Algorithm 1 Evaluating models to differentiate siblings. |
Input: Image Pairs of Siblings M with m pairs |
τ = threshold array defined for each similarity measure |
mod = respective model |
for i = 1 to m do |
for each image in pair do |
I1 → read image; |
I1 → resize image; |
I1 → pre-process image; |
P1 = extractEmbeddings(mod(I1)); |
I2 → read image; |
I2 → resize image; |
I2 → pre-process image; |
P2 = extractEmbeddings(mod(I2)) |
end |
end |
cosine → cosine_distance(P1, P2) |
euc → euclidean_distance( P1, P2 ) |
ssim → structured_similarity( P1, P2 ) |
manh → manhattan_distance( P1, P2 ) |
mink → minkowski_Distance( P1, P2 ) |
for j = 1 to τ.length do |
if distance < τ[j] |
distance_result → “Same” |
else |
distance_result → “Different” |
end |