biomolecular systems remains. As
protein complexes become larger, the number of uncoupled or
weakly coupled subsystems increases. If each of these subsys-
tems contains two or more substates, the number of global system
states increases exponentially (24). Therefore, any model treat-
ing the whole system by a global state poses requirements on the

MD sampling that are fundamentally unscalable. This poses an
inevitable problem as evolution tends to lead to increased biolog-
ical complexity, including the optimization of processes through
the formation of protein complexes and puncta (25–28).

In practice, many current models based on MD simulation
of large biomolecular systems take the pragmatic approach
of ignoring most of the system’s dynamics. For example, if
one is interested in how an ion channel conducts ions across
a membrane, it may be sufficient to prepare the system in
a state of interest and collect sufficient statistics of ion pas-
sages and perhaps local conformational changes of the selec-
tivity filter residues, rather than trying to sample global con-
formational rearrangements of the protein complex on much
longer timescales. However, our field has a collective inter-
est in developing whole-cell and systems modeling for in silico
medicine, which will necessitate the eventual understanding of
these large systems in a way that characterizes how all their
components interact, undergo transitions, and can be influenced
by, e.g., drug molecules, phosphorylation, and/or glycosylation
states.

To this end, Olsson and Noé (24) have recently proposed
dynamic graphical models that attempt to decompose protein
systems in a way similar to Ising or Potts models—subsystems
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with states or “spins” that are coupled to one another. Dibak
et al. (29) and del Razo et al. (30) have developed a cou-
pling of MSMs with reaction–diffusion dynamics to establish
an infrastructure in which MSMs can be integrated into whole-
cell models. Here we ask a more fundamental question, the
answer of which is important to all these integrative approaches:
Given a large biomolecular system, how should we decompose it
into subsystems, such that these subsystems can be described by
independent or weakly coupled MSMs?

Fragmenting proteins at the modeling stage is compatible with
prior experience as macromolecules are often subdivided into
structural or functional subunits (31). There is also evidence that
proteins are decomposable into “quasi-independent groups of
[spatially adjacent] amino acids” coined “protein sectors” (ref.
32, p. 774). Furthermore, experimental studies on drug binding
or protein functional characterization often use isolated domains
or monomers with great success (33).

Estimating an MSM on the decomposed protein can signif-
icantly reduce the total sampling necessary. From concepts in
statistical physics, given a polymer of length N where each sub-
unit exists in one of k states, the total conformational space is
expressed as kN (Fig. 1). Modeling subsystems of a constant size
effectively restricts the number of states that need to be sampled
reversibly to a constant. Therefore, exponentially less sampling is
required for modeling smaller subsystems compared to a global
model (15, 24).

In this paper, we develop a mathematical framework of
decomposing MSMs into local subsystem MSMs, termed inde-
pendent Markov decomposition (IMD) (Independent Markov
Decomposition), and propose a measure of decomposition qual-
ity, the dependency score (An MSM Score of Independence).
In the following, we refer to IMD as the process of identify-
ing subsystem MSMs and to an IMD model as a model that
describes a system as a set of independent, local Markovian
subunits.

We speculate that the IMD strategy can forge a connection
to other uses of MSMs such as those employed by the neuronal
and cardiac modeling communities. There, phenomenological
MSMs parameterized from electrophysiology data are used to
predict the behavior of action potentials (34–39). In Model-
ing a Tetrameric Ion Channel Using IMD we describe how a
decomposed MSM can be connected to a phenomenological
MSM. This connection between fields brings us closer to our
goals of understanding these large systems and their behaviors,

Fig. 1. Scaling behavior of a toy system consisting of n independent subsys-
tems with three states each (SI Appendix, Toy Models). The number of steps
required to reversibly sample all transitions is shown for proposed inde-
pendent models (blue line), the full-system model (red line), and pairwise
models that are needed for computing the dependency score (gray line).
Shadowed areas indicate 95% confidence intervals.

advancing in silico medicine. We further showcase how the
dependency score can be used to find an optimal partition of a
system that does not come with clearly defined independent sub-
units (Optimal Independent Markov Partitions for Tetrameric Ion
Channels). We validate our approach with a toy model, showing
that the decomposition approximation is high quality and that
the proposed validation score works even with limited data (SI
Appendix, Toy Models). Finally, we demonstrate its applicability
to an all-atom MD dataset of the Synaptotagmin-C2A domain
(Optimal Independent Markov Partitions for All-Atom Simula-
tions of Synaptotagmin-C2A) and derive the graph structure of
interresidue dependencies.

Independent Markov Decomposition
We first describe IMD for discrete-state MSMs before general-
izing it to time series with continuous descriptors.

Markov State Models. An MSM consists of a discretization of
molecular state space into a disjoint set of states {S1, . . . ,Sn}
and a Markov chain transition matrix P(τ) modeling a memory-
less jump process between these states. We can express whether
we are in the i th state or not by using indicator functions:

χi(x) =

{
1 x∈Si

0 otherwise.
[1]

The vector χ= [χ1, . . . ,χn ]> is thus a “one-hot” (or binary)
encoding that maps the continuous state x to the MSM dis-
cretization. For this or any other choice of features χ we can
compute the instantaneous and time-lagged correlation matrices
C00 =

∑
t χ(xt)χ>(xt) and C0τ =

∑
t χ(xt)χ>(xt+τ ), respec-

tively. For a fixed-state discretization, the transition matrix that
has maximum likelihood and also maximizes the variational
approach of conformation dynamics (VAC) (40) is

P(τ) = C−1
00 C0τ . [2]

Let pt denote the probability distribution of being in any of
the n states at time t ; for example, p0 = [1, 0, . . . , 0] denotes
that the system starts in state 0 at time 0. This vector can be
evolved in time using the transition matrix, until it converges to
the equilibrium distribution π = limt→∞ pt :

p>t+τ = p>t P(τ). [3]

An important concept for optimizing the parameters or hyper-
parameters of MSMs and other Markovian kinetic models is
the variational approach for Markov processes (VAMP) (41).
VAMP finds that a Markovian model that best approximates the
high-dimensional continuous dynamics maximizes the VAMP-n
score,

Rn(P) =
∥∥∥C−1/2

00 C0τC−1/2
ττ

∥∥∥n
n

, [4]

where we can use either n = 1 for the trace norm or n = 2 for the
Frobenius norm. If we run molecular dynamics at equilibrium
conditions, we can employ correlation matrix estimators that
provide C00 = Cττ and symmetric C0τ (detailed balance). In this
special case, VAMP becomes the VAC mentioned above, and
the variational score simply becomes Rn(P) = ‖P(τ)‖nn . In other
words, the optimal MSM is the one that maximizes the trace or
the Frobenius norm of the transition matrix, which is equivalent
to maximizing its eigenvalues. Since the eigenvalues equal the
normalized time autocorrelation of the slowest processes (1, 42),
the VAC tries to find the Markovian model that best resolves
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the slowest processes of the molecular process under investiga-
tion (40, 43). For a fixed state space discretization, optimizing
the VAC results in the MSM estimator (2). If we also want to
search over different state space discretizations, we can use VAC
or VAMP as a score in a hyperparameter optimization problem
(44) or optimize the VAMP score while representing χ with deep
neural networks, leading us to VAMPnets (45).

Independent Markov Decomposition. Now we move beyond the
common concept of modeling the dynamics of the entire molec-
ular system by a single MSM and instead try to decompose the
system into almost independent MSMs. Let us start with the sim-
ple example shown in Fig. 2A, where a molecule consists of two
domains, A and B , that are each described by a two-state MSM
describing whether the domain is “closed” (α,β= 0◦) or “open”
(α,β= 90◦). We assume that the kinetics of both domains are
statistically independent; i.e., each domain switches states inde-
pendent of the states of the other one—we simultaneously have
pA,t+τ = PA(τ)pA,t and pB,t+τ = PB (τ)pB,t (Fig. 2B). As the
MSMs A and B are statistically independent, the probability
distribution of the entire system follows Eq. 3 with

pt = pA,t ⊗ pB,t

P(τ) = PA(τ)⊗PB (τ), [5]

where ⊗ is the Kronecker product (46) (SI Appendix, Markov
Operators). The vector pt now contains the probabilities of being
in the four combinatorial states (A and B open, A open and B
closed, A closed and B open, A and B closed), and P(τ) is the
4× 4 transition matrix between these combinatorial states whose
transition probabilities are simply products of the individual tran-
sition events in subsystems A and B (Fig. 2 C and D). The power
of this approach is apparent when comparing Fig. 2 B and C: If the
dynamics in A and B are independent or almost independent, we
can estimate the 16 transition probabilities that parameterize the
whole system using only the eight elements of the transition matri-
ces of the subspaces. This advantage increases exponentially in
larger systems: If we have N (almost) independent domains with
m states each, distinguishing all states would require us to sample

and estimate an exponential number of order of m2N transitions,
whereas a decomposition into independent MSMs reduces this
to a polynomial number of Nm2 transitions that can be scaled
to large systems. From another point of view, IMD is more effi-
cient because it obtains a greater number of “effective” transition
counts for the global model by applying the Kronecker product
(SI Appendix, Effective Counts and Sampling). The above example
trivially generalizes toN systems with P(τ) =

⊗N
I PI (τ). We note

that it is customary to dismiss variables of the full state space Γ
(Fig. 2A) that are assumed to average quickly, e.g., solvent degrees
of freedom. Thus, the modeled space Ω in practice encompasses
only the variables of interest, e.g., internal coordinates of a protein
system.

An MSM Score of Independence. In practice, subdomains of
biomolecules or biomolecular complexes will not be exactly
independent. Moreover, the identification of a domain decom-
position into almost independent subdomains is a nontrivial task.
To enable algorithmic determination of almost independent
subdomains, we develop an independence score that quantifies
decomposition validity. To this end we come back to the varia-
tional approach, Eq. 4. Conveniently, matrix norms follow simple
rules when applied to a Kronecker product (SI Appendix, VAMP
Score Decomposition of Independent Systems). In practice, we
will apply the trace and Frobenius norms that correspond to
the VAMP-1 and VAMP-2 scores of the Koopman operator.
The VAMP-2 score has successfully been used in many practi-
cal applications (16, 45, 47, 48). If our molecular system consists
of N independent subdomains such that its global MSM is a
Kronecker product of N subspace MSMs as described above,
its VAMP score is the simple product of VAMP scores (SI
Appendix, VAMP Score Decomposition of Independent Systems):

Rn(P) =
N∏

I=1

Rn(PI ). [6]

Here, Rn(·) denotes the VAMP-n score of the transition oper-
ator. It could be the trace norm (VAMP-1) or Frobenius norm

A

B

C

D

Fig. 2. Operator decomposition and discretization on a test molecule. (A) A test molecule is decomposed into two subsystems (blue and red). The two
angles α and β span subspaces A and B corresponding to the two subsystems, respectively. The space Γ is composed of all system degrees of freedom.
The space Ω is the Cartesian product of A and B and its dynamics are described by Perron–Frobenius operators PA and PB, respectively. The dynamics in
Ω are given as the tensor product PA⊗ PB. (B) The molecule has metastable states at α= 0,π/2 and β= 0,π/2; the subspaces A and B can be discretized
into MSMs with transition probability matrices PA and PB. The quantities pij and qij are the transition probabilities from state i to j of subspaces A and B,
respectively. (C) The discretized dynamics in Ω are given by the tensor product PA⊗ PB, yielding the four states of the full molecule. (D) Illustration of the
four possible states of the molecule and the transitions between them.
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(VAMP-2) of the associated transition matrix. In practical appli-
cations, the VAMP-n score could be rank reduced, i.e., restricted
to the highest k <m singular values. Note that Eq. 6 is a nec-
essary but not a sufficient condition for Markov independence.
Significant deviations from equality in Eq. 6 indicate that the
assumption of independence is invalid. However, if separate
MSMs PI can probe the same molecular features, it is possi-
ble to satisfy Eq. 6 even though the subsystem MSMs are not
statistically independent. Eq. 6 must therefore always be used
in conjunction with appropriate constraints. Here, we choose
between different ways to assign independent molecular fea-
tures to different MSMs and check which of these assignments
best satisfies Eq. 6. In practice, we want to estimate an IMD
model because often we cannot compute the global MSM P
due to limited sampling (Fig. 1), and we consequently do not
know Rn(P). Therefore, we choose to check the equality of Eq.
6 only on pairs of subsystems A,B ; i.e., Rn(PA,B ) =Rn(PA) ·
Rn(PB ). We then search over possible partitions of the molec-
ular system into subsystems by evaluating the graph of pairwise
dependencies d(A,B):

d(A,B) = |Rn(PA,B )−Rn(PA) ·Rn(PB )|. [7]

In practice, computing PA,B involves a new estimate of the transi-
tion probability matrix in the joint space of two systems. We show
that our measure scales well with respect to limited sampling
(also compare SI Appendix, Toy Models).

The product in Eqs. 6 and 7 is purely a result of the cho-
sen basis set of MSMs (Eq. 1 and SI Appendix, VAMP Score
Decomposition of Independent Systems). In practical situations,
it is desirable to find a decomposition directly based on molecu-
lar features such as distances or contacts instead of performing
an MSM discretization and estimation for each subsystem. When
considering more general features χ, there are two main changes
to discrete-state MSMs: 1) Observables are propagated by a dif-
ferent operator, called a Koopman operator (49, 50), and 2) the
joint space of observables is most easily described by “stacking”
observable feature vectors rather than by defining an MSM dis-
cretization on the combinatorial space. For example, if ΨA =
(ψ1

A,ψ2
A, . . .) and ΨB = (ψ1

B ,ψ2
B , . . .) are the one-dimensional

time series of features ψ ∈R of two systems A and B , the joint
space would be spanned by ΨAB = ((ψ1

A,ψ1
B ), (ψ2

A,ψ2
B ), . . .).

The transfer operator describing the independent dynamics in
joint space is thus a block matrix of its constituting indepen-
dent suboperators (also called a direct sum; see SI Appendix,
Markov Operators for details). This also means that independent
subsystem features are not correlated. We note that stacking
in the MSM formulation would produce probability vectors not
normalized to 1 and yield invalid (i.e., not irreducible) MSM
transition matrices in the joint space. The trace and Frobenius
norm of the Koopman operator thus decompose as sums such
that the dependency score reads

d(A,B) = |Rn(KA) +Rn(KB )−Rn(KA,B )|, [8]

where K, the Koopman operator, takes the place of the transition
matrix P. See SI Appendix, VAMP Score Decomposition of Inde-
pendent Systems for the derivation. We note that even though
discussing MSM artifacts is out of the scope of this work, it is
unclear how possible discretization errors might propagate to
the MSM-based dependency (Eq. 7). However, such artifacts are
entirely ruled out when working in observable space (Eq. 8).

Results
Modeling a Tetrameric Ion Channel Using IMD. In cardiac elec-
trophysiology, Markov models have been used to model phe-
nomenological data from ion channels (37–39). Ion channels

are transmembrane proteins that respond to physiological stim-
uli and selectively control the flow of ions in excitable cells.
Upon a change in membrane potential, voltage-gated ion chan-
nels undergo conformational changes that modulate ionic con-
ductance. The symphony of ion channels collectively facilitates
the propagation of electrical signals in excitable tissues, such
as the heart and brain, and they are important drug targets (51,
52). The plethora of experimental measurements of ion channel
properties sets the stage for computational simulations to pro-
vide molecular details and mechanistic insights (53). Although it
is possible to fit a phenomenological MSM using data from elec-
trophysiological experiments, atomistic modeling remains out
of reach due to the long timescales of channel opening. This
is because single-gate activation events are rare, and many ion
channels have multiple gates that need to activate concurrently.
Reversible sampling will further be hampered by a combina-
torial number of pathways that lead to a fully open channel.
We propose that for cases of noncooperative gates, IMD can
help solve this problem, which we demonstrate in the follow-
ing series of numerical experiments. We consider a voltage-gated
tetrameric potassium ion channel with four identical subunits,
each with a voltage sensor. To construct an IMD model, we
exploit the independence of individual subunits or gates and
partition accordingly (Fig. 3 A, 1). This produces four matri-
ces Pi ∈R2×2, 1≤ i ≤ 4 that describe individual gate opening
and closing. As derived above, the Kronecker product of sub-
system transition matrices yields a transition matrix P∈R16×16

of the full ion channel (Fig. 3 A, 2). The 16 states enumerate all
possible combinations of open and closed gates of the full ion
channel, a state space referred to as S̃ in the following. We note
that this decomposition is possible only between noncooperative
domains.

We construct a mapping to assign the 16 states of the transition
matrix P to those of a phenomenological MSM. Our reference
empirical model is the one developed in ref. 54 for this channel
(Fig. 3B). In ref. 54, channel symmetry is used to define the full-
system states accordingly:

S =



C0 all gates closed
C1 1 gate open
C2 2 gates open
C3 3 gates open
C4 all gates open.

Mapping of the transition matrix into the space of these empir-
ical states can be obtained by converting the empirical state
definitions into crisp membership vectors χs ∈{0, 1}5, with each
element indicating which empirical configuration a full-system
configuration s ∈ S̃ belongs to. For example, the membership
vector describing any state sk with one open gate would be
χsk

= (0, 1, 0, 0, 0); i.e., these states are associated to macro-
configuration C1. The full membership matrix is constructed by
stacking χ= [χs1

,χs2
, . . .χs16

]∈{0, 1}5×16. Subsequently, the
transition matrix is coarse grained following (55, 56) Pempirical =

Π−1
c χTΠPχ∈R5×5 with Π= diag(π) the diagonal matrix of

the stationary distribution π in full space and in empirical space
Πc = diag(χTπ).

Choosing rates α and β from the original work by Hodgkin
and Huxley (34) at a voltage of 63 mV, we produce a sim-
ple discrete model. Using this model, we can generate sample
trajectories from which to construct MSMs in accordance with
Computational Experiments. We estimate a model for the full sys-
tem from these data by applying the aforementioned pipeline.
Using this derived full-system model, experimental observ-
ables from electrophysiology experiments can be assessed by

4 of 9 | PNAS
https://doi.org/10.1073/pnas.2105230118

Hempel et al.
Independent Markov decomposition: Toward modeling kinetics of biomolecular complexes

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105230118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105230118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105230118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105230118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105230118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105230118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105230118/-/DCSupplemental
https://doi.org/10.1073/pnas.2105230118


A
PP

LI
ED

M
A

TH
EM

A
TI

CS
BI

O
PH

YS
IC

S
A

N
D

CO
M

PU
TA

TI
O

N
A

L
BI

O
LO

G
Y

IMD

IMD

α

β

4αβ

3α2β

α4β

2α3β

C0

C1

C2

C3

C4

1. single model
estimation

2. Kronecker
product

3. empirical state
definitions

{C1:

A B C

D

}

Fig. 3. Reconstructing the Hodgkin–Huxley model from a simple discrete model. (A) Pipeline of steps required to assemble a full channel model from a
single subunit model that describes opening and closing of a single subunit in the vicinity of the others (A, 1). The Kronecker product between all four
subunit models assembles a model that still distinguishes between all combinatorial states (A, 2). Empirical state definitions account for channel symmetries
(A, 3). Black denotes an open, white a closed, and gray an undefined subunit. (B) Graphical depiction of full channel model in empirical state space. Note
the symmetry of the channel, i.e., that at this stage only the number of open subsystems is known. (C) Relaxation from a closed state into the native state
at 63 mV. We show conductance predicted by the IMD model (Left column) and the classic MSM (Right column), using different amounts of sampling. Note
that the classic approach yields only results in the high-sampling regime where all empirical states are connected. Results are compared to the original
Hodgkin–Huxley model (red dashed line). (D) Sampling time necessary to estimate a decomposed MSM (Left column) compared to a classic full-system MSM
(Right column) for 10 realizations of the Markov chain. We show the percentage of fully connected models in our ensemble of realizations (Top row) and
the first and fourth implied timescales computed from it (Bottom row). Note that for the classic MSM, extreme amounts of sampling are necessary to even
estimate all system-inherent implied timescales.

relaxation of the Markov chain from a nonequilibrium distri-
bution (e.g., a closed configuration) into the equilibrium at this
particular voltage (57, 58). We start from a configuration of fully
closed states and further assume that the channel conducts ions
only if it is open; i.e., our observable is nonzero only for the
open state. This experiment is the computational analog to a
voltage jump experiment from resting to +63 mV in voltage
clamp mode. Shown in Fig. 3C, the modeled conductance of
the channel over time is reported. The predicted conductance
time series is compared with the numerically integrated ordi-
nary differential equation for the potassium ion channel derived
by Hodgkin and Huxley (34). We find that the IMD model
can accurately reproduce the full channel dynamics. IMD mod-
els were built by separately fitting four single-gate trajectories
(i.e., a full-system trajectory split into its subsystems) and assem-
bled using the aforementioned steps. For comparison, traditional
MSMs were fitted to sample trajectories computed from the full-
system transition matrix in its empirical state definition. We note
that we compare the sampling necessary for IMD models to the
empirical 5-state formulation (which does not resolve all 16 com-
binatorial states). In this way, we can rule out that the described
sampling advantages of IMD are an artifact of exploited channel
symmetry. The reduction in the amount of sampling needed due
to the use of IMD can be quantified in terms of the length of
simulation required to form a fully connected transition matrix.
In Fig. 3D we present the percentage of connected IMD mod-
els estimated on an ensemble of 10 realizations of the Markov
chain and compare the result to a classic MSM. Note that even
though a necessary condition for MSM estimation, connectiv-
ity is not a quality criterion—we discuss approximation quality
below. Connectivity is computed as a function of simulated time
(in milliseconds); i.e., it shows how probable a modeler can esti-
mate a connected Markov model, IMD or classic, from a fixed
amount of sampling. We note that the classic MSM approach
can estimate all system-inherent implied timescales only when all
empirical states are reversibly sampled, i.e., only for very large
amounts of data. In terms of model approximation quality, the

higher computational efficiency of IMD is evident from the much
faster convergence of implied timescales as a function of simula-
tion length (Fig. 3D; also note root-mean-square error between
estimated and ground-truth eigenvalue spectra in SI Appendix,
Fig. S4). We find a reduction in sampling by three orders of mag-
nitude, from tens of seconds to tens of milliseconds (Fig. 3D).
For example, ionic conductance is reasonably approximated with
100 ms of sampling and the IMD approach (Fig. 3C).

Here, we have presented an example where each gate oper-
ates independently. In practice, the gating behaviors of most
ion channels are not completely independent, but are instead
coupled. In this case, the decomposition yields an approximate
model of the real dynamics; see SI Appendix, Weakly Coupled
Systems for a discussion. The theoretical limit is posed by the
assumption of stationarity that underlies MSM estimation. It
is violated if external influences are strong and on similar
timescales to those of the processes to be modeled. External
influences that are much faster than the local dynamics are
incorporated as an average over Markov states, similar to water
molecules in regular MSMs. As demonstrated in SI Appendix,
Fig. S1, modeling of weakly coupled systems is possible in a
robust fashion.

Optimal Independent Markov Partitions for Tetrameric Ion Channels.
For our previous example, we prescribed a convenient partition-
ing scheme for the ion channel system. In contrast, in real-world
situations a complex system may involve multiple independent
subsystems but the coupling graph is unknown a priori. For
instance, it might not be clear how to find independent pro-
tein segments of an unknown protein. A method is necessary
to aid in the discovery of viable partitions that produce inde-
pendent subsystems. In this section we demonstrate how the
dependency defined in An MSM Score of Independence can be
used as a score to bisect clusters of coupled subsystems from
weakly coupled ones. The idea is to compute all possible pair-
wise dependencies between all subsystems and to use them as
edge weights in a graph. If they exist, (almost) independent
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clusters of strongly coupled subsystems will be revealed by
analyzing this graph. Once identified, these clusters might be
modeled with single-subsystem transition matrices within the
IMD framework. For the purposes of demonstration, we zoom
out from a single-channel protein to a membrane patch (Fig.
4A). In our setup, this patch contains a dimer of channels that
we model to be coupled by a weak, cooperative coupling. Indi-
vidual channels are modeled using the same parameters as in
the above ion channel model but contain the additional ele-
ment of an external deactivation switch (Fig. 4B). In a cellular
environment, such a switch could, for example, be an inhibitory
ligand that binds and unbinds at a certain rate. It is modeled
as a Markov process with probability 0.01 to change its state.
The deactivation switch alters the conformational dynamics of
each gate such that the probability to close or to stay closed
is 95%. Thus, by construction, it is not possible to decompose
a channel MSM into single-gate MSMs because each gate is
now coupled to the deactivation switch. Further, the strength of
the intrachannel coupling can be controlled by a linear mixture
parameter λ. The dynamics described above correspond to λ= 1,
strong coupling. The coupling can be entirely deactivated by set-
ting λ= 0. See SI Appendix, Dimer Model for implementation
details.

We generate discrete time series data from a transition matrix
that models a dimer with these properties (SI Appendix, Dimer
Model and Computational Experiments). From the data, the
dependency d is computed for all possible pairs of subsystems.
This involves the estimation of transition matrices for two iso-
lated subsystems and comparing them with the transition matrix
estimated in the joint space using Eq. 7. For example, one such
pair could be the deactivation switch of one channel and a gate
of the other channel. A natural representation of these pair-
wise norms between subsystems is a graph. It is formed by nodes
(subsystems) and dependency-weighted edges; no assumption
about its structure is made (e.g., that it is a fully connected
graph). For the numerical experiment described in this section,
our analysis yields the graph shown in Fig. 4D. The graph is visu-
alized by positioning the subsystems or graph nodes with the
Fruchterman–Reingold algorithm (59, 60), which is sensitive to

the edge weights. This means that subsystems with high depen-
dency are grouped together. This helps us to visually identify
clusters of coupled subsystems. Groups of subsystems that are
far apart in this representation are coupled relatively weakly. We
find that dependencies between subsystems of the same channel
are significantly larger than zero while interchannel interactions
yield dependencies close to zero (Fig. 4D). Further, reducing the
coupling strength within a channel does not alter our qualitative
results (Fig. 4C). The observed bifurcation of dependencies is
due to the two types of coupling in the system (gate–gate vs. gate–
deactivation switch) and is a feature of the dimer model system.
In summary, our results show that we can learn the connectivity
of a network of subsystems from discrete, simulated time series
data. In particular, the dependency score provides an approach
to find an optimal partition of a system with multiple types of
coupling.

Optimal Independent Markov Partitions for All-Atom Simulations of
Synaptotagmin-C2A. To showcase the applicability of the depen-
dency score, we apply our method to a 180-µs molecular dynam-
ics dataset of the C2A domain of Synaptotagmin-1 (Syt). Syt is
a crucial player in the neurotransmitter release machinery (61).
In our previous study we have found that single loops of its C2A
domain can be described independently of each other using a
hand-crafted partition (15). Here, we attempt to find an optimal
partition by using the dependency score at the residue resolution
(Application to MD Dataset). Instead of working with MSM tran-
sition probabilities, we directly work in protein feature space to
omit discretization artifacts. We find that indeed, Syt-C2A can
be partitioned into defined subunits, or conformational switches,
using a VAMP-2–based dependency score (Fig. 5). The depen-
dency network spanned by Syt-C2A residues expresses defined
subsystem clusters. Within each subsystem cluster, residues are
embedded with high normalized dependency scores whereas
between different subsystem clusters, these links are weaker
(Fig. 5A). The boundary between what is considered a high and
a low normalized dependency tends to be ∼0.6; we, however,
note that this value might be system specific. The discovered
partition contains the conformational switches defined in our last

A

B

DC

Fig. 4. Visualization of channel dimer. (A) Two channels located in a membrane. Each channel consists of four gates (akin to a Hodgkin–Huxley model,
depicted by cylinders) and one desensitization switch (depicted as an additional oval domain). (B) States and possible transitions of individual channels
(simplified, short-lived switch-deactivated open states are omitted). As both channels have the same dynamics, only one is shown as an example. (C)
Dependency score as a function of coupling strength as defined by the linear mixture parameter λ. Color code: Gray denotes scores between two molecules,
and black denotes intrachannel pairs. (D) Graph of pairwise dependencies between all channel subunits for λ= 1. Edges are color coded according to
dependency scores between two systems. Nodes belonging to a single channel are color coded accordingly, and square nodes represent deactivation
switches.
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Fig. 5. Dependency network between residues of Syt-1 C2A depicted using
a standard graph layout (Fruchterman–Reingold algorithm). (A) VAMP-
2 normalized dependency network. Edge weights are indicated by color
bar. Nodes are colored according to an unsupervised classification by the
k-means algorithm (k = 7). Dependency histograms depict coupling strength
of residues within a subsystem cluster (red) and between different subsys-
tem clusters (blue). (B) Visualization of protein structure with color-coded
segments from our VAMP-2 analysis (colors correspond to classification
in A). VAMP-1 yields similar results (not shown here; see SI Appendix,
Fig. S2).

study (15): In particular, the C78 switch (Fig. 5B, red) emerges
as an independent cluster in the Fruchterman–Reingold pro-
jection, confirming our previous results. However, even though
conformational switches in the calcium-binding region (CBR),
CBR-1 and -2 together (Fig. 5B, green), are connected to
the other protein residues by a low dependency, describing
these loops independently is an approximation that is only par-
tially backed by this current study. Similar results are obtained
when using a VAMP-1–based dependency (SI Appendix,
Fig. S2).

Discussion
Over the past several decades, MSM methodology has matured
into a valuable tool for MD data analysis (1, 3, 4, 7, 8, 13,

20–23, 42). For practitioners, modeling MD data with MSMs
remains a nontrivial task, especially as researchers turn their
focus toward the study of progressively larger biomolecular com-
plexes. Larger systems generally come with an increasing number
of (metastable) states that demand vast amounts of sampling
time and hamper attempts to rigorously model protein dynam-
ics. In these scenarios, the classic MSM method reaches a point
where the combinatorial explosion of states becomes a criti-
cal bottleneck. It is a fundamental problem that is inherent
to any method that seeks to describe the global protein state
(24). One possible solution is to appreciate the notion of inde-
pendent protein segments (32) and to split large systems into
smaller, more manageable subsystems. In this spirit, we have
proposed independent Markov decomposition. For practition-
ers, this means that, for example, an ion channel is modeled
as a set of individual gates as opposed to a single protein. This
approach approximates the system as a set of independent sub-
systems and is naturally agnostic to global system size. In this
paper we have shown how the conceptual idea of IMD relates
to the underlying transfer operator formulation, what sampling
advantages can be expected, and how to use the proposed depen-
dency score to find an optimal partition of an unknown system.
Using the tetrameric potassium ion channel as a model system,
we show that we can estimate a fully converged model with
approximately three orders of magnitude less sampling when
compared to a classic MSM. IMD therefore has the poten-
tial to leverage sampling efforts for large biological systems
into a regime that is achievable with state-of-the-art simulation
techniques and computer hardware. This effect is due to data
being used more efficiently while small compromises are made
by a mean-field–like approximation. For systems with poten-
tially weak couplings, the validity of the approximation can be
checked with our dependency score a posteriori. We further
posit that due to the tremendous sampling advantages, the esti-
mation errors introduced by weak couplings are likely to be
smaller than the sampling error for classic global-state MSMs.
Our results suggest that IMD improves the assessment of sam-
pling convergence for large systems. As real-world MD datasets
are usually very high dimensional, in practice, it is a nontriv-
ial task to assess whether the sampling is converged. Often,
researchers can only speculate by using semiempirical tests, i.e.,
matching of high-level experimental observables to model pre-
dictions. IMD offers a more rigorous way to tackle this problem.
For example, when modeling a single protein loop, it is much
easier to see whether the process is sampled reversibly, a ques-
tion that can be difficult to answer with a classic MSM on global
states.

Furthermore, we have proposed a dependency score that
quantifies the coupling between two subsystems. As there is no
general rule for how to define protein subsystems, the depen-
dency score serves as an objective function to judge IMD
model approximation quality and to find an optimal partition
of unknown systems. In a numerical test system of a switched
dimer model with weak cooperative coupling, the dependency
score has robustly bisected clusters of strongly coupled subsys-
tems from weakly coupled ones. It thus enabled IMD model
estimation without knowing the dependency graph structure a
priori. To optimally partition a system in practical applications,
a sufficiently large biomolecular system could be first parti-
tioned into minimal subsystems such as residue side chains.
Scoring the dependency between these subsystems can reveal
the structure of the dependency graph and thus give rise to
a definition of (almost) independent protein segments. We
note that IMD is designed for systems with time-constant,
independent subunits; i.e., it is most probably not suitable
for few-residue peptides or protein folding [for a counterex-
ample using Chignolin (62), cf. SI Appendix, Fig. S3]. We
have shown that for the C2A domain of Synaptotagmin-1, the
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dependency score can be used to identify clusters of subsys-
tems that are linked relatively weakly between each other. These
subsystems are similar to the conformational switches identified
and independently modeled in ref. 15. We, however, note that
the current, prototypical implementation of assigning residues
to subsystems is subject to stochasticity. For future work, in
particular for larger biomolecular complexes, it will be desirable
to incorporate experimental knowledge about size and prop-
erties of “protein sectors” (32). An aspect excluded in this
conceptual study is the discretization of MD data, a step that
can be crucial in practical MSM applications (4, 63). We note
that subsystem MSMs have smaller dimensionality and there-
fore discretization errors are smaller compared to those in the
higher-dimensional full system. This implies that IMD models
may reduce discretization artifacts compared to classic MSMs.
However, further work should consider the implications of the
discretization error as it is unclear how it propagates to joint
space probability estimates and dependency score. Furthermore,
the lag time τ has twofold implications on IMD: First, when esti-
mating local, independent subunit MSMs, the choice of lag time
must be verified for each independent MSM as for classic MSMs
(e.g., by an implied timescales test). This might yield different
lag times for different subunits, which is justified when working
with independent models alone. However, if a global (or pair-
wise) model is desired, all constituting local models must strictly
have the same lag time such that a global (or pairwise) opera-
tor is defined. This, second, is the reason why the dependency
score can be applied only for a single global lag time. In practice,
choosing a lag time for dependency network estimation might
therefore be done as common practice with, e.g., time-lagged
independent component analysis analyses (63), i.e., starting with
a lag time that most likely yields converged estimates. This choice
should be validated by ensuring subsystem implied timescales
convergence.

In this work, we propose that one way to keep pace with our
interest in modeling large biological systems is by using a decom-
position technique. For large systems, IMD models are more
data efficient and might be easier to apply than classic global-
state MSMs. We believe that interrogating local features, e.g.,
ligand-binding pockets, instead of global system states can be
more informative and give better predictions at reduced com-
putational cost. Because this approach comes with all of the
established methods and software of the MD MSM community,
we anticipate that IMD will have a broad application basis for in
silico cell biology.

Materials and Methods
Computational Experiments. Gate opening and closing rates of the toy
potassium ion channel were obtained from the Hodgkin–Huxley model.
Under voltage clamp conditions and neglecting the sodium and leak cur-
rents, we are left with the potassium ion channel contribution. The current
is given as

IK = Gk(Vm−VK) = gKn4(Vm−VK),

where IK is the current, GK is the conductance, gK is the maximal
conductance, and Vm and VK are the total transmembrane potential
and potassium ion reversal potential, respectively. Here n∈ [0, 1] is a
dimensionless quantity corresponding to channel activation. The time
dependence of n is described using the following ordinary differential
equation (ODE),

dn

dt
=αn(Vm)(1− n)− βn(Vm)n,

where αn and βn are the kinetic rates (s−1) of activation and deactivation,
respectively. In the original Hodgkin–Huxley model (34), the voltage sensi-
tivity of the ion channel is modeled by the voltage dependence of the rates
αn and βn,

αn(Vm) =
0.01(10−Vm)

exp
(

10−Vm
10

)
− 1

,

βn(Vm) = 0.125 exp
(−Vm

80

)
.

The term n4 is the joint probability that the four independent sub-
units of the tetrameric potassium ion channel are concomitantly open.
Thus αn and βn are the kinetic rates for an individual subunit to open
and close, respectively. This set of ODEs was integrated using the odeint
function provided by scipy (64) to serve as the ground truth for later
comparison with IMD model and MSM results. We apply our framework
to discrete time series data with known full-system dynamics. For each
system that we are using, details and generator matrix are given in SI
Appendix, Toy Models and Dimer Model. Generally, a transition matrix
describing a (full) test system (possibly including couplings) is chosen, akin
to P(τ ) in Eq. 5. Time series are generated using the Markov chain sampler
implemented in pyEMMA/msmtools (65). Subsequently, full-system states
are mapped to individual subsystem states, yielding subsystem trajecto-
ries that are parallel in time. Estimation of subsystem transition matrices
[Pi(τ ) in Eq. 5] is followed by assembly of a full-system transition matrix.
The latter is utilized to extract full-system observables such as implied
timescales.

Application to MD Dataset. The protocol that was used to obtain MD sim-
ulation data and featurization of Syt-C2A is described in detail in ref. 15.
In particular, as in the cited study, we use heavy atom coordinates of the
superposed protein. We are aware that this could potentially yield spu-
rious correlations; however, 1) no better descriptor of the slow dynamics
could be found and 2) we want to ensure compatibility to our previ-
ous study. Each residue is encoded as a vector of flattened coordinates
Yi and the dependency is computed on each pair of residues. The pair-
wise features are the stacked vectors [Yi , Yj]. Note that when directly
working on coordinate features, unlike in the MSM examples, the depen-
dency decomposes as a sum, not as a product (SI Appendix, VAMP Score
Decomposition of Independent Systems). Furthermore, the dependency
is normalized to untangle the amount of kinetic variance from actual
dependency; i.e.,

d =
|Rn(A) + Rn(B)− Rn(A, B)|

min(Rn(A), Rn(B))
∈ [0, 1] [9]

with Rn(x) being the VAMP-n score of residue x. Note that in the case
of high dependency scores, the two observable features might be proxies
of the same process; however, one of them could encode an additional
one. Dividing by the min ensures we are normalizing only to the pro-
cesses contained in both subsystem vectors. To not obfuscate the histogram
analysis conducted for the dependency score network with weak links in
otherwise strongly coupled clusters, we have taken into account only the
strongest link connecting each residue. We thus extract the maximal nor-
malized dependency score that connects a given residue to all other residues
within a subsystem cluster (intrasubsystem) or to all residues of a differ-
ent subsystem cluster (intersubsystem), respectively. The VAMP-n scores for
Syt-C2A are computed with PyEMMA (65) at a lag time of 50 ns. The
lag time was chosen based on implied timescales convergence reported
in ref. 15.

Data Availability. The code that implements our discrete models, generates
the data, and reproduces the presented results can be found in our GitHub
repository (https://github.com/markovmodel/decomposed msms) (66). The
molecular dynamics dataset of Synaptotagmin C2A is available upon
request. Some study data are available upon request.
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