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Abstract: False-ceiling inspection is a critical factor in pest-control management within a built
infrastructure. Conventionally, the false-ceiling inspection is done manually, which is time-consuming
and unsafe. A lightweight robot is considered a good solution for automated false-ceiling inspection.
However, due to the constraints imposed by less load carrying capacity and brittleness of false
ceilings, the inspection robots cannot rely upon heavy batteries, sensors, and computation payloads
for enhancing task performance. Hence, the strategy for inspection has to ensure efficiency and
best performance. This work presents an optimal functional footprint approach for the robot to
maximize the efficiency of an inspection task. With a conventional footprint approach in path
planning, complete coverage inspection may become inefficient. In this work, the camera installation
parameters are considered as the footprint defining parameters for the false ceiling inspection.
An evolutionary algorithm-based multi-objective optimization framework is utilized to derive the
optimal robot footprint by minimizing the area missed and path-length taken for the inspection task.
The effectiveness of the proposed approach is analyzed using numerical simulations. The results are
validated on an in-house developed false-ceiling inspection robot—Raptor—by experiment trials on
a false-ceiling test-bed.

Keywords: functional footprint; false-ceiling inspection; multi-objective optimization; pest-control
robot; path-planning

1. Introduction

Pest management is one of the critical elements in facility management that has
shown growth to USD 22.7 billion in 2021 and is estimated to reach USD 29.1 billion by
2026 globally [1,2]. The Rodent Monitoring System (RMS) is one of the necessary tasks
in a facility management system since the rodents are a critical transmission vector for
various diseases [3–6]. In addition, the infestation of rodents brings loss of revenue from
damaged appliances, structural damages, loss of commodities, and expenses for involving
pest-control services and professionals [7–9].

There have been a variety of rodent inspection techniques developed over time to
check for any rodent infestation. An Internet of Things (IoT)-based rodent infestation
monitoring system is reported in [10], where the authors utilized sensor-based and vision-
based algorithms for rodent monitoring. Ross et al. reported the development of a smart
rodent monitoring system called RatSpy that uses computer vision and IoT for inspection
within a rodent bait station [11,12]. Sowmika et al. discuss a method of rodent detection in
farmlands, where a PIR sensor is used to detect the motion of rodents within a range of
ten meters, and sensor data collected are pushed to the cloud for enabling remote mon-
itoring [13]. Similarly, the work mentioned in [14] uses wireless sensor networking for
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rodent detection. The research outcome disclosed in [15] describes the development of
rodent bait equipped with electronic sensors in its bed to detect the presence of rodents
within the bait. The prior-art study shows that sensing techniques, IoT, and computer
vision are catalysts for the proliferation of rodent inspection techniques. However, the ad-
vancements in IoT-based techniques for rodent management and infestation control cannot
be considered a perfect solution. The omnipresent rodent species, such as Norway rats
(Rattus norvegicus) and black rats (Rattus rattus), and their strong and consistent behav-
ioral characteristics, such as neophobia [16,17], increase their awareness of trap locations,
and so they keep changing their harborage. Furthermore, it is extremely challenging to
locate a dead and decaying rodent inside a false ceiling after rodenticide consumption. The
scenario mentioned above gives rise to the need to formulate effective methods for rodent
activity monitoring inside a false ceiling. In addition to the rodent inspection, another
important task to be carried out is the inspection of building structures like optic-fiber
cables, sprinkler and gas pipes, and air-condition vents prone to rodent gnaw bites as
part of the periodic maintenance. The conventional method for the inspection task is a
manual inspection done by humans. This method is ineffective since the person who
inspects the false ceiling gets an eclipsed vision by obstacles most of the time. Hence, the
manual inspection methods are inefficient and ineffective in terms of time consumption
and inspection quality. Furthermore, the risk factor involved in climbing up to high-rise
ceilings multiple times escalates the drawbacks of manual false ceiling inspection.

A vast volume of research works is reported on the development of strategies for
automated inspection tasks for complex environments [18–21]. Robot-aided inspection is
one of the key factors among automated inspection, which has been widely researched
recently. For instance, work mentioned in [22] reports the development effort of flexi-
ble pipe inspection robots, where authors propose a bio-inspired caterpillar-like robot
for piping inspection. Similarly, Imran et al. developed an inspection robot capable of
passing through complicated pipelines with full control [23]. Similar to pipeline inspec-
tion, autonomous robots are being used for handling high-risk inspection tasks inside
nuclear reactors, where authors propose a lightweight robot with a holonomic base and
a manipulator [24]. The development of a novel drainage inspection robot is mentioned
in [25], where authors propose strategies for the collision avoidance and stability control of
the drainage inspection robot. Additionally, an inspection of contacts on overhead cable
systems for high-speed rails using inspection robots is discussed in [26]. Leveraging on
the precedence on effective usage of robots for complex inspection strategies and the need
to eliminate risk and inefficiency factors involved in false-ceiling inspection gives rise
to a new modality of inspection, which is the usage of lightweight inspection robots. A
robot that is capable of navigating around the false ceiling either in an autonomous or
semi-autonomous fashion can perform rodent activity monitoring and periodic false ceiling
inspection efficiently. However, the brittle nature of false-ceiling panels installed inside a
building restricts heavy structural weight. To maximize accessibility, the dimensions of
the robot have to be compact. The design considerations mentioned above on structural
weight and dimensions do not allow the robot to carry a heavy battery on board. Hence,
the inspection coverage planning has to be efficient in terms of energy consumption.

Autonomous navigation is an essential factor for autonomous robots. There is numer-
ous research work reported on perception, navigation, and localization methods [27–31].
Among all, a significant research focus is given on the path planning strategy since it can
have an impact on the task performed by the robot. For instance, the work mentioned
in [32] describes the path-planning approach in a mobile robot for a gas mapping task.
Miao et al. proposed a scalable coverage planning strategy for a cleaning robot [33]. From
the author’s perspective, a path-planning approach for area coverage is a critical element in
robotic cleaning. Sasaki et al. proposed an adaptive path planning strategy for improving
the performance of a cleaning robot, where the coverage planning prioritizes and sorts
regions based on dirt distribution [34]. The footprint of the robot is a crucial element of
area coverage algorithms. A classic robot footprint is defined as the surface area occupied
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by the robot at any instant of time [35]. For complete coverage planning, the robot should
be navigating so that the defined robot footprint will cover the maximum possible area.
The same strategy is applied for complete visual coverage tasks as well [36]. Hence, for a
false ceiling inspection, the effectiveness of the task depends on the robot’s ability to cover
every location in a false ceiling. For a visual inspection, the robot footprint can be defined
as the maximum area within the camera’s field of view that can be inspected. However,
the efficiency of inspection also has an impact on the choice of an optimal footprint.

The robot footprint used to maximize the task efficiency is also defined as the func-
tional footprint of the robot [37]. In this paper, we define an optimal footprint, also known
as functional footprint, for an in-house developed false ceiling inspection robot called
Raptor. In the scenario mentioned above, the robot’s functional footprint depends upon
the position and orientation of the camera onboard. We have exploited genetic algorithms
to determine the functional footprint of the robot that ensures an efficient false-ceiling
inspection. The rest of the research article is organized as follows:

Section 2 details the general objective of this work, followed by the system architecture
of the Raptor robot in Section 3. Section 4 explains the coverage planning strategies used
by the Raptor robot, and Section 5 gives a detailed insight regarding the cost functions,
constraints, and optimization strategies for finding the functional footprint. The results
of the simulation are given in Section 6, and finally, the conclusion and future works are
given in Section 7.

2. Objectives

The functional footprint of the robot is the footprint area of the robot that enhances the
efficiency of task execution [37]. The general objective of this work is to define a functional
footprint for the Raptor robot and improve the performance of the inspection task the
robot carries out by considering the defined functional footprint. This general objective is
subdivided into three components:

• A zig-zag area coverage strategy is proposed for false-ceiling inspection, where the
area coverage is defined in terms of the robot footprint, which is dependent on the
position and orientation of the camera (camera installation parameters).

• Formulate cost functions based on area missed and path-length covered during the
inspection by the robot.

• Estimate the functional footprint by finding the optimal values for camera installation
parameters by minimizing the costs using multi-objective optimization

• Validate the results of the Raptor robot by conducting experiment trials on a false
ceiling test-bed.

3. System Architecture

The outline of the in-house developed Raptor robot and its associated components
are given in Figure 1. The robot was designed by considering the maximum supported
weight on a false ceiling of 2.0 kg. The overall weight of the robot with a 2800 mAH
LiPo battery is 1.2 kg, and the weight without a battery is approximately 1.03 kg. The
developed robot system comprises four main segments: Operator’s Console Unit, ROS
master controller, Payload platform, and Beacon platform. The ROS master control unit
controls the movement of all deployed robots at any given time. There are two variants for
the Raptor robot platform, namely: Payload platform and Beacon platform. The payload
platform can perform semi-autonomous navigation using the RPlidar A1M8 LIDAR sensor
as the primary sensor for localization and navigation. On the other hand, the beacon
platform works with UWB-based mobile and stationary beacons for indoor localization.
The Operator’s Console Unit is the Graphic User Interface (GUI) layer to interface with the
ROS master. The ROS master synchronizes the platform data between the beacon platforms
and the payload platforms. The platform has the dimensions: 390× 350× 200 mm. We will
focus on the Beacon platform for the false ceiling inspection task since we require map-less
and GPS-denied indoor navigation. The beacon platform has a skid-steering base powered
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by four DC Motors that operate on a closed-loop velocity control. A pair of Roboclaw motor
controllers drive the motor according to the high-level command control received from a
single board computer. Raspberry Pi-4 Model B is used as the slave single-board computer
for processing of high-level computation, communication, and control with the remote
ROS master controller. The motor driver and Raspberry Pi controller are placed inside a
unique chassis to avoid interference induced by the payload and DC motors. One Roboclaw
controls the front two motored wheels while another drives the back two motored wheels.
Each Roboclaw is connected to a pair of motors with encoders. A DC–DC buck-converter
that steps down to 5 V is used to power a Raspberry Controller. The Raspberry Pi is
connected to the two Roboclaws. The data from the Inertial Measurement Module(IMU)
and wheel-odometry information from Roboclaw are used for dead-reckoning. Global
localization of the robot is handled by the Marvel-minds beacon and GPS module associated
with the robot. A Marvelmind indoor navigation beacon that is advantageously placed
at the top center of the robot provides the necessary position information for GPS-denied
navigation. A spring-return-based wheel suspension mechanism, designed according
to the dimensions and kinematics of the robot, allows the robot to overcome high-rise
obstacles and improves overall platform stability while navigating.

b c

d

Operator’s 
console unit

ROS master

Beacon 
platform

Payload 
Platform

OCU as GUI layer for operator
to interact with system

ROS master to synchronize
platform data

a

1. Rim with metal hub
2. Rubber tyre
3. Leg with encoder Cap
4. Motor driver
5. Wheel Encoder
6. DC Motor
7. LiPo Battery
8. Robot Top Cover
9. Marvelmind beacon
10. Power Switch
11. Raspberry Pi
12. Tuck-in mechanism lever
13. Leg latch release button
14. Spring operated push button
15. Spring loaded latch lock plate slider
16. Leg holder torsion spring

Figure 1. The outline of the Raptor system of robots (a), the beacon platform (b), the payload platform (c), components
associated with a beacon platform (d).

Control and Autonomy

The overall control architecture of the Raptor system is shown in Figure 2. The
software nodes for the control and autonomy tasks are implemented over a Robot Operating
System (ROS), running across a ROS master and integrates stationary beacons and other
robot platforms. The ROS master controller is the primary controller that controls and
overviews the rest of the sub-modules in the robot platform. A central workstation hosts
the ROS master, and the beacon platforms run as slave devices. The slave devices are the
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ROS-enabled Raspberry Pi nodes that are in each robot platform. A user can establish a
connection with the ROS master using a mobile or computer application over WiFi. The
UWB (Ultra Wide Band) outdoor beacons by Marvel mind, an indoor positioning system,
was used to find the robot location accurately up to 2 cm resolution. The positioning system
works a minimum of 3 stationary beacons placed at different corners of the test-bed and
a mobile beacon placed on top of the robot platform. Each beacon can either transmit
or receive a signal. Therefore, Marvelmind has developed two localization architectures:
Inverse Architecture (IA) and Non-Inverse Architecture (NIA). In IA, stationary beacons
act as transmitters, and mobile beacons act as receivers with a maximum localization
update rate of 16 Hz, halved with each additional mobile beacon added. In NIA, stationary
beacons act as receivers, and mobile beacons act as transmitters, with the localization
update rate remaining the same, albeit with a more complicated setup. This platform uses
the IA approach for autonomous navigation. In addition to the UWB beacon, IMU and
wheel odometry data are also used for the robot localization.
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Figure 2. The control architecture of the Raptor robot.

4. Path-Planning Strategy

The task of the Raptor robot is to inspect the maximum area in a false ceiling using a
camera for rodent activities. Hence, the robot follows a vision-based complete coverage
planning strategy (CCP). There are multiple approaches for achieving the CCP [38–40].
However, this study exploits the classic zig-zag path planning strategy to achieve maximum
coverage for an area devoid of obstacles.

4.1. Robot Footprint Definition

Conventionally, the mobile robot’s footprint is the area swept by the robot when it is
stationary. For an inspection robot, the footprint is defined as the effective area that can
be inspected while stationary. In other terms, the footprint is the camera’s effective field
of view. By definition, [37], the functional footprint is the optimal footprint associated
with the robot that maximizes the task efficiency. Hence, the functional footprint ( fr)



Sensors 2021, 21, 5168 6 of 20

can be considered as the optimal inspectable area using the usable field of view of the
camera. On the other hand, the performance and efficiency of an inspection task can be
weighed using the time taken for inspection, the area missed during the inspection, and
the energy consumed by the robot during the inspection. Under the notion that traveling a
minimal path for a given area will yield minimum time and minimal energy consumption,
we considered area missed and path-length as the efficiency-determining factors in the
scenario. To obtain the functional footprint of the robot, dependency on the functional
footprint on every efficiency determining factor has been investigated. The parameters that
define robot footprint are:

1. Position of camera mounting in both the x and y-axis.
2. The horizontal mounting angle α (yaw angle).
3. The vertical mounting angle β (pitch angle).

Therefore, the fr (functional footprint) is represented by the optimal values for the cam-
era’s position (x∗ and y∗) and orientation (yaw angle—α∗ and pitch angle—β∗) that results
in the minimal area missed minimal total path length to be traveled during the inspection.
Hence, the functional footprint can be represented as in Expression (1) given below:

fr =


x∗

y∗

α∗

β∗

 (1)

The superscript ∗ on the variables represents that they hold optimal values.

4.2. Zig-Zag Based Area Coverage

Given a rectangular cross-section of size L × B, the whole region is divided into grid
cells of size l × b. The size of the grid cells specified is split with respect to the camera’s
field of view; the robot moves along each row, covering all the grid cells with the defined
functional footprint of the camera. At the end of each row, the robot turns 90 degrees and
moves to the next grid cell to reach the next row. This is repeated until the robot covers all
the grid cells specified in the region up to the last row.

5. Optimal Coverage Strategy

This section details the derivation of the necessary objective functions for the minimum
distance traveled while maximizing the area coverage for the false ceiling inspection using
a zig-zag-based coverage strategy.

5.1. Total Zig-Zag Path Length Computation

Figure 3 shows the side-view of the robot from which we can geometrically extract
the grid size for zig-zag path in terms of θ ,β, and z. In Figure 3, z is the height at which
the camera is positioned on the robot from the floor, β is the vertical angle of the camera,
and θ represents the horizontal field of view of the camera. The length of the grid l can be
calculated in terms of β and θ using Equation (2):

l = z tan(β +
θ

2
) ; (2)
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Figure 3. The side-view of the robot with the field-of-view of the camera.

Figure 4 shows the top view of the robot with Xr and Yr as the x and y axes with
respect to the robot frame. From Figure 4b, the breadth of the grid b can be geometrically
derived. The b can be calculated in terms l and θ using Equation (3):

b = 2l × tan(
θ

2
) (3)

Figure 4. The zig-zag area coverage strategy of the robot (a), area missed during the initial stage of operation (b), area
missed at the turning (c).

For the zig-zag coverage strategy, the path length can be calculated in terms of distance
covered in each row and distance covered during the transition between the rows, as shown
in Figure 4a. Hence, the total path length of the robot can be represented using Equation (4):

Stotal = (Srows × nrows) + (Stransition × (nrows − 1)) (4)
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where, Srows is the total distance covered along the rows, Stransition is the distance covered
during the transition between the rows and is given by Equations (5) and (6):

Srows = (Lengthnrow − (
b
2

sin(α) + l cos(α) + y))nrows (5)

where y is the position of the camera in the y-axis and α, β are the orientation of the camera
on the robot, Lengthnrow is the total length of each row strip, and nrows is the total number
of row strips in the grid space. The term b

2 sin(α) + l cos(α) is the total horizontal distance
covered by the robot with the change in orientation angle α of the camera.

Stransition = (2 b tan(θ/2))(nrows − 1) (6)

nrows is the total number of rows in the area of operation. The number of rows nrows
can be calculated using Equation (7):

nrows =
B
b

(7)

The total distance (Stotal) covered by the robot for maximum area coverage can be
written in terms of y,α and β using Equation (8):

Stotal(y, α, β) = (Lengthnrow − (
b
2

sin(α) + l cos(α) + y))nrows + (2 b tan(θ/2))(nrows − 1) (8)

From Equation (8), it is clear that the path length of the robot is dependent on pa-
rameters that define the footprint of the robot, which is α, β, and y. Hence, the functional
footprint of the robot can be determined by estimating the optimal footprint parameters
for the minimal path length for a given area of operation.

5.2. Total Area Missed

During the zig-zag path planning, loss in area coverage happens in two cases:

1. The robot moves along the horizontal path while covering a row (Figure 4b).
2. The robot does a transition between rows (Figure 4c).

The total area missed is formulated as the sum of the areas missed in case 1 and
case 2. For case 1, the area missed is the initial area loss due to the robot’s starting position
combined with area loss accumulated while the robot moves in the horizontal path. The
initial area loss at the starting position can be estimated by calculating the areas represented
by section 1, section 2, section 3, and section 4 represented in Figure 4b shown in Figure 4b.
The area of section 1 can be estimated by calculating the area of the trapezoid as per
Equation (9):

Areasection1 =
b
2 cos(α) + l sin(α)

2
× (

b
2

sin(α) + l cos(α)) (9)

where b
2 cos(α) and l sin(α) are the two sides of the trapezoidal region and b

2 sin(α) +
l cos(α) is the total horizontal length of section 1. Similarly, the area under section 2 can be
calculated using the area of the rectangular region given in Equation (10):

Areasection2 = ((
b
2

sin(α) + l cos(α))× x) (10)

The triangular area in section 3 is not considered in the estimation of initial area loss
as most of the region in section 3 will be covered when the robot moves along the second
row strip in a zig-zag path by overlapping a small region of the adjacent row strip. The
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accumulated area loss during the robot motion can be approximated with the area of
section 4. The area of section 4 can be estimated using Equation (11)

Areasection4 = (nrows × (Lengthnrow)× (l sin(α) + x)) (11)

where nrows are the total number of rows in the grid space, and Lengthnrow is the length of
each row strip.

The area missed during the transition between rows can be approximated as the area
of triangle ABC shown in Figure 4c. From Figure 4c, Line A meets with Circle O at point
C, and Line B meets at the same CircleO at point B. Point A is the meeting point of Line B
and Line A. The representation of Line A is given by Equation (12):

Y − 3 × b
2

= 0, (12)

and the representation of Line B is given by Equation (13):

X − (l + y) = 0 (13)

The equation for the Circle O can be represented as:

(x − h)2 + (y − k)2 = (l + y)2 (14)

where, h and k are the origins of the robots coordinates. The equation of the triangle ABC
in terms of point A, B and C can be written as:

Areatriangle =
1
2
(x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)) (15)

where, (x1, y1), (x2, y2) and (x3, y3) are the coordinates of points (A, B, C), which are
obtained by solving a set of Equations (12)–(14). The total area missed, Equation (16), can
be determined from Equations (9)–(11) and (15):

A(x, α, β) = (
b
2 cos(α) + l sin(α)

2
)(

b
2

sin(α) + l cos(α))+(
b
2

sin(α) + l cos(α))x+

nrows(Lengthnrow(l sin(α) + x))+((nrows − 1)(Areatriangle)) (16)

Similar to the equation for path-length (8), we can clearly observe that the area missed
by the robot (16) is dependent on parameters that define the footprint of the robot, which are
α, β, and x. Hence, the estimation of the functional footprint boils down to a multi-objective
optimization problem with objectives given in Equation (17):

min(A(x, α, β)) and min(Stotal(y, α, β)) (17)

subject to the constraints:

xmin ≤ x ≤ xmax; ymin ≤ y ≤ ymax; αmin ≤ α ≤ αmax; βmin ≤ β ≤ βmax. (18)

where xmin, xmax and ymin, ymax are the minimum and maximum possible position of
camera on the robot; αmin, αmax and βmin, βmax are the minimum and maximum possible
yaw angle and pitch angle to adjust the horizontal and vertical field of views. The pa-
rameters that shape the zig-zag path: (1) number of rows nrows (2) row length Srow and
(3) transition length Stransition are computed from the optimal values for α, β, x and, y. The
multi-objective optimization problem defined by Equations (17) and (18) is solved using a
Genetic Algorithm (GA). GA is a subset of evolutionary algorithms that are widely used for
solving complex multi-objective optimization problems. However, the genetic algorithms
are modified to accommodate multiple objective functions for multi-objective optimization
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problems. There are different Multi-Objective Evolutionary algorithms (MOEA), including
NSGA2 [41–44] and PESA-II [45,46]. In this work, we focused on NSGA-2 and MOEA/D
algorithms for solving the constraint multi-objective optimization problem.

5.2.1. NSGA-2

The procedures involved in the NSGA2 algorithm are explained in the flow chart
given in Figure 5. The NSGA2 algorithm yields a set of solution points, also known as the
Pareto-Optimal solution set. The Pareto-front holds the dominant solutions for conflicting
objectives functions. The NSGA2 algorithm is known for its simplicity of implementation
and effectiveness. The NSGA2 algorithm is an improved version of NSGA using the fast
non-dominated sorting concept [41].

Initialize with Population and 
Generations Parameters

Start Generation counter�i�   1

&omEine the parent and oIIsprinJ population to 
Rt = Pi U Qi

Identify the non-dominated (f1, f2, ... fk) set by 
performing non dominated sorting

Find the crowding distance of the sorted 
solution

Using binary tournament selection

create next generation Pi+1

Apply Crossover and mutation to Pi+1 to 
generate Offspring Qi+1

i �  nJen 6top

i = i +1

&reate a parent population P� oI size 1

&rossoYer and 0utation to Jenerate oII�
sprinJs Qt Irom parent

Figure 5. Procedure for the NSGA-2 algorithm implementation [41].

5.2.2. MOEA/D

The multi-objective evolutionary algorithm based on decomposition (MOEA/D)
works by decomposing a given problem to multiple neighborhood sub-problems and
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finding the optimal solutions simultaneously [47,48]. MOEA/D is known to be more
straightforward compared to other multi-objective optimization algorithms. Hence, we
considered the usage of MOEA/D alongside NSGA2 for performing the concerned multi-
objective optimization problem. The procedures involved in the MOEA/D algorithm are
explained in the flow chart given in Figure 6.

Figure 6. Procedure for MOEA/D algorithm implementation.

6. Results and Discussion

For the given scenario, we exploited genetic algorithms (GA) using NSGA2 (Non-
Dominant Sorting Genetic Algorithm). We have conducted multiple simulations with
different variations in population size of NSGA2 to solve for the functional footprint
of the robot. In addition to NSGA2, a multi-objective evolutionary algorithm based on
decomposition (MOEA/D) was also used to arrive at an optimal solution. The simulations
were performed using the Pymoo library for NSGA2 and MOEA/D in Python3. The
algorithms were executed on a computer with an Intel Core-i7 CPU and 16GB RAM. Part
of the Section details the multiple simulation trials and experiments that were conducted.

6.1. NSGA2—Variation of Population

The NSGA2 optimization was completed for three different population sizes; 250, 500
and 2000. For the MOEA/D, the number neighbors and probability of neighbor mating
are fixed as 15 and 0.7, respectively. For the area coverage, different area sizes of 2 × 2,
3 × 2 and 4 × 2 m in a false ceiling environment were considered for experimentation. In
each set of simulations, the upper and lower bound of the constraints αmax, αmin, βmax,
βmin, xmax, xmin, ymax, ymin were chosen as (0.0, 0.9547), (0.0, 0.687), (−0.15, 0.15) and
(−0.10, 0.0) respectively. The simulation results for population 250 is given in Figure 7. The
number of points belonging to the Pareto-front is less for a population of 250 compared
to the other set of simulation trials. In the design space, the solutions were widely spread
between (−0.145, 0.142), (−0.0941, −0.014), (0.0013, 0.499) and (0.019, 0.685) for x, y, α,
and β. The simulation results for a population of 500 are given in Figure 8. The number
of points corresponding to the Pareto-front is more for a population of 500 compared to
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a population of 250 in the previous simulation. In the design space, the solutions were
spread across the intervals of (−0.1498, −0.00485), (−0.0939, −0.0067), (0.0002, 0.117) and
(0.136, 0.6859) for x, y, α, and β. However, compared to simulation for a population of 250,
the spread of solutions mostly converged to values −0.1498, −0.0939, 0.00 and 0.685 for
x, y, α, and β. When it comes to the population of 2000, (given in Figure 9), the number
of points belonging to the Pareto-front is more than that of simulations corresponding to
populations of 250 and 500. In the design space, the solutions were less spread between
(−0.1499, 0.0866), (−0.099, −0.0037), (0.00004, 0.365) and (0.124, 0.685)for x, y, α, and β.
The values for x, y, α, and β are more converged to −0.1499, −0.0999, 0.003 and 0.685.

Figure 7. NSGA2 optimization for area size 4 × 2 m with population size = 250.

Figure 8. NSGA2 optimization for area size 4 × 2 m with population size = 500.
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Figure 9. NSGA2 optimization for area size 4 × 2 m with population size = 2000.

6.2. MOEA/D

The simulation results for the MOEA/D algorithm for a neighboring size of 15 are
given in Figure 10. In the design space, the solutions were widely spread between (−0.1498,
0.0149), (−0.0931, −0.00), (0.0063, 0.499) and (0.0575, 0.685) for x, y, α, and β. Figure 11
shows the overall time taken to run each of the simulations by varying the population size
and changing the optimization algorithm.

Figure 10. MOEA/D optimization for area size 4 × 2 m with neighboring size 15.
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Figure 11. Time comparison for MOEA/D and variations of NSGA2 for finding the Pareto-front.

Table 1 summarizes the simulation results for varying population sizes in the optimiza-
tion algorithm. The simulation for NSGA2-2000 takes at least 70% more time than the other
optimization algorithm types. However, an optimization with a population size of 2000 for
NSGA2 has shown better convergence results when compared with other population sizes
and the MOEA/D algorithm. Therefore, we considered using NSGA2-2000 for further
simulations by varying the area of the test-bed.

Table 1. Consolidated simulation results for varying population size.

Simulation Results for Varying Population Size

Optimization Algorithm Time Taken (Seconds) Area Missed (Metres) Path Length (Metres)

NSGAii (population size—250) 0.0666 0.87 16.9
NSGAii (population size—500) 0.182 0.332 15.2

NSGAii (population size—2000) 1.424 0.16 14.6
MOEA/D (neighboring size—15) 0.414 0.37 15.7

6.3. NSGA-2 Variation of Area

The NSGA2-2000 optimization was completed for three different test-bed sizes of
2 × 2, 3 × 2 and 4 × 2 m. For each of the simulation results, total area missed and total
path length for the robot to maximize area coverage were computed. Figures 12–14 show
the Pareto-chart using NSGA2-2000 for each of the area sizes. The solutions for all of the
test-bed sizes were less spread between (−0.1499, 0.006), (−0.0999, −0.0005), (0.0002, 0.378)
and (0.023, 0.6859) for x, y, α, and β. The values for x, y, α, and β are more converged to
−0.1499, −0.0999, 0.0002 and 0.685.

Table 2 summarizes the simulation results with overall area coverage performance
and path length of the robot to maximize area coverage using NSGA2-2000 for different
test-bed sizes.
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Table 2. Consolidated simulation results for varying area.

Simulation Results for Varying Area Using NSGA2-2000

Test-Bed Size (Metres) Srow (Metres) Stransition (Metres) Area Missed (Metres) Path Length (Metres)

2 × 2 1.401 0.4951 0.19 7.089
3 × 2 2.401 0.4951 0.21 11.08
4 × 2 3.401 0.4951 0.16 15.08

Figure 12. NSGA2 optimization for area size 2 × 2 m with population size = 2000.

Figure 13. NSGA2 optimization for area size 3 × 2 m with population size = 2000.
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Figure 14. NSGA2 optimization for area size 4 × 2 m with population size = 2000.

6.4. Experiments

The experiments were carried out on the Raptor robot to validate the simulation
results for the optimal placement of the camera to maximize area coverage and minimize
path length. The robot was operated inside a false ceiling test-bed of a total area of 4 × 2 m.
Multiple experiments were performed based by reducing the area of operation to 2 × 2
(Figure 15), 3 × 2 (Figure 16) and 4 × 2 m (Figure 17) within the same test-bed. We installed
MarvelMind beacons on different locations of the test-bed for robot localization. The total
path length for each trial is recorded from the experiment results. We estimated the robot
pose by fusing the beacon position, wheel odometry, and inertial measurements from the
IMU sensor. The row length, transition length between the rows obtained after performing
the optimization are programmed on the robot for performing the zig-zag.

Figure 15. The experiment trial performed in the false-ceiling test-bed for covering 2 × 2 m. (a) Robot performing inspection
in the false-ceiling test-bed at various time frames. (b) Fused odometry plot of robot during experimental trial.
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Figure 16. The experiment trial performed in the false-ceiling test-bed for covering 3 × 2 m. (a) Robot performing inspection
in the false-ceiling test-bed at various time frames. (b) Fused odometry plot of robot during experimental trial.

Figure 17. The experiment trial performed in the false-ceiling test-bed for covering 4 × 2 m. (a) Robot performing inspection
in the false-ceiling test-bed at various time frames. (b) Fused odometry plot of the robot during the experimental trial.

Table 3 summarizes the experimental data obtained. Time taken for the robot to cover
2 × 2, 3 × 2, and 4 × 2 m are 61.132, 80.177, and 120.43 s, respectively. Correspondingly,
path-lengths for 2 × 2, 3 × 2, and 4 × 2 m were 8.042, 12.542, and 15.662 m, respectively.
The observed results agree with the simulation results for 2, 3 × 2, and 4 × 2 m.

Table 3. Consolidated experimental results for varying areas.

Experimental Results for Varying Area Using Solutions from NSGA2-2000

Test-Bed Size (Metres) Time Taken (Seconds) Path Length (Metres)

2 × 2 68.37 7.452
3 × 2 82.237 11.97
4 × 2 117.28 15.96

7. Conclusions and Future Works

This work calculates an optimal footprint for an in-house developed inspection robot
called Raptor, where the footprint is defined by the optimal position and orientation of a
camera on the robot. We considered the minimization of area-missed during the inspection
task and path length of the robot for different positions and orientations of the camera.
The mathematical expression for area missed and path covered for a zig-zag area-coverage
strategy was derived, and optimal values for camera position coordinates and orientation
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angles were determined using constraint multi-objective optimization. We utilized multi-
objective optimization tools, such NSGA-2 and MOEA/D, for performing multi-objective
optimization. The results of multi-objective optimization were validated by conducting
experiments on a false-ceiling test-bed using the Raptor robot. The future works of this
research will focus on the dynamic optimization, consideration of energy and multiple path-
planning strategies for defining functional footprint-based path generation considering
static and dynamic obstacles.
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