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Abstract: Considerable research and surveys indicate that skin lesions are an early symptom of skin
cancer. Segmentation of skin lesions is still a hot research topic. Dermatological datasets in skin lesion
segmentation tasks generated a large number of parameters when data augmented, limiting the
application of smart assisted medicine in real life. Hence, this paper proposes an effective feedback
attention network (FAC-Net). The network is equipped with the feedback fusion block (FFB) and the
attention mechanism block (AMB), through the combination of these two modules, we can obtain
richer and more specific feature mapping without data enhancement. Numerous experimental tests
were given by us on public datasets (ISIC2018, ISBI2017, ISBI2016), and a good deal of metrics like the
Jaccard index (JA) and Dice coefficient (DC) were used to evaluate the results of segmentation. On
the ISIC2018 dataset, we obtained results for DC equal to 91.19% and JA equal to 83.99%, compared
with the based network. The results of these two main metrics were improved by more than 1%. In
addition, the metrics were also improved in the other two datasets. It can be demonstrated through
experiments that without any enhancements of the datasets, our lightweight model can achieve better
segmentation performance than most deep learning architectures.

Keywords: skin lesion segmentation; feedback fusion; attention mechanism; lightweight model

1. Introduction

Among malignant tumors affecting the elderly worldwide, skin cancer is common;
there are approximately 5.4 million skin disease cases added every year [1]. Melanoma is the
most deadly [2,3]. Primary melanoma is usually confined to the skin surface cells. Melanoma
cancer cells will invade other tissues and organs of the human body (such as lung and brain)
through the circulatory system when the disease worsens. If patients get timely discovery
and treatment, the cure rate may reach more than 95%. However, the cure rate for advanced
melanoma is only 15% [4]. Therefore, a timely diagnosis of melanoma is essential.

Dermoscopy is the primary means of improving the rate of skin cancer diagnosis and
decreasing skin cancer mortality [5]. This method can visualize precisely the structure
of the lesion in the skin at the level of the pixels. However, in clinical medicine, we
have found that manual dermatoscopic visual inspection of skin lesions consumes a great
deal of doctors’ time and energy, and in the process of diagnosis, different doctors will
make subjective decisions based on their own experience [6]. Lately, it is because of these
problems that the technology of segmentation of the dermoscopic image was born (which
is the segmentation of damaged skin from the background of the dermoscopic image).

In recent years, with the rapid development of deep learning, computer aided diagno-
sis (CAD) systems are developing continuously. With respect to this visual evaluation of
dermatoscopy images, CAD can provide quantitative and objective results, and in clinical
trials, CAD has helped dermatologists to improve their clinical diagnostic accuracy for
melanoma. A standard method of skin lesion inspection currently used consists of five
steps: imaging, pre-treatment, segmentation, feature extraction, and classification [7]. In the
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process, segmenting the lesion portion of the dermoscopic image allows the physician to
focus more on the lesion area, which can improve the physicians’ diagnostic effectiveness.

Early segmentation methods for skin lesions usually use algorithms based on optimal
threshold, region growing, and edge detection. Since traditional methods require manual
intervention, more and more experts and scholars have begun to explore more efficient
segmentation methods; various segmentation methods based on CNN have been proposed
and improved. However, these existing methods still have limitations. The reasons for this
are as follows: first, the information extracted from the current network is underused. Sec-
ond, the network does not take into consideration the relationship between contexts when
extracting features. Third, the attention mechanism does not take into full consideration
the multi-scale information in the network.

Facing the above challenges, an innovative FAC-Net was proposed by us to better
segment skin lesions. Specifically, we propose an FFB module for the first time and use it
among the down-sampling process of the network. The FFB has three advantages: First, it
can apply the output results to the input maps through feedback, to further strengthen the
crucial information in the feature map, and then fully extract and use global information.
Second, it can convert the original output result feature map into the weight matrix of the
original input feature map after maximum global pooling, so as to achieve the effect of
weighting and to emphasize the original feature map information. Third, it can fuse feature
map information with different resolutions from two adjacent layers to get a feature map
with more comprehensive information, and ultimately strengthen the segmentation result.
Based on the three advantages mentioned above, we can see that the network proposed
in this paper can get the information on skin lesions more comprehensively, to improve
the accuracy of segmentation for lesions. In the up-sampling, we apply the AMB module
after the skip connection. We pass the enormous amount of information gotten in this
step through the AMB module to extract the critical information after enhancement and
suppress irrelevant and erroneous information. We extensively evaluated the network
proposed by us on three datasets (ISBI2016, ISBI2017, ISIC2018). Experimental results show
that without using data augmentation, we get better segmentation results through the
FAC-Net network than most deep learning networks.

We summarize the contributions of this article below:

• We proposed a novel and efficient FFB, which captures multi-scale features and fuses
information on different scales to get richer information of feature maps.

• The AMB module is an improved Convolutional Block Attention Module, which
applies to skip connection fusion, strengthening vital information and suppressing
irrelevant interference information.

We introduce existing work in Section 2. Then, we describe the method and its corre-
sponding analysis in Section 3. The experimental settings, details, results, and evaluation
indicators are introduced in Section 4. Next, we describe the discussion of the network,
draw some conclusions and look forward to the future in Section 5.

2. Related Work

In this part, we mainly introduce three parts, namely segmentation network, feedback
mechanism, and attention mechanism.

2.1. Segmentation Network

Skin lesion segmentation [8] is to distinguish the diseased part and the normal part of
the patients’ skin by artificial or others means, then accurately segment the diseased area,
to prepare for the doctor’s further diagnosis and treatment. Traditional skin lesion seg-
mentation algorithms include threshold-based [9], edge detection [10], region growth [11],
and active contour-based [12] segmentation methods. These traditional methods still have
successful applications in medical images; Dang et al. [13] proposed a color model of
normalization based on adaptive thresholding and obtained better results than the Otsu
segmentation method. Militello et al. [14] proposes a semi-automatic method to assist the
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cardiologist in gaining personalized diagnosis and therapy. As deep learning continues
to develop in the field of computer vision in recent years, more and more experts and
scholars are actively exploring the application of deep learning in various fields, including
the segmentation of skin lesions. It achieved remarkable results in the segmentation of skin
lesions. Ben-Cohen et al. [15] first explored the use of FCN to complete the segmentation
task of liver and tumor in CT images. Yuan et al. [16] trained an end-to-end skin melanoma
segmentation method based on 19-layer FCN. Then, experts have proposed a series of
segmentation methods based on deep learning, such as SegNet [17] and Deeplab [18] based
on fully convolutional neural networks, which have continuously improved the accuracy
and efficiency of segmentation. Ronneberger et al. [19] proposed U-Net, and this U-Net
architecture is a landmark in the field of medicine. Subsequently, a series of networks based
on U-Net have appeared in the field of computer vision, such as R2U-Net [20], context
encoder network (CE-Net) [21], and U-Net++ [22]. In addition, U-Net3+ [23] proposed by
Huang et al. uses full-scale skip connections and deep supervision to improve the problem
of insufficient information extraction. The network SA-UNet [24] adds a spatial attention
mechanism on the basis of U-Net to achieve adaptive optimization. Phan et al. [25] pro-
posed an adjustable skip connection, which solves the problem of large scale variation
among layers by performing an adjustable skip connection operation through a selective
kernel module. Salih et al. [26] decomposed the likelihood function, which more effectively
gave play to the advantages of the combination of the pixel-based MRF model and random
region. Khan et al. [27] used local color-controlled histogram intensity values (LCcHIV) to
enhance the input image to enrich the information. Tong et al. [28] used a combination of
three attentional mechanisms to focus the neural network on the visual field more relevant
to the segmentation target. Hafhouf et al. [29] combined the extended convolution and
pyramid pooling module and used it in the codec structure to improve the segmentation
result. Saha et al. [30] proposed a color enhancement technique that adaptively enhances
the data and distinguishes the structural features of normal skin from damaged skin tissue
through deep visualization. Tang et al. [31] proposed to use context information to guide
the feature coding process, and adopted a new deep monitoring objective function to
supervise the entire network end-to-end. Wu et al. [32] proposed an efficient and adaptive
dual-attention module. Meanwhile, the backbone network adopts a dual-coding structure,
which reduces redundancy and expands the network’s reception domain.

2.2. Feedback Mechanism

The feedback mechanism allows the network to carry the output information to
modify the state of the input. In the network, feedback mechanisms enable adequate
multiplexing of parameters, reducing the introduction of other parameters. It achieves
feedback propagation of feature information by incorporating features from each round of
iteration into the feature input of the next round of iteration. The model incorporated into
this module will have fewer parameter quantities as well as faster execution. It has been
used many times in different vision tasks [33,34]. Recently, feedback mechanisms have
been adopted by many network architectures to meet various computer vision tasks. At the
same time, semantic segmentation [35] tries to use the topology loss to extract high-level
language information, and high-level language information is fed back to the shallow
network to correct low-level semantic information. Then, it converts important output
information into input image information to solve the classification problem in computer
vision tasks.

2.3. Attention Mechanism

The traditional CNN network ignores the dependencies between feature maps when
extracting features, such as the dependency between space and channel. Based on this
problem, more and more experts and scholars have explored better mechanisms to establish
connections between feature maps. Bahdanau et al. [36] first consider the relationship
between gained features to improve the acquisition of critical features in natural language
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translation. Wang et al. [37] proposed a non-local block to obtain the dependence of the
global information on the pixel-level relationship. In addition, Hu et al. [38] proposed
and used the squeeze excitation (SE) module to obtain the weight map, which weighted
the gained feature information to emphasize vital information. Cao et al. [39] proposed
that GCNet is based on non-local blocks and SE blocks, recalibrating the dependence
between dimensions in the network at the pixel level. In recent years, in order to further
capture the correlation of features in each dimension, a method based on the fusion of
spatial attention and channel attention has been proposed (Convolutional Block Attention
Module (CBAM) [40], CCNet [41] and Dual attention [42]). In addition, self-attention
mechanisms have been very recently used in Generative Adversarial Networks (GANs) for
unsupervised anomaly detection on MRI, like Han et al. [43] applied SA module between
specified convolutional layer and batch normalization layer to realize the recalibration and
transfer of effective features of the network by establishing long-term dependence among
features, ignoring the interference of irrelevant information.

3. Methods

In this chapter, the overall framework of the following FAC-Net was introduced in
brief firstly. Then, the composition, structure and implementation details of the FFB module
are also introduced by us. Finally, we introduce the AMB module in detail.

3.1. The Overall Structure of FAC-Net

Figure 1 shows the skin lesion segmentation network architecture FAC-Net proposed
based on CE-Net. Specifically, the FAC-Net network makes the CE-Net network as the
backbone architecture. Then, we used the FFB in the down-sampling stage, which enables
the network to get richer feature map information during the down-sampling process. The
AMB attention module is used in the up-sampling stage to get critical information from
the numerous information of the feature map. Compared with the previously proposed
Attention Gate (AG) [44] module that directly uses the global information at the skip
connection to generate the attention weight map. Finally, the generated weight plot was
used to weight the output of each up-sampling layer. The special feature of the proposed
network is that the idea of feedback fusion is used in the information-rich down-sampling
layer and the idea of attention module weighting is used in the up-sampling recovery of
the feature map, and the two ideas are further combined to achieve the reuse of the feature
map and the emphasis of the key information.
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3.2. Feedback Fusion Block

In the deep learning framework, encoding and decoding structures are usually used
to extract map features. The down-sampling part comprises convolution and pooling
modules. Although in the process of convolution and pooling operations, the network
will continue to extract the feature information of the input image. Still, in the process of
extraction, the network will also lose or ignore some critical feature information. Due to
the considerable complexity of skin lesions, it is particularly vital to get global information
when dealing with the collection of images of skin lesions. Therefore, how to reduce the
loss of critical information has become an urgent problem for us to solve. Aiming at this
practical problem, this paper presents a solution. The feedback mechanism is able to reuse
the parameter information and get richer feature information. Considering that this paper
is a research discussion without doing data enhancement, it is extremely important to
reuse the existing feature information of datasets in the network to obtain information
that is comparable or even richer than after data enhancement. For this reason, this paper
presents a novel and efficient FFB modules guided by the feedback mechanism as a theory.
The reuse of feature information also occurs in previous works, such as feature pyramid
network (FPN) [45], which employs a top-down network structure with lateral connections
to make predictions on each layer of feature maps. The output feature maps from each layer
are up-sampled by the output feature maps from the previous layer and summed from
the feedforward feature maps whose size is consistent with that feature map. While FFB
presented in this paper is different from FPN. FFB module, instead of the previous direct
feedback way, the upper-level feature information map is fed back to the lower-level in the
form of feature weight matrix by top-down feedback, and along the top-down feedback
direction, respectively, to obtain the output of each layer feature map after feedback fusion.
Specifically, feature information obtained from two adjacent down-sampling layers is added
to the FFB module and then merged with corresponding up-sampling layers through skip
connection. Such a processing way obtains feature information that is more relevant to the
skin lesions without changing the extraction operation. At the same time, we have proven
through experiments that the FFB module can effectively improve the segmentation effect
of skin lesions.

Specifically, FFB consists of two parts of the input. Take the FFB module between
the two coding layers E1 and E2 as an example. As shown in Figure 2, we use the E1
encoding output feature map M ∈ RC×H×W as the input of the first part of this module.
The operation flow of FFB operation is shown in Table 1.
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Table 1. Operation of FFB module.

Process Operation Input Output

Part one
Conv3 × 3 C × H ×W C × H ×W

element-wise Multi C × H ×W & C × 1 × 1 C × H ×W
Concat C × H ×W & C × H ×W 2C × H ×W

Part two
Gap 2C × H/2 ×W/2 2C × 1 × 1

Conv1 × 1 2C × 1 × 1 C × 1 × 1
Up-sampling 2C × H/2 ×W/2 2C × H ×W

Connection
Concat 2C × H ×W & 2C × H ×W 4C × H ×W

Conv1 × 1 4C × H ×W C × H ×W

In the first part of this module, given a feature map M, after the convolution operation,
the feature is extracted without changing the channel and resolution to obtain M′. The
above-mentioned extracted critical feature information M′ ∈ RC×H×W is multiplied with
the feature weight map N′ ∈ RC×1×1 input from the second part by element to get the
enhanced feature map M′′ ∈ RC×H×W. The weighted feature map M′′ is spliced with the
original feature map M to obtain the fused output feature map M′′′ ∈ R2C×H×W of the first
part.

In the second part of this module, Given the feature map N ∈ R2C×H/2×W/2 output
by E2 after passing through the encoding part of the FFB module is used as the input.
The feature map N will extract the maximum value of each channel through maximum
global pooling, then through a 1 × 1 convolution operation, a maximum weight value map
N′ ∈ RC×1×1. In addition, we will directly pass the original input feature map N to up-
sampling, in this way, a new feature map N′′ ∈ R2C×H×W is obtained. Finally, the feature
map M′′′ and the feature map N′′ are spliced together, then the number of channels is
restored through a 1 × 1 convolution and the output feature map F ∈ RC×H×W is obtained.

Through the operations described above, we will continuously strengthen the critical
information of the input images. In the end, a map with enhanced feature information is
used as the input part of the skip connection, and it is input into an up-sampling layer with
the same resolution as the feature map.

3.3. Attention Mechanism Block

In this paper, feedback fusion modules do have a good impact on the reusability of
model parameters, reducing a large number of parameters, but as such structures all trans-
fer feature information in the form of iterative rounds during training, redundant feature
information as well as some noise may have an additive effect in iterations and affect the
convergence of the network as well as the final effect. To suppress the side effects produced
based on FFB modules, this paper improved the CBAM attention module and named it the
AMB module, whose structure is identical to that of the CBAM module (Channel attention
mechanism (CAM) and Spatial attention mechanism (SAM) are connected in series). At the
same time, given the large degree of similarity between feature maps of multi-channels
taken in the network architecture, the most recurrent feature information occurring in each
channel on a spatial scale is vital feature information (that is, what we need to acquire).
Therefore, this paper proposes the addition of an algorithmic branch that solves mode
values in Sam modules to enforce the ability of Sam to screen important feature information.
The structure of AMB as shown in Figure 3, the up-sampling feature map A ∈ RC×H×W

after skip connection splicing is sent to the AMB module as input. First, we obtain a weight
map WC ∈ RC×1×1 and a feature map A′ ∈ RC×H×W sequentially through CAM. Then, the
A′ is used as the input of the SAM to obtain the spatial weighted image WP ∈ RC×1×1. In
the same way, WP and A′ are multiplied by elements and then spliced with the initial input
A′ to get the final output map A′′ ∈ RC×H×W.
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3.3.2. Spatial Attention Mechanism

For the spatial attention mechanism, we have made corresponding improvements. We
consider that the maximum value and average value obtained in the corresponding spatial
position of each pixel in the feature map are the key features of the current situation in the
spatial channel. Still, some positions in the space may have extreme values. In response to
this phenomenon, we propose to calculate the mode value of the same position in the space
and obtain a mode value feature weight map. In the network, the image changes the size
of the feature map and the number of channels through convolution and pooling, which
continuously obtains vital information. Therefore, we believe that the features acquired
at each position of the feature map in the corresponding position in the space will have
similarities. The feature that appears the most times is the key information.

In this paper, by calculating the features that appear the most in their corresponding
spatial location, we get the mode value weight map. The previous maximum feature
weight map and average feature weight map are supplemented to obtain the maximum
feature weight map, average weight map, and mode value feature weight map. The
three feature maps are element-wise added to effectively weigh various features, suppress
invalid information, and amplify vital information, to improve the accuracy of segmenting
skin lesion feature maps. As shown in Figure 5, the input feature map is the feature map
A′ ∈ RC×H×W enhanced by channel attention, and the maximum value, average value,
and mode value are extracted, respectively. After the channel is merged, the spatial weight
map WP ∈ RC×1×1 is normalized by Softmax function.
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3.4. Loss Function

In order to optimize the training of the network, the loss function is suggested to
detect the error between the prediction result of the network output and the GT image
to continuously reduce the difference between the two during training. The smaller the
value, the better our results. In order to optimize our model and make the model converge
quickly and stably during the training process, we have selected the most classical dice
loss function-Dice Loss. The Dice coefficient originates from two classification tasks, and is
generally used as an index to evaluate the degree of overlap between two samples. The
index ranges from 0 to 1, where “1” means complete overlap. As shown in the Equation (1),
Diss loss is one minus the Dice coefficient, so the smaller the Dice Loss value, the better.
Where i is the index of each pixel on the feature map, yi is the ith element on the GT, and pi
is the ith element of the network prediction SR.

LDICE = 1− 2 ∑i yi pi

∑i yi + ∑i pi
(1)

4. Experiment

In this part, we first explain the selected datasets and evaluation indicators. Then,
we introduce the detailed parameter settings of the training process. Next, we conduct
ablation experiments on various modules. Last, we show the results of FAC-Net.

4.1. Datasets

We used three accepted skin image datasets (ISBI2016 [46], ISBI2017 [47], and
ISIC2018 [48]), to verify the network proposed in this article. There are several types of
skin lesions in the datasets, as shown in Figure 6:

• The size and shape of the skin lesions in the sample are different, and the boundary
is fuzzy.

• There are interfering factors in the sample, such as hair, air bubbles and other obstructions.
• The distinction between the diseased part and the normal skin part is small and

difficult to distinguish.
• There are obvious hierarchical features in the lesion location of the sample, which may

lead to misjudgment of the lesion boundary.
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These problems make the task of segmenting skin lesions extremely difficult. Consid-
ering the actual clinical medical environment, we did not perform any processing on the
data. We only adjusted all the images and GT to a resolution of 256 × 256.

The 2594 images with GT were provided in the ISIC2018 dataset as the training
dataset. Provide about 100 images without GT for the verification dataset and 1000 images
without GT for the test dataset. However, since the dataset does not provide the GT maps
corresponding to the images in the validation and test dataset, we divide the training
dataset into three parts at a ratio of 7:1:2, which are respectively used as the training dataset,
the validation dataset, and test dataset.

Training images of the ISBI2017 dataset includes 2000 dermoscopy images of different
resolutions and the corresponding segmentation GT maps. The test images consist of
600 dermoscopy images and corresponding segmentation label maps. For this dataset, we
select the original training images as the training dataset. At the same time, we divide the
test images at a ratio of 1:4 as the verification dataset and the test dataset.

ISBI2016 dataset contains 900 training images in JPEG format and 379 test images.
These images are classified and annotated by clinical experts and then encoded as single-
channel segmentation label images. For the ISBI2016 dataset, the training scheme adopted
is: the 900 training images provided by ISBI2016 dataset as the training dataset, and the
test images are split into a verification dataset and a test dataset at a ratio of 1:4.

4.2. Metrics

To quantitatively evaluate the segmentation ability of the feedback attention network
FAC-Net, we use the following widely recognized segmentation evaluation indicators.
Sensitivity (SE) Equation (2) represents the proportion of skin lesion pixels that are correctly
segmented. The higher the sensitivity, the closer to 1.0, and the closer to 1.0, the better the
segmentation effect. Specificity (SP) Equation (3) represents the proportion of pixels that
are not correctly segmented in the undamaged skin part. Higher specificity means that as
many negative instances as possible are judged as undesirable. The normal skin area is
considered being normal, and there is no misjudgment. Precision (PC) Equation (4) is also
used as an evaluation indicator. In addition, the Jaccard index (JA) Equation (5) and Dice
coefficient (DC) Equation (6) are used to measure the similarity between the segmentation
result and the marked GT. Accuracy (ACC) Equation (7) is also used to display the overall
pixel-level segmentation performance, and the formula is shown below.

SE =
TP

TP + FN
(2)

SP =
TN

TN + FP
(3)

PC =
TP

TP + FP
(4)

JA =
TP

TP + FN + FP
(5)

DC =
2 × TP

2 × TP + FP + FN
(6)

ACC =
TN + TP

TP + TN + FP + FN
(7)

Among them, in the skin lesion area, TP represents pixels that are correctly segmented,
and FN represents pixels that are not correctly segmented. On the contrary, in a normal skin
area, TN represents normal pixels are correctly segmented, and FP represents normal pixels
are not correctly segmented. Through the above indicators, we can objectively evaluate the
accuracy of segmentation.
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4.3. Experimental Setting

Firstly, we apply the well-known Kaiming initialization method to optimize the
training of the network. Then use of ADAM optimizer to perform optimization in this
article. Next, the learning rate, the batch size and the epoch are set to 0.0001, 12, and 200,
respectively. In our experiment our model can converge stably after 200 training cycles.

4.4. Ablation Experiment

To better demonstrate the effects that different modules proposed in this article.
We conducted ablation experiments. In the ablation experiment, we test CE-Net, CE-
Net+FFB, CE-Net+AMB, and the method proposed in this article (CE-Net+FFB+AMB)
on the ISIC2018 dataset. We compare the effectiveness of the separate modules on the
effect of segmenting the lesion. As shown in Figure 7, we can observe that the original
CE-Net cannot obtain satisfactory segmentation results, especially when the lesions have
different locations and shapes (Figure 6a). Compared with CE-Net, the CE-Net+FFB
method will obtain richer features after adding the FFB module. Even if the skin lesion
has irregular shapes and fuzzy edges, the FFB feedback module can fully capture the
lesion area. The segmentation result is preferable to CE-Net. FFB module itself obtains
the part of the diseased part through continuous supplementation and fusion. Therefore,
when the contour of the lesion is irregular or fuzzy, the lesion area obtained by the FFB
feedback network will be slightly larger than the true value of the label. Contrary to this
situation, we can see that CE-Net+AMB can effectively remove some irrelevant information,
to segment the lesion into segmented regions closer to the GT. Therefore, face with the
complex datasets mentioned above, we take the advantages of the two modules as the
starting point and propose an algorithm framework of CE-Net+FFB+AMB (FAC-Net) to
deal with the challenges brought about by this complexity. The segmentation performance
of the skin lesions of each ablation network is clearly demonstrated in the experiment:
the segmentation results of the CE-Net+FFB+AMB are better than CE-Net, CE-Net+FFB,
and CE-Net+AMB. The segmentation comparison results are shown in Figure 7. The
segmentation maps of results can effectively prove the effectiveness and accurateness of
the FAC-Net method proposed in this paper.
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Figure 7. A visualized comparison chart of each network in the ablation experiment. (a,b) represent
the original image and gray-scale image input into the network compared with (c,d). After adding
the FFB module, the information obtained by the network is more abundant, and slightly larger than
that of the GT diagram. Comparing with (c,e), it can be obtained that adding the AMB module can
suppress irrelevant information. Comparing (c–g), it can be concluded that the network with two
modules added at the same time has the best segmentation result.
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In addition, we also performed statistics and comparisons on the JA, DC, SE, PC,
SP, and ACC values of different methods. As shown in Table 2, we can see clearly that
the segmentation results of CE-Net+FFB and CE-Net+AMB are better than the traditional
CE-Net, which also proves the effectiveness of the FFB and AMB modules proposed in
this paper. In addition, the above evaluation indicators can confirm that in these four
experiments, CE-Net+FFB+AMB can achieve an excellent skin lesion segmentation effect.

Table 2. Evaluation index of each network in ablation experiment.

Model ACC (%) SE (%) SP (%) PC (%) JA (%) DC (%)

CE-Net 95.81 88.11 97.88 91.64 81.58 89.71
CE-Net+FFB 96.18 88.40 98.21 92.00 82.83 90.49

CE-Net+AMB 96.05 89.74 97.75 90.49 82.87 90.48
CE-Net+FFB+AMB 96.41 89.92 98.16 92.74 83.99 91.19

To further verify the effectiveness of the spatial attention mechanism in the AMB
module, we conducted the following verification experiments for the spatial attention
mechanism, and obtained statistical values such as JA, DC, SE, SP, and ACC. The verifica-
tion experiments we carried out are shown in Table 3, in which Mode stands for the mode
function, Max stands for the maximum value function, and Avg stands for the average
value function. It can be seen from the statistical table that the AMB method proposed in
this paper can obtain the best training effect in all function algorithm combinations.

Table 3. Ablation experiment on AMB module.

Model ACC (%) SE (%) SP (%) PC (%) JA (%) DC (%)

Mode 95.96 90.17 97.47 90.63 82.64 90.24
Mode+Avg 96.10 89.62 97.92 91.86 82.94 90.55
Mode+Max 96.07 89.54 97.82 91.64 82.79 90.45
Max+Avg 96.17 90.02 97.64 91.23 82.83 90.45

Mode+Max+Avg 96.41 89.92 98.16 92.74 83.99 91.19

4.5. Comparative Experiment

We also conducted comparative experiments between the proposed segmentation
network and the mature segmentation network, including U-Net, R2U-Net, CE-Net, SA-
UNet, and UNet3+. In order to ensure the fairness of the experiment comparison, we
conduct experiments under the same parameter settings and computing environment. We
apply each network to three datasets (ISBI2016, ISBI2017, ISIC2018). Binary images of skin
lesions obtained by network training segmentation are shown in the three figures below.

As the figures (Figures 8–10) show, we can see that U-Net usually cannot accurately
identify the complex boundaries of challenging cases. Performance and segmentation
results of R2U-Net based on recursive residual convolution block are better than U-Net.
CE-Net achieves higher segmentation accuracy by combining dense dilated convolution
module and residual multi-core pool. SA-UNet introduces a spatial attention module and
performs adaptive feature refinement and obtains excellent results in retinal segmentation.
However, the segmentation results obtained as a result of this network on the skin disease
datasets are only better than U-Net. U-Net3+ further optimizes the segmentation results of
skin lesions by using full-scale skip connection and deep supervision in the network, but
it takes up a lot of memory. The experiment results show that CE-Net+FFB+AMB have
obtained segmentation maps that are preferable than other methods on the whole, and
achieved higher skin lesion segmentation accuracy.
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Figure 8. The visual segmentation comparison chart of each comparison network on ISIC2018.
(a,b) represents original and gray-scale images of input, (i) represents GT maps. (c–g) represent the
segmentation results of comparison networks, respectively. (h) represents the segmentation result
of our proposed method, from which it can be seen that the segmentation result of our proposed
method is the closest to the GT maps.
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Figure 9. The visual segmentation comparison chart of each comparison network on ISIC2017.
(a,b) represents original and gray-scale images of input, (i) represents GT maps. (c–g) represent the
segmentation results of comparison networks, respectively. (h) represents the segmentation result
of our proposed method, from which it can be seen that the segmentation result of our proposed
method is the closest to the GT maps.
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Figure 10. The visual segmentation comparison chart of each comparison network on ISBI2016.
(a,b) represent original and gray-scale images of input, (i) represents GT maps. (c–g) represent the
segmentation results of comparison networks, respectively. (h) represents the segmentation result
of our proposed method, from which it can be seen that the segmentation result of our proposed
method is the closest to the GT maps.

Besides intuitive comparison, we also statistically compared the data (ACC, SE, SP, PC,
JA, and DC) obtained from the experiments on three datasets (ISBI2016, ISBI2017, ISIC2018).
In the three tables (Tables 4–6) below, it can be seen that the method we propose is superior
to the comparison networks in most indicators. Compared with the primary network
CE-Net, the approach proposed in the present paper has a significant improvement in the
three datasets. It is worthwhile to note that on the 2017 dataset, the method proposed in
this article compared with the basic network also have corresponding improvements in
various indicators. Also on the 2016 dataset, the method proposed in this article is greater
than competitors in terms of ACC, SP, PC, JA, and DC. Through the comparison of the
values of the indicators for ACC, PC, JA, and DC on the three datasets (ISIC2018, ISBI2017,
ISBI2016), our proposed module is shown to be robust in improving the segmentation
results of skin lesions.

Table 4. Evaluation indicators of each comparative network on ISBI2018.

Model Year ACC (%) SE (%) SP (%) PC (%) JA (%) DC (%)

U-Net 2015 94.66 86.03 97.10 88.72 77.43 87.13
R2U-Net 2018 95.09 86.58 97.51 90.00 78.85 88.05
CE-Net 2019 95.81 88.11 97.88 91.64 81.58 89.71

U-Net3+ 2020 94.97 85.20 97.77 90.86 78.30 87.71
SA-UNet 2021 94.78 84.87 97.59 90.29 77.63 87.25

Ours - 96.41 89.92 98.16 92.74 83.99 91.19

Table 5. Evaluation indicators of each comparative network on ISBI2017.

Model Year ACC (%) SE (%) SP (%) PC (%) JA (%) DC (%)

U-Net 2015 92.21 74.38 97.58 89.58 68.30 80.70
R2U-Net 2018 92.28 75.37 97.45 89.38 69.04 88.05
CE-Net 2019 93.49 80.51 97.33 89.92 73.83 84.55

U-Net3+ 2020 92.08 72.95 97.87 90.69 67.79 80.29
SA-UNet 2021 92.08 76.93 96.66 86.74 68.76 81.06

Ours - 93.63 81.06 97.43 90.07 74.27 84.91
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Table 6. Evaluation indicators of each comparative network on ISBI2016.

Model Year ACC (%) SE (%) SP (%) PC (%) JA (%) DC (%)

U-Net 2015 94.69 91.30 96.01 89.32 82.18 90.12
R2U-Net 2018 94.43 87.68 97.06 91.49 80.95 89.38
CE-Net 2019 95.94 92.80 97.10 92.06 85.85 92.31

U-Net3+ 2020 94.94 90.26 96.74 91.12 82.87 90.54
SA-UNet 2021 94.11 89.46 95.90 88.82 80.14 88.82

Ours - 96.09 92.50 97.43 92.74 86.23 92.51

In order to better verify the effectiveness of the proposed method, we directly compare
it with State-of-the-Art Methods. In the absence of data enhancement, the network we
proposed achieves better results compared with other networks that use data enhancement
for segmentation. As shown in Table 7, the method we proposed has corresponding
improvement compared with other networks.

Table 7. Comparisons with State-of-the-Art Methods.

Model Dataset ACC (%) SP (%) JA (%) DC (%)

Tang et al. [32]-2020 ISBI2016 96.08 - 85.98 91.91
Hafhouf et al. [30]-2020 ISBI2016 93.9 95.2 82.7 89.6

Khan et al. [28]-2021 ISBI2016 92.69 - - -
Ours ISBI2016 96.09 97.43 86.23 92.51

Tong et al. [29]-2021 ISBI2017 92.6 96.5 74.2 83
Ours ISBI2017 93.63 97.43 74.27 84.91

Salih et al. [27]-2020 ISIC2018 89.47 95.09 72.45 80.67
Tang et al. [32]-2020 ISIC2018 - - 81.91 -
Saha et al. [31]-2020 ISIC2018 - 93.2 81.9 89.1
Wu et al. [33]-2021 ISIC2018 94.7 94.1 84.4 90.8

Khan et al. [28]-2021 ISIC2018 92.69 - - -
Ours ISIC2018 96.41 98.16 83.99 91.19

5. Discussion and Conclusions

Through the above-mentioned ablation research and comparative experiments, we
found that although segmentation of skin lesions has an immense challenge, after integrat-
ing the two modules of FFB and AMB, our method achieved better results. However, at
present, our method still has room for optimization. Similar to most CNN networks, facing
the challenge of too minor differences between normal skin and skin lesions, our approach
may not get an accurate segmentation boundary, but compared to other contrast networks,
our segmentation results are still the closest to the GT image.

In summary, without data augmentation, a novel and efficient network model for
skin lesion segmentation is proposed and implemented in this paper, which is called
FAC-net. We introduce the idea of feedback fusion combined with attentional mecha-
nisms. Specifically, in the coding section, in order to effectively feedback the high-level
output information to the low-level output to adjust its output and obtain richer feature
information, we designed a novel FFB and applied it between adjacent coding layers. In
the decoding section, to better carry out the screening of focused information, highlight
the target information, and reduce the background information, we adopted AMB and
embedded it after the information fusion of skipping connection. The main advantage
of our network over other existing networks is the ability to also get rich and focused
information in the absence of data augmentation. To verify the validity of the network
proposed in this paper, we evaluate it using three publicly available datasets (ISIC2018,
ISBI2017, ISBI2016). Through plenty of ablation experiments, we respectively verified
the feasibility and efficacy of the two blocks, and also demonstrated that the two could
achieve the best results in the case of combination. Through extensive contrast experiments,
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the effectiveness of the network presented in this paper in skin lesion segmentation tasks
without doing data enhancement is well demonstrated.

In future work, we will conduct research improvements on the network proposed
in this paper in the following three aspects. First, we will investigate in the model the
operation of improving the feedback fusion mechanism to transform the high-level infor-
mation into feature weight matrix maps, so that the upper-level information features can
better feedback into the lower-level feature maps. Second, for the targeted acquisition of
skin lesion location in feature maps, we will explore new attentional mechanism modules
that are more suitable for skin lesions, optimizing the placement and number of such
modules. Third, we will look for loss functions that can further narrow the difference
between training results and label values during the training process, such that the skin
lesion segmentation effect is further boosted.
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