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Conjugative plasmids are mobile elements that spread horizon-
tally between bacterial hosts and often confer adaptive pheno-
types, including antimicrobial resistance (AMR). Theory suggests
that opportunities for horizontal transmission favor plasmids with
higher transfer rates, whereas selection for plasmid carriage favors
less-mobile plasmids. However, little is known about the mecha-
nisms leading to variation in transmission rates in natural plasmids
or the resultant effects on their bacterial host. We investigated the
evolution of AMR plasmids confronted with different immigration
rates of susceptible hosts. Plasmid RP4 did not evolve in response
to the manipulations, but plasmid R1 rapidly evolved up to 1,000-
fold increased transfer rates in the presence of susceptible hosts.
Most evolved plasmids also conferred on their hosts the ability to
grow at high concentrations of antibiotics. This was because plas-
mids evolved greater copy numbers as a function of mutations in
the copA gene controlling plasmid replication, causing both higher
transfer rates and AMR. Reciprocally, plasmids with increased con-
jugation rates also evolved when selecting for high levels of AMR,
despite the absence of susceptible hosts. Such correlated selection
between plasmid transfer and AMR could increase the spread of
AMR within populations and communities.
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Conjugative plasmids are mobile genetic elements that trans-
mit horizontally within and between species of bacteria (1).

Plasmids often confer adaptive traits such as new metabolic abil-
ities, virulence, and antimicrobial resistance (AMR); therefore, an
understanding of variation in plasmid transmission rate (transfer)
(2) is critical (3, 4). While greater transfer is expected to directly
increase the frequency of plasmids in a population, it might also
affect the phenotypes conferred by plasmids in other ways. Greater
transfer may confer a cost to the host (5) (limiting growth and
reducing the frequency of plasmid-carried traits), directly or in-
directly modifying the expression of other plasmid-encoded traits (6)
or promoting loss of accessory genes (7). Finally, plasmids that are at
high frequencies within communities may rapidly adapt to amelio-
rate their costs (8), further increasing their frequency (9–11). Here,
we experimentally investigate the consequences of selection for in-
creased plasmid transfer rates on plasmid-encoded AMR.
Increased plasmid transfer (or parasite transmission in gen-

eral) is predicted to be favored only when susceptible hosts are
present in abundance (12). This is because the cost to host bacteria
limits plasmid vertical transmission, leading to a trade-off between
horizontal and vertical transmission (5). Indeed, evolution experi-
ments in conditions with low opportunity for transfer observe de-
creased transfer rates and carriage costs (10, 13–15), but horizontal
transmission can increase when susceptible hosts are available (5,
16–18). Here, we evolved conjugative plasmids under variable host
availability and followed the evolution of transfer rates and AMR.
We used two plasmids, R1 and RP4, which have variable transfer
rates in closely related host strains (19), suggesting the potential
for rapid evolution. R1 and RP4 are both conjugative multidrug-

resistant plasmids, but differ in replication mechanisms, host
range, and transfer regulation (20, 21).

Results
R1 Plasmid Evolves High Transfer Rates in the Presence of Susceptible
Hosts.To vary the importance of horizontal transmission in plasmid
life cycle without enforcing direct selection for plasmid-bearing
cells, we passaged an initial culture of plasmid-bearing cells (either
plasmid RP4 or R1) with regular influx of various proportions of
immigrant plasmid-free cells and in the absence of any antibiotic
selection (Fig. 1A). We used both wild-type (wt) and mutator (mut)
Escherichia coli hosts, the latter to increase genetic variation avail-
able for selection. Plasmid maintenance in immigration treatments
required horizontal transmission, or they would be rapidly diluted
out, with plasmids in high immigration treatments experiencing
higher selection for horizontal transmission (SI Appendix, Fig.
S1). RP4 plasmid was rapidly lost from all treatments with ≥90%
immigration per day, but stably maintained over 30 d, after an
initial decline, under 68% immigration. R1 plasmid was maintained
for longer than RP4, but R1-bearing cell density decreased steadily
for all immigration treatments, with a faster decrease under higher
immigration (Fig. 1B).
We first measured transfer rates from coevolved plasmid–host

clones to ancestral recipients. We detected no significant changes
in endpoint (29 d) conjugation rates for RP4 but increased transfer
for R1 with 68% immigration (SI Appendix, Fig. S2, R1 transfer
rate ∼ immigration, F2,86 = 5.2, P = 0.007). For R1, we next focused
on midpoint clones, before plasmid lineages under high immigration
went extinct. We observed significant effects of immigration treat-
ment on evolved transfer rates (Fig. 1C, transfer rate ∼ immigration,
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F5,198 = 43.1, P < 2.10−16). Specifically, treatments with ≥90%
immigration had significantly increased transfer rates compared
to the ancestor and ≤68% immigration treatments (Tukey’s test,
P < 2.10−5) but were not significantly different from each other
(see SI Appendix, Supplementary Text for detailed statistics and
host effect). Thus, high transfer rates evolved in the presence of
abundant plasmid-free recipients.
To tease out effects of host evolution on evolved transfer rates,

we also measured transfer rates of midpoint evolved plasmids from
the ancestral host. Transfer rates were still greater in immigration
treatments (SI Appendix, Fig. S3A). Transfer rates from coevolved
hosts correlated with transfer rates from ancestral hosts (Fig. 1D,
bivariate model Cov(coevolved, ancestral) = 0.39 ± 0.10, clone
covariance effect χ = 23, P = 1.5.10−6; correlation coefficient =
0.60 ± 0.09). Thus, increased transfer rates are mostly due to ge-
netic changes in plasmids rather than hosts. However, a few clones
diverged from this pattern, most significantly clone mut68e with a
1,000-fold increase in transfer rate when the plasmid was present in
an ancestral host, but not in its coevolved host (Fig. 1D). This
suggests that some hosts evolved repression of plasmid transfer,
potentially because of transfer costs to the host.

R1 Evolves Higher Costs. As a proxy for plasmid cost, we measured
the densities reached by donor hosts during conjugation assays.
Donor density was negatively correlated with transfer rates (Fig. 2A,
donor density ∼ transfer rate, estimate = −0.53 ± 0.03, r2 = 0.56,

P < 2.2 10−16). Host density still correlated with transfer rates when
plasmids were carried by the same, ancestral host (SI Appendix, Fig.
S3B), confirming that some of the reduction in cell growth is due to
plasmid evolution. This trade-off likely limits the fitness benefit
of increased transfer rate, by limiting plasmid vertical transmission.

R1 Also Evolves Increased AMR. To evaluate whether the benefits
conferred by plasmids in the presence of antibiotics also evolved,
we measured cell growth in the presence of high levels of antibiotics
(Fig. 2B). Many evolved clones conferred on their hosts an ability to
grow in conditions in which the ancestor could not (Fig. 2B). Most
of these also had increased transfer rate (Spearman’s rank corre-
lation rs = 0.62, P = 10−7), suggesting that increased AMR is a side
effect of selection for transfer.
This apparent coupling between transmission and AMR promp-

ted us to address whether selection for high transmission coselects
increased AMR and vice versa. First, we plated early populations
from the evolution experiment directly on ampicillin (Amp) 0.5 g/L
(Fig. 3A). Highly resistant cells were more common in immigration
treatments, especially in the mutator host (log10 cell density ∼ im-
migration * host, F1,56 = 12.8, P = 0.0007). In some lineages, nearly
all plasmids conferred upon their hosts ability to grow at high
antibiotic concentrations and showed increased transfer compared
to the ancestor plasmid R1WT (SI Appendix, Fig. S4). Thus, im-
migration treatments selecting for increased transfer collaterally
promote the appearance of high AMR.
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Fig. 1. Evolution of plasmid transfer rate with varying host availability. (A) Experimental evolution regime. Plasmid-bearing cells (black) were first mixed with
plasmid-free cells, then evolving populations were diluted every day to fresh medium (gray arrows) mixed in varying frequencies to plasmid-free cells (red
arrows). Each treatment was performed in six replicates with either WT or mut E. coli hosts. (B) Plasmid population dynamics. Initially one of six replicates was
measured until day 12; the treatment average is shown ± SEM (shaded area). (C) Midpoint R1 conjugation rates. The black line and shaded area are the
geometric mean and SE, respectively, of ancestral plasmid transfer rate; each colored dot and line indicates, respectively, the geometric mean and SE of
evolved clones (n = 3). WT clones are shown on the Top, and mut clones on the Bottom. (D) Effect of host evolution on R1 conjugation. The x axis shows
transfer rates measured from plasmid-bearing coevolved hosts (same as in C); the y axis shows rates from ancestral hosts carrying evolved plasmids. Dots and
lines indicate, respectively, the geometric mean and SE (n = 3). Circles show the WT background and triangles, the mut background.
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Next, we determined whether selection for elevated AMR also
increases transfer rates in the absence of direct selection for trans-
mission. We plated independent cultures of the ancestral host car-
rying R1WT on high levels of antibiotics, and measured plasmid
transfer rate for highly resistant mutants (Fig. 3B). Selection for
AMR increased transfer rate overall (log10 transfer rate ∼ selection,
F1,70 = 30.6, P = 5.10−7), and 13 of 18 mutants displayed increased
transfer compared to R1WT, with ∼10-fold higher transfer rates
(Fig. 3B).

The Presence of Susceptible Hosts Favors R1 Copy Number Variants.
To understand the genetic basis of the evolved phenotypic changes,
we sequenced midpoint evolved clones. The summary of mutations
is shown in Dataset S1. Plasmid mutations were found almost
exclusively in clones from immigration treatments (Fig. 4A). We
focused next on loci with parallel mutations in independently
evolved lineages, a sign of convergent molecular evolution (but
see SI Appendix, Supplementary Text for other mutations). First,
four evolved plasmids from the 90% immigration treatment con-
tain large deletions (∼10 to 20 kb), which include one or several
antibiotic resistance determinants (SI Appendix, Fig. S5). Rapid
loss of resistance genes by R1 was observed previously (7, 14), and
is likely underestimated here as we used Amp resistance as a proxy
for plasmid carriage. Next, four evolved plasmids carried the same
1-bp insertion in the coding region of finO, the main repressor of
the transfer operon (20), and another carried a 7-bp insertion,

causing a frameshift. These mutations are known to cause loss of
function and derepression of the transfer operon (22). Seventeen
variants had a G deletion and one a GG deletion in a polyG tract
∼50 bp before the coding region of gene32, part of the leading
region first transferred to recipient cells. gene32 function is un-
known but it is conserved and likely important for conjugative
transfer (23). Finally, the most common mutations were in the
copA locus. The untranslated antisense CopA RNA plays a central
role in R1 replication and copy number control by inhibiting
translation of the initiator for plasmid replication RepA (24).
We observed overall 27 point mutation variants contained in a
13-bp region within copA: nine different types of mutations were
observed, but all from C or G nucleotides toward A or T, denoted
as copA* below (Fig. 4A). These mutations structurally alter the
head of CopA RNA’s loop II, which is involved in binding to RepA
mRNA (24). Identical or similar mutations were shown to increase
R1 plasmid copy number (PCN) by decreasing CopA binding to
RepA mRNA (25). Accordingly, we observed increased sequenc-
ing coverage for copA* plasmids consistent with increased PCN
(Fig. 4 B, Top, detail in SI Appendix, Fig. S5).

An Increase in R1 Copy Number Couples Transfer and AMR.Across all
clones, only copA* and gene32 mutations were significantly asso-
ciated with high transfer rates, copA* having the strongest effect
(log10 transfer rate ∼ copA* + gene32 + finO, copA* effect 1.01 ±
0.15, F1,200 = 236, P < 2.10−16, gene32 effect 0.30 ± 0.16, F1,200 =
12.0, P = 0.0007). finO inactivation can strongly increase conju-
gation rate (Fig. 5 A), however no evolved plasmid carried finO
mutations alone here, and its effect on transfer was nonsignifi-
cant (effect 0.22 ± 0.27, F = 2.4, P = 0.12). Strikingly, seven
evolved plasmids carried only a copA* mutation and were other-
wise identical to R1WT (blue dots in Fig. 4B); these had on average
a 17-fold increased transfer rate (copA* effect, F1,97 = 170, P <
2.10−16) in coevolved hosts, and a 19-fold increased transfer rate
when in the ancestral host (SI Appendix, Fig. S6, F1,109 = 160, P <
2.10−16). copA* variants also conferred a 55-fold increase in AMR
on their hosts (F1,25 = 45, P = 5.10−7), which is consistent with
previous results on PCN effect on AMR (26–28). Thus, copA*
mutations are sufficient to increase R1 transfer rate 17-fold and
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Fig. 2. Breakdown of the trade-off between transfer and host fitness under
antibiotic selection. Host growth in the absence of antibiotics (A, donor cell
density during conjugation assays) and in the presence of high levels of
antibiotics (B, density of cells able to grow on Amp 0.5 g/L) is shown for
midpoint coevolved clones as a function of their transfer rate. Dots and lines
indicate, respectively, the geometric average and SE (n = 3).
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Fig. 3. Reciprocal selection for high transfer rate and AMR. (A) Host avail-
ability promotes the evolution of highly antibiotic-resistant plasmids. The
density of cells able to grow in the presence of 0.5 g/L Amp is shown for
populations evolved for 9 d with or without immigration. (B) Selecting for
high level antibiotic resistance promotes evolution of highly transmissible
plasmids. Six independent populations of an R1WT clone were plated with or
without high concentrations of antibiotics, and the transfer rate of three
mutants per population was measured (geometric average of n = 3 repli-
cates per mutant). Horizontal lines show the median value for each
treatment.
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explain (via increased PCN) the increase in AMR. At high doses
of other antibiotics to which R1 confers resistance (ampicillin,
chloramphenicol, and streptomycin), R1copA* also increased cell
survival compared to R1WT and R1finO (SI Appendix, Fig. S7).
Thus, increased gene dosage affects both the transfer region and
other phenotypes encoded by R1.
To understand the mechanism by which transfer increases, we

measured mobilization of pMOB, a nonconjugative construct
carrying R1 oriT (origin of transfer). pMOB can be mobilized by
R1 transfer machinery, but its PCN is independently regulated;
thus increases in pMOB transfer can only result from increased
availability of R1 transfer machinery. A finO variant, which has
derepressed expression of the transfer machinery (22) but no
change in PCN, increased transfer of both itself and pMOB by
around 1,000-fold (SI Appendix, Fig. S8). A copA* variant also
increased transfer for both plasmids but mobilized pMOB ∼4-fold
less than itself (R1copA* 26-fold, pMOB 6.5-fold, paired two-
tailed t test, P = 0.0003). Thus, increased transfer of copA*
variants is due to the combination of increased transfer machinery
expression (6.5-fold increased pMOB mobilization), and increased
number of copies of oriT (4-fold R1-specific increase in mobiliza-
tion). Both effects are approximately of the same size as the 5-fold
increase in PCN, suggesting they are due directly to increased
gene dosage.

CopA* Variants Spread Better in the Presence of Immigration, Despite
Their Cost. Finally, we characterized the fitness effects of a repre-
sentative copA* variant (w90d, carrying the unique mutation G589T)
in competition with the ancestral plasmid (Fig. 5A). In the absence
of plasmid-free cells, R1copA* conferred a fitness cost to its host
when competing with R1WT. In the presence of 99% plasmid-free

recipients, R1copA* instead had a selective advantage against R1WT.
This was due to horizontal transmission, as donor hosts containing
R1copA* still decreased in frequency (Fig. 5A, gray). Increased
horizontal transmission also allowed copA* variants to overcome
the dilution caused by immigration, which R1WT was unable to
do (Fig. 5B). Thus, copA* variants trade off increased horizontal
transmission against decreased vertical transmission, which is ben-
eficial in conditions of high immigration. finO variants imposed a
much higher cost to their hosts (SI Appendix, Fig. S9), which pre-
sumably limits the spread of finO variants relative to increased PCN.

Discussion
In the presence of susceptible hosts, we observed rapid evolution
of increased horizontal transmission for R1, but not for RP4.
Mutations able to increase transfer rate in RP4 might be constrained
or too costly: regulation of transfer in RP4makes increases in transfer
expression hard to achieve (21), and increasing PCN, while possible,
can be extremely costly (29). For R1, despite a large increase in
horizontal transmission with full derepression of the transfer operon,
few clones evolved finO inactivation, likely because of its high cost to
vertical transmission (30). Instead, the most common mechanism for
increased transfer was the evolution of increased PCN due to parallel
mutations in copA, which imposed some, but much lower, fitness
costs. Similar PCN evolution could be common in other plasmids,
as point mutations are frequently sufficient to change PCN, via
changes in regulatory RNAs (25, 26, 31), or in Rep proteins (32,
33). Such changes likely always increase mobilization in both
conjugative and mobilizable plasmids, because of a direct increase
in oriT dosage. For conjugative plasmids, increased gene dosage of
the transfer operon might further increase transfer machinery ac-
tivity, similarly to R1. Note however that, in contrast to our findings,

Fig. 4. Molecular evolution and mechanistic basis for increased R1 transfer and AMR. (A) Variants detected in evolved plasmids. The outermost ring of the
circos plot shows a simplified plasmid map. Evolved plasmids are then shown by treatment, from outside in wt clones a to f then mut clones a to f. Black dots
indicate small polymorphisms; lines show large deletions. Inset diagrams above show the secondary structure of CopA antisense RNA and its mode of action.
Significant 13 bp of evolved variants are summarized with letter size proportional to the relative abundance of each mutation. The position of the most
common mutations in the second loop of CopA RNA is highlighted in yellow (modified from ref. 24). (B) Phenotypic effects of copA* variants. Evolved plasmid
coverage, transfer rate, and growth on Amp 0.5 g/L are shown as a function of copA* mutation frequency in the evolved clone (as not all plasmid copies
necessarily have copA* mutation). Blue dots indicate clones for which no other mutation than copA* was present on the plasmid, and black dots indicate
clones for which no mutation was detected on the plasmid.
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high copy mutations in a conjugative IncI plasmid conferring co-
listin resistance were shown recently to negatively affect plasmid
fitness despite an increase in horizontal transmission (34).
In addition to increased horizontal transmission, copA* muta-

tions also increased AMR through increased gene dosage. High
levels of AMR correlated with high PCN have been observed
previously (24, 26–28); we show here this can be driven by selection
for transfer. Interestingly, specific coupling between horizontal
transmission and AMR has been observed in other mobile ele-
ments (6, 35), in which increased resistance gene expression also
caused increased expression of transfer genes located immediately
downstream. The effect we uncover here is more general, as all
genes carried on the plasmid experience higher dosage. In R1, this
translates into increased resistance at antibiotics concentrations
not likely to be encountered naturally even under antibiotic treat-
ment. However, similar increases in PCN might lead to clinically
and environmentally relevant fitness benefits depending on plasmid
accessory gene content. High PCN has been linked to increased
resistance to low doses of antibiotics against which initial resis-
tance is minimal (33, 35–37). Virulence and metabolic genes are
also frequently carried on conjugative plasmids, and increased
PCN has been linked to increased virulence in animal (38) and
plant (39) pathogens and to increased ability to grow on limiting
nutrients (40).
Increased PCN could promote further evolution because mul-

ticopy plasmids have increased mutation supply (27). Indeed,
copA* variants have significantly more additional single nucleotide
polymorphisms (SNPs) than other evolved variants (Wilcoxon rank
sum test, W = 238, P = 0.0009), suggesting that evolution of PCN is
sufficient to rapidly increase evolvability. However, high PCN can
also limit evolvability because any new mutation will be present on
only one plasmid copy, affecting both genetic drift and selection
(41). Overall, PCN is a crucial component of plasmid life history
and modifying it can have far-reaching consequences through both
gene dosage and evolvability (42).
Direct selection for cells containing conjugative plasmids usually

removes plasmid-free hosts available for transfer, thus decreasing
horizontal transmission overall (43). We show here that selection
for high gene dosage of plasmid-carried genes can, by contrast,

favor highly transmissible plasmids, because of the pleiotropic
effects of increased PCN. Another factor to consider in order to
understand longer-term coevolution is the cost plasmid transmission
imposes on hosts and the resultant selection pressure. We observed
here a few clones which evolved repression of plasmid transfer.
Alternatively, selection for plasmid genes might favor alleles pro-
moting transfer if plasmids are transferred to kin (44). Increased
horizontal transmission via high PCN creates a positive relationship
between two traits central to plasmid life history, coupling ver-
tical and horizontal transmission components in ways that might
complicate AMR management.

Methods
Strains, Plasmids, and Growth Conditions. The ancestral plasmid-bearing
strains were E. coli MG1655 (wt) and MG1655 mutL::KnR (mut) obtained
by transduction from the Keio collection (45). Conjugative plasmids were R1
and RP4: R1 is an narrow-host-range IncFII plasmid, conferring resistance to
Amp, kanamycin, sulphonamides, streptomycin, and chloramphenicol. RP4 is
a broad-host-range IncP plasmid conferring resistance to Amp, kanamycin,
and tetracycline. Plasmids were conjugated into ancestral strains from the
MFDpir donor strain (19). Plasmid-free immigrants were variants of wt and
mut strains marked with td-Cherry (44) for transfers 1 to 15 and with a Δlac
deletion (46) for transfers 16 to 29; this allowed us to determine whether
plasmid-bearing clones were the original hosts, early or recent trans-
conjugants, by plating on 5-bromo-4-chloro-3-indolyl- b-D-galactopyranoside +
isopropyl-b-D-thiogalactopyranoside and checking for red fluorescence. Cells
were grown in lysogeny broth (LB), and plasmid-bearing clones were selected
with Amp 100 mg/L. Spontaneous rifampicin-resistant (RifR) and nalidixic acid-
resistant (NalR) mutants of MG1655 (19) were used, respectively, as a standard
donor host for measuring plasmid transfer from an ancestral genotype, and as
a standard recipient in conjugation assays, using Rif 100 mg/L and Nal 30 mg/L
for selection. Plasmids were transferred to plasmid-free backgrounds by con-
jugation, then transconjugants were selected on Amp + appropriate selection
for the recipient phenotype. High-level evolved resistance to Amp was mea-
sured by plating on LB–agar + Amp 0.5 g/L; when no colonies were detected, a
threshold value was calculated assuming one colony at the lowest dilution
plated. Spontaneous mutants with increased antibiotic resistance using R1-
carrying cells were obtained by plating 100 μL overnight cultures on Amp
500 mg/L + streptomycin (Str) 200 mg/L (as Amp alone was not sufficient to kill
R1WT-carrying cells at high cell density).

Evolution Experiment and Evolved Clones. Evolving populations were grown in
200 μL LB medium in 96-well plates, at 37 °C with 180 rpm shaking and
100-fold overall dilution every 24 h, in the absence of any antibiotic. For
immigration treatments, plasmid-free immigrants were grown fresh from
glycerol stock and mixed with the evolving resident cultures in 99:1, 97:3,
90:10, 68:32, and 0:100 ratios at each passage. Plasmid-free td-Cherry strains
were also passaged with 100-fold daily dilution. Six replicate lineages were
evolved per treatment × host strain (wt or mut) combination. One individual
clone per lineage was picked for characterization at 19 d (midpoint) and
29 d (endpoint) (SI Appendix, Table S1). Plating and sequencing revealed a
few instances of contamination between wells, detailed in SI Appendix,
Supplementary Text.

Conjugation Assays. Plasmids-carrying donors and MG1655 NalR were grown
overnight without antibiotic selection. Donor strains were first diluted 5-fold
into LB medium and grown at 37 °C for 1 h, then 20 μL diluted donor cul-
tures were mixed with 20 μL recipients and 160 μL prewarmed LB. After a 1-h
mating, serial dilutions were plated on Amp, Nal, and Amp + Nal to estimate
densities of donors + transconjugants, recipients, and transconjugants, re-
spectively. Conjugation rates were computed using the endpoint method
(47), using 0.8 h−1 as the exponential growth rate (estimated independently
from growth curves made with 100-fold dilution in LB). When no trans-
conjugant was detected, a threshold conjugation rate was calculated by
assuming that one single transconjugant colony was observed. The short 1-h
mating time was chosen in order to limit the effect of potential differ-
ences in growth rate or transfer rate between donors, recipients, and
transconjugants (48). Replicates from ancestral host assays (Fig. 1D, y axis and SI
Appendix, Fig. S3) with donor densities <4.108 cells/mL, and no transconjugants
were discarded as they were found to correspond to a few wells in which
strong evaporation occurred in the overnight donor culture prior to the
conjugation assay.
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Fig. 5. copA* variants trade-off vertical against horizontal transmission. (A)
Change in frequency of R1copA* in competition with R1WT, in the absence or
presence of immigration. In the presence of immigration (99% treatment),
the change in frequency within initial donors (VT) and in transconjugants
(HT) is shown in gray. The center value of the boxplots shows the median,
boxes show the first and third quartile, and whiskers represent 1.5 times the
interquartile range; individual data points are shown as dots (n = 6). (B)
Detail of the change in plasmid-carrying cell density for each variant in the
presence of immigration. The center value of the boxplots shows the me-
dian, boxes show the first and third quartile, and whiskers represent
1.5 times the interquartile range; individual data points are shown as dots.
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Sequencing and Bioinformatics. Clones selected for sequencing (SI Appendix,
Table S1) were grown overnight, with Amp selection for plasmid-carrying
clones, and DNA was extracted using CTAB extraction. Illumina whole-genome
sequencing was provided by MicrobesNG (https://microbesng.com/). Sequencing
data were mapped to a reference genome combining MG151655 (GenBank
accession NC_000913) and R1 plasmid (GenBank accession KY749247), using
breseq 0.35.1 (49), run in polymorphism mode to account for the coexistence
of several plasmid alleles in high PCN clones. Variants not present at fre-
quency >20% in at least one clone, and variants also detected in ancestral
clones were discarded. Large deletions were called manually using coverage
data, generated with breseq command bam2cov with default settings. Cir-
cos plots were made with R package OmicCircos (50).

Mobilization Experiment. R1 oriT was amplified using primers 5′-CACGAAGCT-
TGCCTGCACTTTCGCCATATG-3′ and 5′-CACCGAATTCAATCAGTGGCCTGGCAG-
ATC-3′, then cloned into pHERD30T plasmid (51), using restriction enzymes
HindIII and EcoRI. The resulting plasmid pMOB was transformed into MG1655.
pMOB-bearing cells were selected using 50 mg/L gentamycin (Gen), a dose
necessary to avoid low-level resistance conferred by R1 variants. Clones con-
taining both pMOB and an R1 variant were obtained by conjugation of R1 into
MG1655 + pMOB using Amp + Gen selection. Mating was conducted as de-
scribed above, but donor clone overnight cultures contained Amp + Gen, and
mating time was reduced to 30 min to limit secondary transfer; cells were also
plated on Gen and Gen + Nal.

Plasmid Fitness Assays. After overnight growth without antibiotics, strains
were mixed with equal ratios of plasmid-bearing competitors, and grown for
24 h after 100-fold overall dilution in 96-well plates. Densities were esti-
mated immediately after mixing and after 24 h, by plating serial dilutions on
selective medium. Competition assays in the absence of immigration were
run using two-way competitions with td-Cherry– and Δlac-marked MG1655
hosts, and plasmid variants were identified by the host background phe-
notype, as no transfer is taking place (n = 6 for each combination, results

with opposite host markers were pooled). Competition assays with immi-
gration were run mixing 1% plasmid-carrying hosts with 99% MG1655 NalR.
In this case, R1copA* variants were distinguished from R1WT by streaking in-
dividual colonies on plates containing Amp 800 mg/L and Strep 200 mg/L (on
which only R1CopA* clones are able to grow).

Antibiotics Effects. Plasmid effect on survival in the presence of antibiotics was
measured with plasmids carried by MG1655Δlac. Each strain was grown
overnight in eight independent replicates, without antibiotics, then dilution
series were plated on agar with various concentrations of antibiotics. Sur-
vival was defined as colony-forming units (CFUs) on antibiotic medium/CFUs
on LB agar without antibiotics. To survey growth in the presence of anti-
biotics for all evolved midpoint clones, cultures of evolved clones were first
grown overnight in LB + Amp 100 mg/L, then plated on agar with Amp 0.5 g/
L.

Data Analysis. Statistical analysis was performed using R version 3.4.1 (52).
Transfer rate and cell density values were log transformed before analysis.
To analyze the effect of host background on clone transfer rate (Fig. 2A),
where data from each background were obtained in separate experiments,
a bivariate model was run using the ASReml package with clone as a random
effect (53).

Data Availability. The datasets supporting this publication are openly available
from the University of Exeter’s institutional repository at: https://ore.exeter.ac.
uk/repository/handle/10871/126437 (54). Short read sequencing data have
been deposited in the European Nucleotide Archive (PRJEB40537) (55).
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