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Abstract: Glioblastoma (GBM) is a highly lethal cancer that is universally refractory to the standard
multimodal therapies of surgical resection, radiation, and chemotherapy treatment. Temozolomide
(TMZ) is currently the best chemotherapy agent for GBM, but the durability of response is epigenet-
ically dependent and often short-lived secondary to tumor resistance. Therapies that can provide
synergy to chemoradiation are desperately needed in GBM. There is accumulating evidence that adap-
tive resistance evolution in GBM is facilitated through treatment-induced epigenetic modifications.
Epigenetic alterations of DNA methylation, histone modifications, and chromatin remodeling have
all been implicated as mechanisms that enhance accessibility for transcriptional activation of genes
that play critical roles in GBM resistance and lethality. Hence, understanding and targeting epigenetic
modifications associated with GBM resistance is of utmost priority. In this review, we summarize the
latest updates on the impact of epigenetic modifications on adaptive resistance evolution in GBM
to therapy.

Keywords: epigenetic modifications; DNA methylation; histone methylation; histone acetylation;
chromatin remodeling; glioblastoma; resistance

1. Introduction

Glioblastoma (GBM) is a highly lethal tumor that is refractory to the current thera-
peutic options. The highly invasive and infiltrative nature of GBM precludes complete
eradication through surgical resection. Although post-surgical radiation therapy (RT) con-
fers modest increase in overall survival, the addition of temozolomide (TMZ) significantly
increases overall survival [1]. However, the multimodal combination GBM therapies of
surgical resection, TMZ, and RT provide a median survival of only 15 months in patients
with newly diagnosed GBM [1]. The prognosis is markedly dismal in patients with re-
current GBM, whereby a highly resistant phenotype limits the effectiveness of additional
chemotherapy [2,3]. The current GBM therapeutic paradigm depends on adjuvant TMZ
for durable tumor control that is often short-lived. Hence, acquisition of resistance to TMZ
is a critical mechanism of treatment failures in GBM. Identifying and targeting critical
mechanisms of resistance in GBM is necessary to impactfully improve survival in GBM.

Therapeutic resistance is a complex process driven by multiple mechanisms that result
in survival adaptations in cancer cells [4–6]. Resistance can occur through both genetic and
non-genetic mechanisms. For instance, genetic mutations have been shown to play a critical
role in mediating therapeutic resistance to a range of standard and targeted chemotherapies
in cancers including GBM [7–11]. However, it is also possible for cancer cells to acquire
resistance despite the absence of genetic mutations or alterations in drug targets [12–19].
Epigenetic mechanisms, for instance, could contribute to changes in the genome that are
independent of DNA alterations in cancer cells. GBM has distinct genetic and epigenetic
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signatures that dictate tumorigenesis [20–24]. Hence, a consideration of the epigenetic
complexities of GBM resistance is essential.

Epigenetic mechanisms have been implicated in GBM tumorigenesis and resistance [25–27]
(Figure 1). Established epigenetics modifications include DNA methylation, histone methyla-
tion/acetylation, chromatin post-translational modification, and non-coding RNAs modifica-
tion [28,29] (Figure 1). Genes encoding histone methyltransferases, histone demethylases, and
histone deacetylases represent critical regulators of epigenetic modifications. Dysregulation of
epigenetic regulators can facilitate transcription of genes that promote tumorigenesis [30–33],
and resistance [34]. Hence, modulation of the epigenome of cancer cells provides a novel
therapeutic approach in overcoming treatment resistance.
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Figure 1. Schematic representation of the interplay between different epigenetic mechanisms and
therapeutic resistance in GBM. DNA methylation, histone modifications, chromatin remodeling, and
long non-coding RNAs all contribute to therapeutic resistance through different mechanism including
promoting proliferation, suppressing cell death, inducing stemness, inhibiting DNA damage repair,
stimulating autophagy, and epithelial–mesenchymal transition (EMT).

Therefore, it is essential to understand and target epigenetic events that mediate
GBM resistance and recurrence. The epigenetic landscape of GBM has been extensively
studied [35–37], and several epigenetic modifications have been identified as potential
therapeutic targets in GBM [38,39]. In this review, we will mainly focus on the impact of
epigenetic modifications on GBM resistance. We will highlight discoveries on epigenetic
modulation of GBM drug resistance. Understanding how epigenetic modifications impact
drug resistance in GBM will permit rational targeting of epigenetic modifications in GBM.

2. Epigenetic Alteration Involved in Drug Resistance of GBM

Cancer development is a complex process that entails sequential changes in the
genome and epigenome. These changes contribute to both tumor heterogeneity, plasticity,
and result in alterations in gene expression through modifications of nucleotides and
proteins without changes in DNA sequences. Further, cancer cells employ epigenetic mech-
anisms to regulate gene expression and function in response to stressors [40]. Epigenetic
modifications of DNA and histones, together with changes in nucleosome composition
and chromatin arrangement therefore serve as an extra layer of gene expression regulation.
Epigenetic modifications, such as methylation and acetylation, are catalyzed by specific
enzymes and proteins that modify the epigenome rather than genome. The regulatory
machinery in epigenetics involves enzymes and proteins that are broadly classified into one
of the following categories: the “writers”, the “readers”, and the “erasers” [41]. The “writ-
ers” are enzymes such as DNA methyltransferase, histone lysine methyltransferases, and
histone acetyltransferases that are responsible for the addition of modifications such as func-
tional methyl/acetyl groups. The “readers” are proteins or enzymes such as methyl CpG
binding proteins and histone methylation/acetylation readers that recognize the presence
of epigenetic modifications. The “erasers” are enzymes such as histone demethylases and
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histone deacetylases that erase modifications on DNA/lysine residues and histone proteins.
It is now established that epigenetic regulation of modifications impacts upon both nucleo-
some repositioning and chromatin accessibility resulting in gene expression [41,42]. In the
genome, euchromatin regions are loosely packed and easily accessible for transcriptional
activation whereas heterochromatin regions are tightly packed and less accessible [42].

Cancer drug resistance accounts for approximately 90% of cancer-related mortality [43–45].
There is overwhelming evidence that epigenetic modifications represent a potential mechanism
for rapid acquisition of drug resistance in cancer [34,46–49]. Similar to other cancers, GBM
cells can acquire resistance to drug therapy through multiple mechanisms. In general, both
intrinsic genetic resistance and treatment-induced resistance are common mechanisms through
which GBM cells can attain survival adaptation (Figure 2). GBM cells with drug target genetic
mutations that confer resistance to therapy will persist. In addition, a small population of tumor
cells without prior genomic mutations can transcriptionally evolve into drug tolerant status
and persist despite treatment (Figure 2). This plasticity towards adaptive resistance is largely
influenced by epigenetic modifications [44,46]. In GBM, phenotypic plasticity to radiation
therapy has been observed from the residual glioma stem cell populations that exist beyond the
confines of resected tumor [50]. Since such residual glioma stem cells exist beyond the extent of
surgically resected disease, they serve a nidus for recurrence and lethality in GBM.
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Figure 2. Representative mechanism underlying drug resistance in GBM. GBM cells that carry
resistance-conferring mutation(s) in a heterogeneous cancer population and GBM stem cells that
are intrinsically resistant to drug treatment survive drug exposure and outgrow to determine the
further cancer population. A group of GBM cells evolved through epigenetic reprogramming become
drug-tolerant cells and further confer resistance to drug therapy.

3. Targeting Epigenetic Alteration

DNA methylation, histone modifications, chromatin remodeling, and long non-coding
RNAs (lncRNAs) are the main mechanisms of epigenetic regulation of transcriptional
activation in cancers such as GBM. Since epigenetic modifications drive tumorigenesis and
therapeutic resistance, there is a potential clinical benefit in targeting epigenetic regulators
in GBM patients (Figure 3). Several epigenetic agents including histone methyltransferase
inhibitors, DNA methyltransferase inhibitors, histone deacetylase inhibitors, and other
agents are currently being tested in GBM patients in clinical trials (Table 1).
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Figure 3. Schematic summary of epigenetic regulation in GBM and potential therapeutic targets.
Chromatin structure and gene transcription are regulated by epigenetic mechanisms. DNA methyl-
transferase (DNMT), histone lysine acetyltransferase (HAT), and histone lysine methyltransferase
(KMT) such as EZH2, PRMTs, and MLL1/2 catalyze the addition of epigenetic groups to either
DNA or histone tails. Histone deacetylase (HDAC) and histone demethylase (KDM) remove these
epigenetic groups. ISWI and SWI/SNF complex could remodel chromatin structure according to
histone modifications. These regulators can be targeted in therapeutic treatment against GBM, and
furthermore the targets shown here are either under pre-clinical studies or approved and under
clinical trials. Ac: Acetyl group. M/Me: Methyl group. X: Inhibition.
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Table 1. Development of combination therapy using epigenetic drugs for the treatment of GBM.

Clinical Trials
Identifier Clinical Trial Phase Intervention/Treatment Condition Status Primary Endpoint Secondary Endpoint References

NCT00268385 Phase I Vorinostat + TMZ GBM Active MTD (maximum tolerated
dose) of Vorinostat with TMZ

1. Efficacy in terms of anti-tumor activity
based on clinical, radiographic, and
biologic assessments
2. Plasma pharmacokinetic parameters
of Vorinostat

[51]

NCT00731731 Phase I/II Vorinostat + TMZ + RT Newly diagnosed
GBM Active

1. MTD of Vorinostat (Phase I)
2. Overall Survival (OS)
(Phase II)

1. Time to tumor progression (Phase II)
2. Incidence of adverse events (Phase II) [52]

NCT00555399 Phase I/II Vorinostat + TMZ +
isotretinoin Recurrent GBM Completed MTD [53]

NCT01738646 Phase II Vorinostat +
Bevacizumab Recurrent GBM Completed Six-month progression-free

survival (PFS)

1. Radiographic response
2. Median PFS
3. Median OS

[54]

NCT01266031 Phase I/II Vorinostat +
Bevacizumab Recurrent GBM Completed

1. PFS at 6 Months
2. MTD of Oral Vorinostat
used with Bevacizumab

1. Time to Tumor Progression
2. OS
3. Effects of Bevacizumab with and
without Vorinostat upon biomarkers
4. Mean symptom interference at the
time of clinical evaluation
5. Radiological response

[55]

NCT00762255 Phase I
Vorinostat +

Bevacizumab +
irinotecan

Recurrent GBM Completed MTD
1. PFS at 6 months
2. Number of participants with adverse
events

[56]

NCT00939991 Phase I/II Vorinostat + TMZ +
Bevacizumab Recurrent GBM Completed

1. Determination of MTD
(Phase I)
2. 6-month PFS (Phase II)

1. Radiographic response (Phase II)
2. PFS (Phase II)
3. OS (Phase II)
4. Number of patients with Grade 2 or
greater, treatment-related toxicities
(Phase II)

[57]

NCT01236560 Phase II/III Vorinostat + TMZ +
Bevacizumab

Young newly
diagnosed GBM Active 1. MTD of Vorinostat

2. Event-free survival
1. OS
2. Cumulative incidence of disease
progression in each treatment arm

[58]

NCT00641706 Phase II Vorinostat + Bortezomib Recurrent GBM Completed PFS at 6 Months

1. OS
2. Time to tumor progression
3. Proportion of confirmed tumor
response

[59]

NCT01110876 Phase I/II Vorinostat + TMZ +
Enlotinib Recurrent GBM Terminated

MTD of Vorinostat in
combination with escalating
doses of erlotinib and TMZ

PFS [60]
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Table 1. Cont.

Clinical Trials
Identifier Clinical Trial Phase Intervention/Treatment Condition Status Primary Endpoint Secondary Endpoint References

NCT03426891 Phase I
Vorinostat +

Pembrolizumab + TMZ
+ RT

GBM Active MTD OS [61]

NCT02137759 Phase II Belinostat + TMZ + RT Newly diagnosed
GBM Active 1. PFS

2. MTD
1. PFS
2. OS
3. IDS-SR score change

[62]

NCT00302159 Phase II Valproic acid + TMZ +
RT GBM Completed

1. Median PFS
2. Percentage of participants
with PFS at 6, 12, and 24
months
3. Number of participants
with best response
4. Median OS
5. Percentage of participants
with OS at 6, 12, and 24
months

Number of participants with adverse
events [63]

NCT00879437 Phase II Valproic acid +
Bevacizumab + RT GBM Terminated One-year event-free survival

1. Median EFS
2. Median OS
3. Partial response in diffuse intrinsic
pontine Glioma
4. Partial response in high-grade
Gliomas
5. Complete response in high-grade
Gliomas

[64]

NCT02648633 Phase I Valproic acid +
Nivolumab + RT GBM Completed

1. Feasibility based on number
of subjects who complete 4
doses of nivolumab
2. Incidence of adverse events

1. Clinical response rate
2. Incidence of pseudoprogressions [65]

NCT01817751 Phase II
Valproic acid +

sorafenib tosylate +
sildenafil citrate

GBM Active PFS
1. Overall best response rate
2. OS
3. Incidence of adverse events

[66]

NCT03243461 Phase III Valproic acid + TMZ GBM Active
Comparison of effects of
Valproine acid with respect to
historical control group

[67]
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Table 1. Cont.

Clinical Trials
Identifier Clinical Trial Phase Intervention/Treatment Condition Status Primary Endpoint Secondary Endpoint References

NCT00859222 Phase I/II Bevacizumab +
Panobinostat Recurrent GBM Completed

1. LBH589 MTD (Phase I)
2. Dose limiting toxicity
(Phase I)
3. PFS at 6 months (Phase II)

1. Best radiographic response
2. PFS (Phase II)
3. OS (Phase II)

[68]

NCT03684811 Phase I/II Azacitidine + FT-2102 GBM Active

1. Number of participants
with dose limiting toxicity
(Phase 1)
2. Doses recommended for
future studies (Phase 1)
3. Objective response rate of
FT-2102 single agent or in
combination with Azacitidine
(Phase 2)

Phase 1 and 2:
1. OS
2. Time to response (TTR)
3. Time to tumor progression
4. Duration of response (DOR)
5. PFS
6. Drug level within CSF

[69]

NCT04614909 Early Phase I Olaparib + TMZ + RT Newly diagnosed
GBM Active Systemic plasma PK profile

parameters

1. PFS participants with demonstrated
PK effects
2. OS
3. Drug-related toxicity
4. Adverse events
5. Treatment-emergent adverse events
6. Deaths

[70]

NCT02152982 Phase II/III Veliparib + TMZ Newly diagnosed
GBM Active OS

1. Interaction with Optune device
2. PFS
3. Objective tumor response
4. Overall adverse event rates for grade 3
or higher adverse events
5. Change in quality of life (QOL)

[71]

NCT01026493 Phase I/II Veliparib + TMZ Recurrent GBM Completed

1. MTD (Phase I)
2. 6-month PFS rate for
patients with measurable
disease after surgery (Phase II)

Phase II:
1. Objective response rate for patients
with measurable disease after surgery
2. OS

[72]

NCT03581292 Phase II Veliparib + TMZ + RT GBM Active Event-free Survival 1. Objective response
2. OS [73]



Int. J. Mol. Sci. 2021, 22, 8324 8 of 20

3.1. DNA Methylation

DNA methylation is one of the best characterized epigenetic modifications whereby
DNA methyltransferases (DMNTs) preferentially methylate the C-5, N-4, N-6, and N-7 sites
of DNA [74,75]. GBM methylation alterations can manifest as genome-wide hypomethyla-
tion, gene-specific hypomethylation, or hypermethylation [76–80]. DMNTs catalyze the
transfer of methyl group S-adenosylmethionine to the fifth carbon of cytosine residue and
form 5-metylcytosine as part of the DNA methylation process. In GBM, intrinsic DNA
methylation has a significant impact on response to TMZ, the standard of care chemother-
apy. TMZ is an alkylating agent responsible for methylation of guanine in position N7 and
O6, and Adenine in N3. The role of DNMTs with respect to TMZ sensitivity in GBM has not
been fully explored. Zhou et al. investigated whether DNMTs expression was associated
with TMZ sensitivity in GBM cells and elucidated the underlying mechanism [81]. DNA
methyltransferase 1 (DNMT1) expression was found to be downregulated in TMZ resistant
GBM cells, negatively correlated with miR-20a expression, and positively correlated with
TMZ sensitivity [81]. However, these findings were reported using a single GBM cell line
that might not fully recapitulate the cellular hierarchical heterogeneity GBM stem cells.

O-6-methylguanine-DNA methyltransferase (MGMT) is a critical DNA damage re-
pair gene, responsible for repairing DNA lesions of O6 adducts created by alkylating
chemotherapy agent such as TMZ. MGMT expression is highly regulated through pro-
moter methylation whereby hypermethylation of the MGMT promoter results in epigenetic
silencing of MGMT expression leading to enhanced clinical response to TMZ [82,83]. Sim-
ilarly, GBM patients with unmethylated MGMT promoter status demonstrated a worse
response to TMZ [84]. Hence MGMT promoter methylation serves as a prognostic surro-
gate for TMZ response in GBM [84]. However, strategies to target MGMT have failed to
improve TMZ response and survival in GBM patients in clinical trials [85,86]. Accordingly,
there are likely other epigenetic mechanisms besides MGMT promoter methylation that
impact upon adaptive resistance to TMZ. For instance, epigenetic regulation of XIAP asso-
ciated factor 1 (XAF1), a previously reported tumor suppressor was recently reported to
mediate plasticity towards adaptive resistance in GBM to TMZ [87].

Moreover, chemotherapy agents such as TMZ can induce DNA methylation alterations
throughout the entire genome through mechanisms that are not completely understood [88–90].
It is also not clear why drug-induced hypermethylation selectively leads to a resistant phenotype
as opposed to a sensitive phenotype in cancer cells. Methylation alterations involving promoters
that modulate drug efflux transporters, pro-apoptotic genes, and DNA damage repair genes
are potential contributory mechanisms towards drug resistance [82,91–93]. Other potential
mechanisms of resistance include methylation alterations at enhancer sites on the genome.
Collective evidence from recurrent GBM tumor tissues and TMZ resistant patient-derived
xenografts implicates activation of an enhancer region between marker of proliferation Ki-
67 and MGMT promoters as a driver of TMZ resistance [94]. TMZ sensitivity was restored
following deletion of this enhancer region even in GBM cells with high MGMT expressions [94].

Given the established link between DNA hypermethylation and drug resistance, it has
been suggested that DNA demethylation provides a novel therapeutic avenue to enhance
TMZ sensitivity. Hence, there have efforts to evaluate demethylating agents as anti-cancer
drugs. It should be noted that demethylating agents can have widespread unwanted
systemic effects given the lack of selectivity. Such agents have been used to reverse DNA
hypermethylation related resistance in GBM [95–97]. There is further preclinical and clinical
evidence that demethylating agents are more effective when used in combination with
other cancer therapies [69].

3.2. Histone Modification

The role of histone modifications on gene regulation in GBM is well recognized. His-
tone modifications alter gene expression without changing the DNA sequences and are
catalyzed by specific enzymes and related proteins at four core histone proteins: H2A,
H2B, H3, and H4. The most common modifications include acetylation, methylation,
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phosphorylation, and ubiquitylation. Histone acetylation results in gene activation while
histone methylation can result to either gene activation or gene repression depending on
the histone protein core and amino acid residue [98]. Abnormalities in histone modification
can facilitate transcription of genes that drive GBM propagation, contributing to thera-
peutic resistance [99–101]. For instance, enhancer of zeste homolog 2 (EZH2) is a histone
methyltransferase in the polycomb repressive complex 2 (PRC2) that has been implicated
in cancer propagation [102]. EZH2 expression is high in GBM and negatively impacts GBM
survival [103]. EZH2 mechanistically upregulates c-MYC expression [104] and increases
signal transducer and activator of transcription 3 (STAT3) phosphorylation [105], leading
to GBM tumorigenesis and making EZH2 a compelling epigenetic target.

Methylation of arginine residues is one of the most common post-translational mod-
ifications of histone proteins. Methylation of arginine residues disrupts protein–protein
interactions and associated downstream cellular processes. Protein arginine methyltrans-
ferases (PRMTs) are critical enzymes responsible for adding methyl groups onto arginine
residues within target proteins. Emerging evidence within the last decade suggests a strong
nexus between aberrancies in PRMTs function and GBM tumorigenesis [106,107]. Hence,
PRMT inhibitors are currently under development for preclinical and clinical trials in GBM
patients. Protein arginine methyltransferase 5 (PRMT5) [108–110], and protein arginine
methyltransferase 1 (PRMT1) [111] are members of the PRMT family proteins which are
over-expressed in GBM and have a negatively impact upon patient survival. Genetic de-
pletion of either PRMT5 [110,112,113] or PRMT1 [111] significantly inhibits tumor growth
in intracranial orthotopic mouse xenograft models. Furthermore, small molecule inhibitors
of PRMT5 can drive GBM stem-like cells into senescence [113]. Recently, it was identified
that protein arginine methyltransferase 6 (PRMT6) is required for methylation of regulator
of chromatin condensation 1 (RCC1) and further induce proliferation, stem-like properties
and tumorigenicity of GBM stem cells (GSCs) [114]. Depletion of PRMT6 with a small
molecule inhibitor could suppress RCC1 arginine methylation and improve the cytotoxic
activity of radiotherapy against GSCs in vitro and in vivo.

The lysine demethylase (KDM) genes are histone modification enzymes that also have a
very important role in GBM resistance. KDM genes have been implicated in the dysregulation
of senescence, apoptosis, and tumor progression [115,116]. Particularly, lysine demethylase 2B
(KDM2B) [117] and lysine demethylase 1A (KDM1A) [118,119] propagate survival adaptation
towards a stemness phenotype in GBM [117]. Depletion of either KDM2B [117] or pharmaco-
logical inhibition of KDM1A [118,119] could induce apoptosis in GBM. Lysine demethylase
5A (KDM5A), an H3K4 demethylase, was found to be overexpressed in GBM cells that were
adaptively resistant to TMZ [120,121]. Importantly, inactivation of KDM5A can efficiently
restore TMZ sensitivity in adaptively resistant GBM cells [120,121]. Inhibition of KDM5A with
small molecule inhibitors such as the pan-KDM inhibitor JIB 04 and the selective KDM5A
inhibitor CP1445 efficiently inhibited tumor growth in vitro and in vivo of TMZ-resistant
GBM [120,121]. KDM6B is a histone H3K27 demethylase that was investigated as a potential
target for GBM treatment recently [121,122]. Lysine demethylase 6B (KDM6B) was overex-
pressed in GBM tissues and treatment with KDM5B specific inhibitor GSK-J4 significantly
improved survival in GBM models of diffuse intrinsic pontine gliomas. Furthermore, the
combination of KDM5A inhibitor JIB 04 and KDM6B inhibitor GSK-J4 resulted in significant
synergy and potency against TMZ resistant GBM cells [121].

The inter-dynamics between histone acetylation and deacetylation in maintaining
a balanced state of acetylation is critical to the regulation of gene transcription. Acety-
lation and deacetylation are mediated by histone acetyltransferases (HAT) and histone
deacetylases (HDAC), respectively. Acetylation occurs through addition of acetyl groups
to H3 and H4 and weakens the interaction between the histone core and DNA leading
to facilitated transcription. HDACs are overexpressed and mutated in various solid and
hematologic malignancies and play key roles in tumorigenesis [123,124]. HDACs have
been implicated in chemoradiation resistance through inhibition of DNA double-strand
break repair [125,126]. Furthermore, HDAC-mediated resistance to TMZ is easily reversed
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with inhibitors of HDACs in GBM [127–131]. HDAC inhibitors target several processes
that are integral to tumorigenesis including the induction of cell cycle arrest, differentiation,
senescence, cell death, and inhibition of angiogenesis [132,133]. Several HDAC inhibitors
have already been approved by the FDA including Vorinostat, Belinostat, Romidepsin,
Belinostat, Valproic acid, and Panobinostat. Given the role of HDACs in GBM, HDAC
inhibitors have been extensively studied in GBM clinical trials (Table 1). The results so far
suggest that HDAC inhibitors such as Vorinostat have no impact on overall survival even
when combined with chemotherapy [134]. Moreover, besides issues with efficacy, HDAC
inhibitors have undesirable side effect profiles which remain a huge impediment [135–137]
(Table 1). A possible avenue for consideration is the combination of HDACs and KDM
inhibitors based on reports that pharmacological inhibition of KDM1A can sensitize GBM
cells to HDAC inhibitors in-vivo [138]. Further studies are necessary to determine the
optimal combinatorial strategies for HDACs that permit efficacy as well as safety in GBM.
Targeting HDAC-mediated resistance in GBM remains an active area of investigation.

3.3. Chromatin Remodeling

In addition to histone and genomic alterations, the impact of chromatin remodeling
also plays a critical role in drug resistance. Remodeling entails the assembly of chromatin
complexes into a high-order chromatin structure. These high-order chromatin structures
can impact upon drug resistance, depending on whether the resulting accessibility per-
mits transcription of drug-resistant signaling pathways. For instance, poly (ADP-ribose)
polymerase 1 (PARP1), a critical enzyme involved in chromatin remodeling mechanisms,
has emerged as an attractive target, and there are currently two FDA-approved PARP
inhibitors, Oliparib and Veliparib [139].

Many studies have examined the role of chromatin remodeling on adaptive resistance
evolution in GBM. In response to targeted kinase inhibitors, a small subset GBM stem
cells will transition towards a survival adaptive state that is associated with the upregu-
lation of histone demethylases KDM6A/B and widespread chromatin remodeling from
disruptions of H3K27 trimethylated genomic regions [16]. Additional support for chro-
matin remodeling in GBM resistance to tyrosine-kinase pathway inhibitors has emerged
from examining components of the tumor suppressor SWItch/Sucrose Non-Fermentable
(SWI/SNF) complex which is critical for chromatin remodeling [140]. The Brahma-related
gene 1 (BRG1) subunit of the SWI/SNF complex was implicated in GBM stemness and
genetic/pharmacological of BRG1 reversed GBM stemness and enhanced sensitivity to
alkylating chemotherapy [140]. Similar observations were noted by Hiramatsu and col-
leagues that SWI/SNF core complex plays essential roles in stemness maintenance in
GSCs through association with a corepressor complex involving the d4-family proteins,
DPF1/DPF3a [141].

Further evidence that chromatin remodeling is a critical mechanism of TMZ drug
resistance in GBM has emerged from evaluating recurrent GBM tumors. Bruns et al.
recently showed that chromatin remodeling influenced the transcription programs in
paired recurrent versus newly diagnosed GBM patient tissues [142]. Specifically, treatment-
induced alterations in GBM sensitivity are mediated through differential transcriptional
hierarchies influenced by the chromatin remodeling machinery [142].

Chromatin remodeling is undoubtedly an integral part of therapeutic resistance evolu-
tion in GBM. Given the complexities of high-order chromatin structures, it is not surprising
that targeting chromatin remodeling has been a challenge. Nevertheless, PARP inhibitors
are currently in trial for GBM [70–73,143]. It is anticipated that anti-chromatin remodeling
agents such as PARP inhibitors will overcome GBM resistance through preventing dynamic
chromatin rearrangements.

3.4. Long Non-Coding RNAs

Long non-coding RNAs (lncRNAs) represent RNA molecules with a length of more
than 200 nucleotides, which do not encode proteins [144]. These RNA molecules demon-
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strate widespread expression and impact on gene expression through interactions with
the cellular epigenetic machinery. LncRNAs can therefore affect chromatin remodeling
and other chromatin-associated functions. Structurally, lncRNAs retain 5-cap and al-
ternative splicing features, but lack functional open reading frames (ORFs) required to
encode proteins [145]. LncRNAs are dysregulated in multiple cancer types, including
GBM [146,147]. By interacting with the epigenetic machinery in cancer cells, lncRNAs
contribute to malignant neoplastic phenotypes such as metastasis, proliferation, and thera-
peutic resistance [148] (Figure 4).
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The role of lncRNAs in GBM therapeutic resistance has recently emerged as an area
of great interest and active investigation. Advances in bioinformatic approaches have
permitted large scale analysis of differential expression of lncRNAs in treatment-naïve
versus treatment resistant GBMs as well as comparisons between GBM and normal brain.
In a recent study, approximately 300 lncRNAs were reported to be differentially expressed
in TMZ resistant GBM patient tissues [149]. Furthermore, TMZ resistant GBMs had a
propensity for dysregulation of lncRNAs, lending support for a potential role of lncRNAs
in GBM drug resistance [149]. Besides their role in therapeutic resistance, lncRNAs have
also been implicated in oncogenic signaling in GBM. Several studies have provided a nexus
between oncogenic signaling and treatment resistance in GBM [150–154].

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an oncogenic
lncRNA that is highly expressed in GBM and that drives tumorigenesis and tumor propa-
gation through regulations of miR-129, SOX2, and non-canonical Wnt signaling [152,154].
Furthermore, dysregulation of MALAT1 has been implicated as a contributor towards TMZ
resistance of GBM in several studies [150,151,153,155,156]. Voce and colleagues examined
how activation of MALAT1 during TMZ treatment of GBM cell lines contributed to TMZ
resistance [153]. The investigators demonstrated that MALAT1 expression was induced
through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and p53
signaling [153]. They further showed that MALAT1 depletion restored TMZ sensitivity in
patient-derived GBM cells both in vitro and in vivo [153]. In another study where MALAT1
was reported to be upregulated in GBM during TMZ resistance, depletion of MALAT1
restored TMZ sensitivity through mechanistic upregulation of miR-101 and downregu-
lation of GSK-3β in resistant GBM cells [150]. Besides TMZ sensitivity, genetic silencing
of MALAT1 significantly attenuated oncogenic phenotypes of cell growth, motility, and
stemness in GBM [151,156]. Others have postulated that treatment-induced upregulation of
MALAT1 promotes GBM chemoresistance and oncogenic proliferation through suppression
of miR-203 [155]. The above studies implicate MALAT1 as a facilitator of chemo-resistance
in GBM and therefore a potential target for chemosensitization. These encouraging find-
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ings pave the way for future directions in developing novel strategies to overcome TMZ
resistance in GBM.

H19 is another oncogenic lncRNA, whose upregulation was associated with GBM cell
invasion, angiogenesis, and neurosphere formation [157]. Jiang and colleagues established
the correlation between H19 expression and TMZ drug resistance in GBM, by demon-
strating that H19 silencing decreased the IC-50 against TMZ and significantly increased
apoptosis in GBM cells [158]. Duan and colleagues confirmed the above observations and
demonstrated that H19 was upregulated through oxidative stress, and H19 expression
contributed to TMZ resistance through NF-κB signaling activation [159]. Moreover, in
addition of restoration of TMZ sensitivity, silencing of H19 leads to the reversal of epithelial–
mesenchymal transition (EMT) in GBM cell lines through upregulation of E-cadherin and
downregulation of Vimentin and zinc finger E-box binding homeobox 1 (ZEB1) expres-
sion [160]. These findings provide rationale for future investigations on targeting the
oncogenic role of H19 in GBM as a novel avenue to overcome GBM drug resistance.

The Hox transcript antisense intergenic RNA (HOTAIR) is another lncRNA whose
expression is significantly upregulated in GBM cells and plays a critical role in cell cycle
progression through mechanistic binding to the 5′ domain of the polycomb repressive
complex 2 (PRC2) [161]. In terms of TMZ resistance in GBM, it appears that HOTAIR
modulates abnormal expression of Hexokinase 2 (HK2), a regulator of glycolysis and
chemo-resistance. It was recently demonstrated that depletion of HOTAIR in GBM cells
could suppress HK2 expression in protein and mRNA levels by targeting miR-125, therefore
inhibiting cell proliferation and further enhancing the cytotoxicity of TMZ both in vitro
and in vivo [162]. The above observations support a functional and targetable role for
HOTAIR in GBM glycolytic metabolism and chemo-resistance reprogramming.

SOX2 Overlapping Transcript (SOX2OT) is an oncogenic lncRNA implicated in GBM
cell proliferation and TMZ resistance [163]. SRY-Box Transcription Factor 2 (SOX2) is a
transcription factor regulated by SOX2OT, and both SOX2 and SOX2OT are significantly up-
regulated in TMZ-resistant GBM cells [163]. Mechanistically, SOX2OT modulates TMZ sen-
sitivity through demethylation of the SOX2 promoter and subsequent upregulation of SOX2
expression as well as activation of the Wnt5a/b-catenin pathway [163]. The downstream
impact of SOX2OT activation cascade entails apoptosis inhibition, tumor proliferation, and
TMZ resistance. Efforts to exploits vulnerabilities in SOX2OT/SOX2/Wnt5a/b-catenin
signaling cascade provides a novel avenue for targeting TMZ resistance in GBM.

FOXD2 Adjacent Opposite Strand RNA 1 (FoxD2-AS1) is an oncogenic lncRNA that is
particularly interesting given its potential impact on MGMT methylation in GBM. As previ-
ously alluded, MGMT methylation status is a strong predictor of TMZ sensitivity in GBM
whereby hypomethylation promotes TMZ resistance and hypermethylation enhances TMZ
sensitivity. Recently, it was reported that FoxD2-AS1 expression was correlated with worse
outcomes for GBM patients, and FoxD2-AS1 was responsible for GBM malignant transfor-
mation and TMZ resistance [164]. Furthermore, high FoxD2-AS1 expressions correlated
with hypomethylation of the MGMT promoter in GBM patients [164]. Interestingly, genetic
silencing of FoxD2-AS1 rendered the MGMT promoter hypermethylated and restored TMZ
sensitivity in GBM [164]. These observations provide valuable insights on restoring TMZ
sensitivity through regulation of MGMT promoter.

There is clearly mounting evidence from multiple studies that lncRNAs play an
important role in GBM drug resistance through a variety of mechanisms (Figure 4). It is also
apparent that lncRNAs activity can be modulated to successfully reverse GBM malignant
phenotypes and restore sensitivity to TMZ. Further research is necessary for optimal
and selective targeting of lncRNAs to overcome GBM resistance while simultaneously
minimizing unwanted global effects.

4. Conclusions

GBM remains one of the most lethal cancers despite a significant scientific advance
in our understanding of the molecular underpinnings of GBM tumorigenesis. There are
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significant challenges in developing impactful therapies to improve the outcomes of GBM
patients. So far, TMZ plus RT remains the most effective therapy, yet the durability of
response is often short-lived secondary to resistance evolution largely driven through epige-
netic mechanisms. To generate impactful therapies that could improve outcomes for GBM
patients, contextual understanding and targeting of treatment-induced epigenetic modifi-
cations is paramount. It will therefore be important that future studies focus on elucidating
epigenetic targets of divergent evolution in GBM stem cells using appropriate models.

To date, epigenetic drugs have not significantly improved survival in GBM. Fur-
thermore, the global effects of these drugs on epigenetic modifications have resulted in
significant toxicities, thereby limiting tolerance to treatment. Therefore, future efforts
should be directed towards rational epigenetic targeting to improve TMZ response while
simultaneously minimizing systemic toxicity.
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DNMT DNA methyltransferase
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PRMTs protein arginine methyltransferases
SOX2 SRY-Box Transcription Factor 2
SOX2OT SOX2 Overlapping Transcript
STAT3 signal transducer and activator of transcription 3
SWI/SNF suppressor SWItch/Sucrose Non-Fermentable
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