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Abstract: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are emerging as a new treatment
strategy for heart failure with reduced ejection fraction (HFrEF) and—depending on the wistfully
awaited results of two clinical trials (DELIVER and EMPEROR-Preserved)—may be the first drug class
to improve cardiovascular outcomes in patients suffering from heart failure with preserved ejection
fraction (HFpEF). Proposed mechanisms of action of this class of drugs are diverse and include
metabolic and hemodynamic effects as well as effects on inflammation, neurohumoral activation,
and intracellular ion homeostasis. In this review we focus on the growing body of evidence for
SGLT2i-mediated effects on cardiac intracellular Na+ as an upstream mechanism. Therefore, we will
first give a short overview of physiological cardiomyocyte Na+ handling and its deterioration in heart
failure. On this basis we discuss the salutary effects of SGLT2i on Na+ homeostasis by influencing
NHE1 activity, late INa as well as CaMKII activity. Finally, we highlight the potential relevance of
these effects for systolic and diastolic dysfunction as well as arrhythmogenesis.

Keywords: SGLT2 inhibitor; heart failure; HFrEF; HFpEF; arrhythmia; Na+; NHE1; late INa; CaMKII

1. Introduction

SGLT2 inhibitors (SGLT2i) were designed as antidiabetic drugs lowering blood glucose
levels by selective inhibition of the sodium-glucose cotransporter 2 (SGLT2) in the renal
proximal tubule with consequent increase in glycosuria [1]. Although tight glycemic control,
which can be achieved by the addition of SGLT2i to the antidiabetic treatment regimen,
has the potential to positively affect major adverse cardiovascular events (MACE) [2,3],
the risk of myocardial infarction or stroke was not significantly reduced by treatment with
SGLT2i [4–6]. Moreover, a mediation analysis of EMPA-REG OUTCOME by Inzucchi et al.
demonstrated that the reduction in HbA1c levels by empagliflozin contributed only slightly
to the observed cardioprotective effects [7]. These data are corroborated by recent studies
in patients with heart failure, in whom SGLT2i prevented hospitalization for heart failure
and cardiovascular death in diabetic and nondiabetic patients alike [8,9]. Furthermore, a
direct SGLT2-dependent effect on cardiomyocytes can be excluded due to the lack of SGLT2
expression in the heart [10–12]. Therefore, many (pre-) clinical trials were performed to
gain further mechanistic insights. Consequently, a myriad of potential mechanisms was
proposed including direct cardiac effects such as inhibition of cardiac Na+/H+ exchanger
1 (NHE1) [13–15], Ca2+/calmodulin-dependent protein kinase II (CaMKII) [10,16], and late
Na+ current (late INa) [17]. Intriguingly, these proteins are centrally involved in cardiac
Na+ homeostasis, which is fundamentally disrupted in heart failure [18–20], making it an
interesting target for heart failure treatment.

In this narrative review we shortly summarize the current knowledge on Na+ home-
ostasis in heart failure and elaborate on potential pathways by which SGLT2i could improve
cellular Na+ handling and thus prevent heart failure progression.
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2. Cardiac Na+ Handling
2.1. Na+ Handling in the Healthy Heart

In cardiomyocytes Na+ homeostasis is finely tuned by an orchestrated activity of sev-
eral transporters, ion channels and kinases reflecting its great importance for fundamental
cellular processes as excitation-contraction coupling and mitochondrial metabolism.

During the cardiac action potential (AP), activation of voltage-gated Na+ channels
(Nav1.5) mediates the upstroke (phase 0) of the cardiac AP and thus allows for the activation
of voltage-gated L-type Ca2+ channels (LTCC), leading to Ca2+-induced Ca2+ release (CICR)
from the sarcoplasmic reticulum (SR) and finally activation of the contractile apparatus.
Since voltage-gated Na+ channels undergo rapid inactivation (few ms) the magnitude of
Na+ influx mediated by peak Na+ current (peak INa) is small. However, beside peak INa,
a small persistent INa component has been described that is generated by Na+ channels
exhibiting a sustained bursting activity even at negative membrane potentials [21]. In
addition, during the plateau phase of the cardiac action potential, Na+ current steady-state
inactivation and activation can overlap resulting in the generation of a long-lasting INa
window current. Both latter Na+ current components (together labelled as late INa) have a
low amplitude, but their long duration leads to a significant amount of Na+ entry into the
cell [20,22–25].

Furthermore, Na+ influx can be mediated by the cardiac isoform of the Na+/H+ ex-
changer (NHE1), which couples the extrusion of one H+ with the influx of one Na+ and
is thus also centrally involved in the regulation of intracellular pH (pHi) [26]. In addi-
tion, Na+ homeostasis is tightly coupled with cellular Ca2+ homeostasis via the electro-
genic sarcolemmal Na2+/Ca2+ exchanger (NCX), which exchanges 3 Na+ for 1 Ca2+ and
constitutes—together with SR Ca2+ ATPase 2a (SERCA2a)—the main means of cytosolic
Ca2+ removal during diastole [27,28]. Indeed, in the healthy heart, NCX is responsible for
the extrusion of all Ca2+ that entered the cell via LTCC in order to maintain a steady-state
condition [28,29]. Importantly, NCX can operate in a bidirectional fashion depending on
ion gradients across the membrane as well as membrane potential. In “forward mode,”
which is favored by increased [Ca2+]i and membrane potentials negative to the Nernst
potential of NCX, Ca2+ is removed from the cell, as mentioned above, while Na+ enters
the cell. The opposite is true for NCX “reverse mode,” which is promoted by an increase
in [Na+]i and positive membrane potentials. Apart from these transporters, which are
accountable for most of the Na+-entry (NCX > Nav > NHE) [28,30,31] further Na+ in-
flux is mediated by Na+/HCO3

− cotransporter, Na+/K+/2Cl− cotransporter, as well as
Na+/Mg2+ exchanger [31,32]. Importantly, while SGLT2 is not expressed in the heart,
SGLT1 expression was repeatedly confirmed in healthy hearts and is even upregulated in
cardiac disease potentially contributing to Na+ influx [33,34].

The inward gradient for Na+ is maintained by the energy consuming sarcolemmal
Na+/K+-ATPase transporting 3 Na+ out of the cell in exchange with 2 K+ and simultane-
ously building up the negative resting membrane potential, which is primarily dictated by
the K+ conductivity of the cell membrane.

Besides its importance in cardiac excitation-contraction coupling, [Na]i is also involved
in cellular energy supply as well as mitochondrial redox regulation, as recently reviewed by
Bertero et al. [35]. In brief, mitochondrial Ca2+ concentration ([Ca2+]m), which is elevated in
parallel to cytosolic Ca2+ levels, e.g., during β-adrenergic stimulation, activates Krebs cycle
dehydrogenases to increase the production of reducing equivalents (NADH and NADPH)
in order to meet the energetic demand and also to preserve the anti-oxidative capacity
of the cell [36]. While mitochondrial Ca2+ uptake is mediated via the mitochondrial Ca2+

uniporter (MCU) [37], activity of the mitochondrial Na+/Ca2+ exchanger (NCLX) primarily
causes Ca2+ extrusion linking [Na]i with [Ca2+]m [28,38]. Consequently, an increase in
[Na]i results in a decrease in [Ca2+]m, which in turn hampers Krebs cycle activity [36].

Given the role of Na+ homeostasis for cardiac excitation-contraction coupling as
well as cardiac metabolism it comes as no surprise that dysregulation of Na+ handling is
centrally involved in the development and progression of heart failure.
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2.2. Na+ Dysregulation in Heart Failure

Heart failure is characterized by cellular Na+ overload as a consequence of a dysbal-
ance between Na+ in- and efflux. Indeed, bulk cytosolic [Na+]i from failing compared to
non-failing myocytes is elevated by ~2 to 6 mM [18,24,31,39–41]. An increase in Na+ influx
is predominantly caused by (1) an increase in late Na+ current (late INa), (2) an increase
in NHE1 activity and (3) increased NCX forward mode due to cytosolic Ca2+ overload in
failing cardiomyocytes [31] (Figure 1).

Figure 1. Dysregulated ion homeostasis in failing cardiomyocytes. Increased late INa as well as increased forward
mode NCX (constituting ITi), NHE1- and SGLT1 activity contribute to cellular Na+ overload ([Na+]i). Na+ overload,
in turn, promotes cytosolic Ca2+ overload ([Ca2+]i) and mitochondrial Ca2+ depletion ([Ca2+]m) (with increased ROS
generation), both of which are able to activate CaMKII, which is centrally involved in the regulation of multiple Na+ and
Ca2+ channels/transporters. The solid grey lines indicate known CaMKII phosphorylation targets. NKA, Na+/K+ ATPase;
RyR2, ryanodine receptor 2; SR, sarcoplasmic reticulum; NCX, Na+/Ca2+ exchanger; NCLX, mitochondrial Na+/Ca2+

exchanger; ROS, reactive oxygen species.

2.2.1. Late INa

As stated above, the vast majority of voltage-gated Na+ channels inactivate rapidly
leading to a marked membrane depolarization but only little Na+ influx. In contrast,
there is a small proportion of channels, which remain activated or close and quickly
reopen, mediating a sustained Na+ current termed late INa [20,22–25,42]. The molecular
mechanisms for this peculiar gating behavior are not fully understood. Interestingly, in the
recent years it has become evident that beside Nav1.5 also neuronal Nav isoforms (e.g., Nav
1.8) [43–46] are involved in the generation of late INa. Even though this current is small
under physiological conditions (~0.5% of peak INa), it is upregulated in heart failure, where
it consequently gains further impact on AP duration and is a major source of cytosolic Na+

overload [19,20,23,25,47]. Several mechanisms might account for the increase in late INa in
the failing heart including hypoxia [48], mechanical [49] and oxidative stress [19,23,25]. In
this context, Ca2+/Calmodulin-dependent kinase IIδ (CaMKIIδ), a serine/threonine kinase
that is markedly upregulated in heart failure and involved in heart failure development
and progression [50–52], occupies a central role. In the recent years, a plethora of evidence
has accumulated for CaMKII-dependent stimulation of late INa in a variety of cardiac
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diseases [24,47,53]. For example, augmentation of late INa by reactive oxygen species (ROS)
with consequent disturbances of Na+ and Ca2+ homeostasis requires oxidative activation
of CaMKII [25,54]. In accordance, three CaMKII phosphorylation sites were detected at
the Nav1.5 I-II linker loop (S516, S571 and T594) [55,56]. Interestingly, the reported shift
of INa steady state inactivation (SSI) to more negative potentials and increase in late INa
induced by CaMKII-dependent Nav1.5 phosphorylation [24] could only be reproduced
by phosphorylation of S571 [56], while phosphorylation of S516 and T594 resulted in
a leftward shift of SSI without increasing late INa [55]. To add further complexity, Na+

channel β-subunit composition might additionally be relevant for the regulation of late
INa [57]. In conclusion, while the relevance of specific phosphorylation sites is still under
debate, there is consensus that CaMKII-dependent Na+ channel phosphorylation is the
major driver for late INa augmentation in heart failure. However, although inhibition of
late INa e.g., by ranolazine has been shown to significantly decrease [Na+]i in human heart
failure [19], this current alone cannot account for the observed Na+ overload in failing
cardiomyocytes [24,58].

2.2.2. NHE1

Indeed, several studies demonstrated an upregulation of NHE1 activity in heart
failure [59,60]. In a rabbit model of combined pressure and volume overload induced heart
failure, Baartscheer and colleagues showed an increased Na+ influx, which could be blunted
by inhibition of the increased NHE1 activity with the specific inhibitor cariporide [60].
Interestingly, cariporide could also partly rescue the disturbed Ca2+ handling in these
myocytes [60]. In a follow-up experiment using the same rabbit model, this working group
was also able to show that chronic cariporide treatment (for 3 months after operation)
prevented heart failure development by alleviating structural and cellular remodeling [61].
It is still unclear, if the observed increase of NHE1 activity in heart failure is due to an
increase in channel expression, posttranslational modification of the channel, or both.
We have recently reported that NHE1 expression is markedly upregulated in ventricular
tissue of patients with end-stage heart failure as compared to patients with left ventricular
hypertrophy and normal systolic function [15]. Intriguingly, NHE1 expression has also
been shown to be upregulated in the failing right ventricles of a rat model of pulmonary
hypertension [62]. Furthermore, treatment of neonatal rat ventricular cardiomyocytes
with aldosterone, a known driver of cardiac hypertrophy and heart failure, results in an
increased NHE1 expression with consequent stimulation of hypertrophic signaling, which
was ameliorated by cariporide treatment [63]. On the other hand, Yokoyama et al. did not
observe any alteration in cardiomyocyte NHE1 expression in a small cohort of patients
with chronic end-stage heart failure undergoing heart transplantation compared to non-
used donor hearts, despite a markedly increased NHE activity in the diseased hearts [59]
pointing to a relevance of post-translational modification. Importantly, NHE1 has been
shown to be readily phosphorylated by several kinases—including CaMKII—resulting in a
stimulation of channel function [64,65].

2.2.3. Na+/K+ ATPase

As stated above, Na+ overload can also result from a reduced capacity to extrude Na+

from the cytosol, a process, which is mainly mediated by the Na+/K+ ATPase. Several
studies have shown a decrease in the expression level of the Na+/K+ ATPase in animal
models of heart failure as well as human heart failure [66–68]. Furthermore there might
be a shift in the composition of different isoforms of the α subunit (α1, α2, α3), which
show different affinities to Na+, as well as the β subunits (β1 and β2, with β1 being
the prevailing isoform in the heart) [39,67–70]. While these subunit shifts could result in
different activity and affinity of the pump, the available data are inconsistent maybe due to
species differences or differences in the etiology or stage of heart failure. The expression
level and phosphorylation of phospholemman (PLM), the main regulator of Na+/K+

ATPase activity, by protein kinases A and C (PKA, PKC) adds a further layer of complexity,
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especially as data are again conflicting. In a rabbit model of volume-overload-induced
heart failure PLM appeared to be hyperphosphorylated [69], while downregulation of
inhibitor-1 (I-1) with consequent increase in protein phosphatase-1 (PP-1) activity resulted
in PLM hypophosphorylation in human heart failure [71]. Intriguingly, several studies
failed to observe a reduction in Na+/K+ ATPase activity in the failing heart [18,60] making
the contribution of this enzyme to Na+ overload still a matter of debate.

2.2.4. NCX

In contrast to the Na+/K+ ATPase the relevance of NCX is better characterized. NCX
has a special role in ion dysbalance in heart failure as its activity is tightly coupled to
[Na+]i and [Ca2+]i, as described above (see Section 2.1). Importantly, a majority of studies
have shown that NCX expression and activity are upregulated in heart failure [72–74] with
potentially far-reaching consequences.

On the one hand, an increase in [Na+]i may induce NCX reverse mode in the early
phase of the action potential and hamper Ca2+ extrusion via NCX forward mode later
on potentially contributing to SR Ca2+ loading, which might in turn mitigate contractile
dysfunction [75,76]. On the other hand slowing of diastolic Ca2+ removal from the cy-
tosol contributes to diastolic dysfunction [77,78]. However, during the cardiac cycle NCX
primarily operates in its forward mode, which in combination with a decreased SERCA
activity and an increased SR Ca2+ leak unloads the SR resulting in decreased Ca2+ transient
amplitude [72,79–81]. At the same time the NCX-mediated Na+-influx generates a depo-
larizing transient inward current (Iti) potentially causing cellular pro-arrhythmic events
in form of delayed afterdepolarizations (DAD) [82,83]. Moreover, the increase in [Na+]i
indirectly reduces the availability of reducing equivalents, which not only leads to a deficit
in ATP but also contributes to oxidative stress (as outlined in Section 2.1). Consequently, a
vicious cycle with ROS-induced CaMKII-activation and subsequent cellular Ca2+ and Na+

overload with its deleterious effects on cardiac function develops (Figure 1).

3. Effects of SGLT2i on Cardiac Na+ Homeostasis

There is overwhelming evidence that SGLT2i are cardioprotective in diabetic and
non-diabetic patients. Consequently, a vast number of trials were conducted to decipher
the underlying mechanisms. While the proposed mechanisms are multifaceted, a striking
number of observations are directly or indirectly linked to effects on cellular Na+ handling,
as set out below (Figure 2).

3.1. Inhibition of NHE1

There are several studies showing that inhibition of NHE1 (usually by its specific
inhibitor cariporide) prevents development or worsening of heart failure [60,61,84–87].
The first work assuming an effect of SGLT2i on NHE1 was by Baartscheer et al. who
observed that treatment of isolated ventricular cardiomyocytes of healthy mice and rab-
bits with empagliflozin reduced [Na+]i as well as systolic and diastolic [Ca2+]i probably
due to decreased NHE1 activity [13]. In addition [Ca2+]m, assessed by the use of a mito-
chondrially targeted fluorescence resonance energy transfer (FRET-)-based Ca2+ indicator
(mitoCam), increased [13]. In a later work the same group could reproduce NHE1 inhibi-
tion by dapagliflozin and canagliflozin in healthy murine cardiomyocytes and suggested
direct binding of SGLT2i to the Na+ binding site of NHE1 by applying molecular docking
studies [14]. Furthermore, we could recently show inhibition of NHE1-dependent pH
recovery also in isolated human atrial cardiomyocytes, suggesting a potential role for the
observed cardioprotection in clinical trials [15]. Interestingly, in a HFpEF model using Dahl
salt-sensitive rats fed with high salt diet, chronic treatment with dapagliflozin (6 weeks) at-
tenuated Ca2+ and Na+ overload and increased Ca2+ transient amplitude [88]. Furthermore,
upregulation of NHE1, SGLT1, CaMKII, Nav1.5, and NCX1 in the diseased hearts was
found to be attenuated by chronic dapagliflozin treatment. Importantly, the authors could
not detect acute effects of dapagliflozin treatment on [Na+]i or [Ca2+]i in isolated myocytes.
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Unfortunately, NHE1 function in cardiomyocytes was not assessed in this study. However,
inhibition of NHE1 activity by dapaglifozin was demonstrated in human umbilical vein
endothelial cells (HUVEC) [88]. Noteworthy, Chung et al. could not detect NHE1 inhibition
or a decrease in [Na+]i by SGTL2i treatment neither in unpaced healthy human nor animal
(mouse, rat and guinea pig) cardiomyocytes [89]. Interestingly, in patch clamp experiments
they also assessed Na+/K+ ATPase current without differences between treatment groups.
To address the conflicting data, Zuurbier et al. tested the influence of differences in the
experimental setup (e.g., different pH-buffering systems, pacing of cells, extracellular pH,
DMSO concentration) on the contradictory results and concluded that different conditions
could not account for the discrepancies [90]. After transformation of the SBFI ratio-data
of Chung et al. into [Na+]i they even suggest that there is also a detectable decrease in
[Na+]i upon treatment with empagliflozin [90]. Overall, if NHE1 inhibition by SGLT2i
can indeed convey a decrease in [Na+]i in healthy cardiomyocytes is debatable, especially
when considering that NHE1 activity at normal intracellular pH is low and contributes
only little to cellular Na+ loading [91]. In a mouse model of ischemia-reperfusion (IR), em-
pagliflozin delayed the time to onset of contracture as well as IR injury similar to cariporide,
again pointing to a NHE1-dependent effect [92]. However, if a potential NHE1 inhibition
by SGLT2i might contribute to a decrease in Na+ influx in failing cardiomyocytes with
disturbed pH regulation [93] has not been systematically investigated to date.

Figure 2. Beneficial effects of SGLT2i on cellular ion homeostasis. SGLT2i directly or indirectly inhibit NHE1, late INa,
and CaMKII, leading to a reduction in cellular Na+ and Ca2+ overload. As a consequence of reduced [Na+] and possibly
also because of direct mitochondrial effects of SGLT2i, mitochondrial ROS generation is decreased. Dashed grey lines
indicate potentially reduced interaction of CaMKII with its known targets. Solid green lines indicate inhibition mediated
by SGLT2i. NKA, Na+/K+ ATPase; RyR2, ryanodine receptor 2; SR, sarcoplasmic reticulum; NCX, Na+/Ca2+ exchanger;
NCLX, mitochondrial Na+/Ca2+ exchanger; ROS, reactive oxygen species.

3.2. Inhibition of Late INa

Since late INa is a major contributor to Na+ overload in heart failure and inhibition of
this current has proven to be cardioprotective in many models of cardiac disease [19,94,95],
the idea of SGLT2i-mediated inhibition of this current seems appealing. Indeed, a recent
study using mice with TAC (transverse aortic constriction)-induced heart failure as well
as HEK293T cells transfected with Nav 1.5 channels harboring LQT3 mutations (causing
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increased late INa) showed that empagliflozin was able to significantly reduce late INa
without affecting peak INa under the chosen experimental conditions (holding potential
−120 mV, pacing frequency 1 Hz) [17]. This desirable preference for late INa over peak
INa is shared by class Ib anti-arrhythmic drugs as well as ranolazine, but might—as for
these drugs—become less pronounced under more physiological membrane potentials
and at higher heart rates [96,97]. In a next step they observed that the incidence of sponta-
neous calcium transients evoked by treatment of healthy murine cardiomyocytes with the
alkaloid veratridine, a specific stimulator of late INa, was rapidly and reversibly reduced.
Applying a homology-modeling approach based on the structure of human Nav1.4 Philip-
paert and colleagues developed a transmembrane model of human Nav1.5. Molecular
docking simulations and introduction of targeted mutations revealed the amino acids
F1760 and W1345 in the fDIII-DIV site as putative interaction partners with SGLT2i [17].
Intriguingly, F1760 was also reported to be elementary in the binding of local anesthetics
(e.g., lidocaine) [97,98] as well as ranolazine [99]. However, apart from a direct interaction
between SGLT2i and Nav1.5 channels, there is also the possibility of an indirect inhibition
of late INa by interference with current regulation e.g., by CaMKII, a possibility, which was
not investigated so far.

3.3. Inhibition of CaMKII

CaMKII is a serine/threonine kinase, which is markedly upregulated in the fail-
ing heart and contributes fundamentally to the development and progression of heart
failure due to detrimental effects on cardiac excitation-contraction as well as excitation-
transcription coupling [16,50–52,81,100]. Apart from the above mentioned augmentation
of late INa by direct channel phosphorylation (see Section 2.2.1), CaMKII is able to phospho-
rylate ryanodine receptors (RyR2) at Serine 2814 thus increasing channel open probability
with consequent spontaneous diastolic Ca2+ release events (i.e., Ca2+ sparks) that in turn
may prompt further diastolic SR Ca2+ release of adjacent RyR2 clusters giving rise to
diastolic Ca2+ waves [100]. Ca2+ sparks as well as waves result in an elevated diastolic
[Ca2+]i and activate NCX forward mode resulting in a depolarizing Na+ influx (Iti) that
triggers delayed afterdepolarizations (DAD) [83] and contributes to cellular Na+ over-
load. Intriguingly, CaMKII is also known to stimulate NHE1 activity [64]. Thus, CaMKII
inhibition could also be accountable for the observed inhibition of NHE1 activity upon
SGLT2i treatment.

Importantly, we could recently show that acute exposure of isolated healthy and
failing (5 weeks after TAC) murine cardiomyocytes to empagliflozin at a clinically relevant
dose (1 µmol/L) for 24 h reduced CaMKII activity as assessed by HDAC4 pulldown as-
says [10]. This was accompanied by a decreased CaMKII-dependent RyR2 phosphorylation
at S2814 not only in murine but also in human failing cardiomyocytes. In line with this,
empagliflozin treatment reduced Ca2+ spark frequency and increased SR Ca2+ load as
well as Ca2+ transient amplitude, as a cellular surrogate for improved contractile function.
Furthermore, measurement of SBFI ratios revealed a reduction in bulk [Na+]i in healthy
murine ventricular myocytes after 24 h of treatment. Interestingly, while the effects on
CaMKII activity as well as Ca2+ transient amplitude were only observable after incuba-
tion with empagliflozin for 24 h, we could detect a decrease in subsarcolemmal [Na+] as
assessed by application of the Nernst equation to the reversal potential of NCX currents,
which were measured by whole cell patch clamp, as early as 30 min after start of treatment.
Consistently, Pabel et al. reported no change in systolic Ca2+ transient amplitude, Ca2+

transient decay kinetics, or diastolic Ca2+ concentration in human failing cardiomyocytes
upon acute empagliflozin exposure (15 min) [101]. The effects of prolonged SGLT2i treat-
ment on Ca2+ handling were reproduced in a rat model of metabolic syndrome, where
two weeks of dapagliflozin treatment also improved Ca2+ transient amplitude, SR Ca2+

load and increased left ventricular developed pressure [102]. Surprisingly, peak INa was
reported to be significantly reduced in this study, while bulk [Na+]i was not influenced
by dapagliflozin [102]. In addition, the authors ascribed shortening of the prolonged QTc
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time and action potential duration to an increase in repolarizing K+ currents as well as
the decrease in peak INa. However, if a reduction of late INa might be involved, remained
elusive. Overall, the beneficial effects were attributed to an improved mitochondrial func-
tion with decreased ROS production. Unfortunately, the final link between oxidative stress
and the observed effects, which might e.g., be a decrease in CaMKII oxidation, was not
investigated [102].

In summary, to date it is unclear, how SGLT2i interact with CaMKII activity. How-
ever, given the described time course of SGLT2i effects on CaMKII activity, Ca2+- and
Na+ -handling it is possible that reduced CaMKII activity might be downstream of the
direct SGLT2i target. Potential upstream targets could be late INa, NHE1 and/or reduced
oxidative stress.

3.4. Effect on Other Na+ Transporters (SGLT1 and SMIT1)

In contrast to SGLT2, which is not present in the heart, two other members of the
SLC5A gene family, namely SGLT1 (SLC5A1) and the sodium-myoinositol cotransporter-1
(SMIT1, SLC5A3) are expressed in the heart and have been shown to contribute to Na+

influx in cardiac disease [33,34,103,104]. In a mouse model of MI (LAD ligation) induced
heart failure, SGLT1 expression was significantly upregulated and pretreatment with the
specific inhibitor KGA-2727 attenuated left ventricular systolic dysfunction and fibro-
sis [105]. Importantly, except for sotagliflozin, which was designed as a dual SGLT1/SGLT2
inhibitor, empagliflozin (2680-fold), dapagliflozin (1242-fold), and canagliflozin (155-fold)
exhibit an increased selectivity for SGLT2 over SGLT1 making a considerable contribution
of SGLT1 inhibition in vivo unlikely [106].

On the other hand, myocardial overexpression of SMIT1 was shown to mediate
hyperglycemia-induced NOX2 activation with consequent ROS production [11]. If this
is also relevant in heart failure without concomitant hyperglycemia, is still unknown.
Noteworthy, IC50 of empagliflozin for SMIT1 is 8.3 µmol/L, which is beyond the average
plasma concentration of the drug [107].

Consequently, although conceivable, a relevant contribution of SGLT1 and SMIT1 to
SGLT2i-mediated decrease in [Na+]i seems unlikely, but might warrant further investigation.

4. Potential Role of Reduced [Na+]i for Cardioprotection by SGLT2i

Keeping in mind that SGLT2i-mediated cardioprotection is primarily based on reduc-
tion in heart failure events (e.g., hospitalization for heart failure) rather than on vascular
endpoints (myocardial infarction, stroke) we, in the following, focus on direct effects on
cardiac function.

In the light of the central role of Na+ dysregulation for heart failure and the growing
number of studies reporting effects of SGLT2i on Na+ handling, it is tempting to speculate
that restoration of Na+ homeostasis might be pivotal. However, which of the observed
beneficial effects on cardiac function and structure can indeed be explained by improved
Na+ handling?

4.1. SGLT2i and Oxidative Stress

Oxidative stress is a hallmark of cardiac disease including heart failure [108,109] and
centrally involved in pathways promoting hypertrophy, fibrosis, cell death, as well as
directly or indirectly (e.g., via oxidation of different kinases) involved in perturbation of
cellular ion homeostasis [25,54,110]. Cytosolic Na+ overload results in an extrusion of Ca2+

from the mitochondria mediated by the NCLX. This mitochondrial Ca2+ deficit impairs
Ca2+-induced stimulation of Krebs cycle dehydrogenases, which ultimately causes a short-
age in the reducing equivalents NADH and NADPH [36]. Consequently, anti-oxidative
enzymes such as glutathione peroxidase cannot be adequately regenerated. Importantly,
as discussed above, oxidative stress can in turn cause cellular Na+ accumulation (e.g.,
by stimulation of late INa) leading to a vicious cycle [25]. Thus, inhibiting Na+-influx by
SGLT2i might mitigate oxidative stress as a central player in cardiac pathogenesis.
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First reports of anti-oxidative effects of SGLT2i stem from diabetic mouse and rat
models, where treatment with ipragliflozin reduced plasma and liver levels of biomark-
ers of inflammation (IL-6, TNFα, CRP) and oxidative stress (thiobarbituric acid reactive
substances and protein carbonyl) [111,112].

Since then, several studies also reported anti-oxidative properties of SGLT2i in the
heart. Intriguingly, in human ventricular cardiomyocytes isolated from HFpEF patients
acute treatment with empagliflozin (60 min) significantly reduced markers of oxidative
stress (H2O2, GSH, lipid peroxidation, and 3-nitrotyrosine) as well as inflammatory mark-
ers (ICAM-1, VCAM-1, TNFα, and IL-6) [113]. Furthermore, in a diabetic mouse model 8
weeks of empagliflozin treatment resulted in a decrease in oxidative stress by activation of
Nrf2/ARE signaling and downregulation of NADPH-oxidase 4 (NOX4) [114]. Of note, in
non-diabetic rats with left ventricular dysfunction after MI, treatment with empagliflozin
for 2 weeks after surgery again decreased myocardial oxidative stress but also increased
pyruvate dehydrogenase (PDH) activity and ATP levels, improved left ventricular systolic
function, reduced myocardial fibrosis and hypertrophy [115]. In another interesting study
by Durak et al. using metabolic syndrome rats dapagliflozin not only reduced oxidative
stress by improving mitochondrial membrane potential as well as mitochondrial fusion-
fission and increased ATP/ADP ratio, but also shortened QTc time, reduced peak INa,
and improved cellular Ca2+ handling (e.g., increased Ca2+ transients, increased SR Ca2+

load) [102]. Although none of these studies provided a direct link between the reduction of
oxidative stress and a decrease in [Na+]i, it is conceivable that restoration of Na+ homeosta-
sis contributes to these observations (Figure 3). However, further studies on the interplay
between SGLT2i, [Na+]i, mitochondrial function and generation of ROS in heart failure
are warranted.

4.2. SGLT2i and Contractile Function

When dealing with heart failure, it is important to differentiate between HFrEF and
HFpEF. While patients with HFpEF display a normal systolic function but impaired dias-
tolic function, HFrEF is defined by a decrease in cardiac systolic contractility (in addition
to diastolic dysfunction) and the severity of contractile dysfunction is positively corre-
lated with the occurrence of major adverse cardiac events including hospitalizations for
heart failure as well as cardiovascular death [116,117]. Consequently, improving sys-
tolic contractile function (without increasing cardiac energy demand) in these patients,
e.g., through ameliorated Na+ homeostasis, might be a key to improving cardiovascular
outcomes [118–120].

There are several studies reporting an increase in LVEF upon SGLT2i treatment. In
a small randomized, double-blind, and placebo-controlled clinical trial (n = 84) Santos-
Gallego et al. reported an improvement in LVEF (6.0 ± 4.2 vs. −0.1 ± 3.9; p < 0.001)
as well as a decrease in LV dimensions in non-diabetic HFrEF patients within 6 months
of treatment with dapagliflozin [121]. A similar increase in LVEF was observed in a
retrospective analysis of type II diabetic patients with HFrEF 24 months after initiation
of SGLT2i treatment [122]. In a rat model of myocardial infarction (MI)-induced heart
failure empagliflozin (start of administration 4 weeks after MI and continued for further
4 weeks) slightly improved contractile function and prevented renal insufficiency. Apart
from normalization of increased SGLT2 expression these effects were primarily ascribed
to inhibition of renal NHE3 [123]. Unfortunately, it remains unclear if the amelioration of
cardiac dysfunction in this study of cardiorenal syndrome is due to improved renal function
or due to direct cardiac effects [123]. Interestingly, in a non-diabetic mouse model of TAC-
induced heart failure, empagliflozin treatment prevented worsening of LVEF assessed by
echocardiography in vivo as well as ex vivo by an isolated perfused working heart system
(excluding a role of extrinsic factors such as hemodynamics or nephroprotection) [124].

Basically, as mentioned above, improved contractility could, at least in part, be ex-
plained by the restoration of cardiac Na+-homeostasis with consequent beneficial effects on
Ca2+ handling (Figure 3). However, only a few studies observing an improved contractile
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function in vivo also systematically investigated the underlying pathways. Proposed mech-
anisms include amelioration of adverse remodeling by activation of cardiac GTP enzyme
cyclohydrolase 1 (cGCH1) with consequent activation of eNOS and nNOS resulting in an
increase of NO levels and a decrease in O2

− and nitrotyrosine levels [125]. In another study,
dapagliflozin was shown to improve cardiac remodeling and contractile function by inhibi-
tion of the mitogen-activated protein kinases (MAPK) JNK and p38 [126]. Interestingly, as
MAPK are readily activated by ROS [127], oxidative stress might again play a central role.

Figure 3. Overview of potential SGLT2i targets relevant for ion homeostasis in the heart. SGLT2i directly reduces (via
inhibition of Late INa, NHE1 and potentially SGLT1) intracellular Na+ accumulation in the failing heart. Decreased [Na+]i

in turn improves mitochondrial function (see Section 4.1) and thus may contribute to the decrease in mitochondrial ROS
formation observed with SGLT2i treatment. Reduction of oxidative stress attenuates oxidative CaMKII activation, which,
together with decreased [Na+]i, improves cellular Ca2+ handling and leads to improved diastolic and systolic function.
Moreover, both restoration of Ca2+ homeostasis and CaMKII inhibition are antiarrhythmic. Downward-pointing arrows
denote reduction or inhibition of a signaling pathway. Upward-pointing arrows denote stimulation or enhancement of a
pathway. NHE1, Na+/H+ exchanger 1; SGLT1, sodium-glucose co-transporter 1; ROS, reactive oxygen species; CaMKII,
Ca2+/calmodulin-dependent protein kinase II; [Na+]i, cytosolic Na+ concentration.

4.3. SGLT2i and Diastolic Function

Even broader pre-clinical evidence than for improved systolic function exists for
SGLT2i mediated attenuation of diastolic dysfunction. For instance, Tanaka et al. showed
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that in a cohort of 53 type II diabetic patients with heart failure (HFpEF, HFmrEF, and
HFrEF) administration of dapagliflozin improved left ventricular longitudinal function
assessed by global longitudinal strain (via speckle-tracking strain analysis) and left ven-
tricular diastolic function (E/e’) within 6 months [128]. Similar beneficial effects on dias-
tolic function in patients with type II diabetes mellitus were reproduced in smaller trials
using empagliflozin or canagliflozin [129,130]. In another interesting randomized, double-
blind, and placebo-controlled study Rau et al. demonstrated that empagliflozin improved
diastolic function (E/e’) as early as one day after initiation in diabetic patients, while
non-invasively assessed hemodynamic parameters (stroke volume index, cardiac index,
vascular resistance index or pulse rate) were unchanged [131]. While the results from two
large clinical trials investigating the effects of empagliflozin (EMPEROR-Preserved [132])
or dapagliflozin (DELIVER [133]) in reducing cardiovascular death and heart failure events
in non-diabetic patients with HFpEF are awaited for late 2021 and early 2022, respectively,
there is pre-clinical evidence for an SGLT2i-mediated attenuation of diastolic dysfunction
irrespective of a diabetic condition. Connelly and colleagues used unilateral nephrec-
tomy or implantation of DOCA (deoxycorticosterone acetate) pellets in combination with
high-salt diet to induce hypertension with a consequent HFpEF phenotype [134]. In this
model empagliflozin treatment for 5 weeks improved diastolic function and reduced my-
ocardial hypertrophy without affecting fibrosis [134]. Recently, in a porcine model of
MI-induced HFrEF, treatment with empagliflozin for 2 months was shown to improve
diastolic function as assessed by transthoracic echocardiography, cardiac magnetic reso-
nance imaging as well as invasive hemodynamics [135]. This was associated with reduced
myocardial fibrosis, reduced oxidative stress as well as improved eNOS-NO-cGMP-PKG
signaling with consequent increase in titin phosphorylation, which contributes—when
hypophosphorylated—to cardiomyocyte stiffness and diastolic dysfunction [135,136]. In
line with this, recent studies in rodent as well as human HFrEF and HFpEF demonstrated
improved diastolic function upon empagliflozin treatment due to reduced passive myofil-
ament stiffness, which was also explained by enhanced titin phosphorylation [101,113].
Again improved NO-sGC-cGMP-PKG signaling was observed, which was, at least in part,
due to attenuation of oxidative pathways [101,113]. However, the reasons for decreased
oxidative stress remain elusive as the observed downregulation of inflammatory pathways
could also be secondary [113]. Of note, reduced [Na+]i (e.g., due to decreased late INa) as
well as inhibition of CaMKII can contribute to both reduced oxidative stress and inhibi-
tion of inflammatory pathways (e.g., by inhibition of the NLRP3 inflammasome) [17] and
might thus be centrally involved in SGLT2i-mediated amelioration of diastolic dysfunction
(Figure 3).

4.4. SGLT2i and Arrhythmias

Heart failure patients are at an increased risk for atrial as well as ventricular arrhyth-
mias. While there may be pronounced heterogeneities regarding the pathomechanisms of
different types of arrhythmias, they all have one thing in common: arrhythmias occur when
arrhythmic substrates (structural and/or electrical abnormalities, e.g., fibrosis) and triggers
(early (EADs) and delayed afterdepolarizations (DADs)) coincide [137]. Typically, EADs re-
sult from prolongation of the APD allowing for the reactivation of LTCC. APD prolongation
in turn is caused either by a decrease in repolarizing currents (i.e., outward K+ currents)
and/or an increase in depolarizing currents (e.g., late INa) [23,40,110,138]. On the other
hand, DADs result from spontaneous diastolic Ca2+ release from the SR via RyR2, which
activates a transient inward current that is mainly mediated by NCX. Spontaneous SR Ca2+

leak is either due to RyR2 dysfunction or an increased SR Ca2+ load. The latter one usually
results from Na+ overload with consequent cellular Ca2+ overload [139,140]. Importantly,
oxidative stress as well as increased CaMKII activity (partly due to oxidative activation)
play a critical role in the underlying electrophysiological alterations [25,54,81,141]. Against
this background it is tempting to speculate that SGLT2i, which were shown to reduce
[Na+]i as well as oxidative stress and inhibit CaMKII, also possess anti-arrhythmic effects
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(Figure 3). Apart from its potential effects on arrhythmic triggers SGLT2i have repeatedly
been shown to also positively affect the arrhythmic substrate, especially by reduction of
fibrosis, which can be explained by anti-inflammatory and anti-fibrotic effects that might
also be mediated by restoration of intracellular Ca2+ and Na+ homeostasis [17,142]. In this
regard it is important to mention that CaMKII activity in the diseased heart also regulates
inflammation e.g., by stimulation of NFκB with consequent expression of complement
factor B within cardiomyocytes [143–145].

Interestingly, in an explorative analysis of the DECLARE-TIMI 58 trial the incidence of
atrial fibrillation (AF)/atrial flutter (AFL) in the dapagliflozin group was reduced by ~19%
in this high-risk collective of type II diabetic patients independent of a history of heart
failure, cardiovascular disease, or pre-existing AF [146]. In addition, in a huge cohort study
with almost 160,000 diabetic patients the adjusted hazard ratio for new onset of arrhythmia
(including supraventricular and ventricular arrhythmias) was 0.83 (CI 0.751–0.916) in the
SGLT2i group [147]. Finally, a recently published meta-analysis including 22 trials with
in sum 52,115 patients suggests that SGLT2i reduce the risk of AF, embolic stroke, and
ventricular tachycardia (VT) with consistent associations for patients with diabetes mellitus,
heart failure, or chronic kidney disease [148]. Thus, although evidence from prospective
trials investigating the effects of SGLT2i on arrhythmic events as a primary outcome is still
lacking, one can assume that SGLT2i have anti-arrhythmic properties.

This notion is further supported by a pre-clinical study. In a rat model of streptozotocin-
induced type II diabetes 8 weeks of empagliflozin treatment reduced AF inducibility,
reduced atrial interstitial fibrosis, and improved mitochondrial function [149]. These alter-
ations were accompanied by an increased expression of PGC-1a, Nrf1, and Tfam, which
are involved in mitochondrial biogenesis, as well as an increase in the expression of Mfn-1,
OPA-1, and Drp-1, which are central to the regulation of mitochondrial fission/fusion [149].

Intriguingly, empagliflozin also reduced the occurrence of spontaneous calcium tran-
sients induced by the late INa activator veratridine in isolated healthy murine cardiomy-
ocytes [17].

Overall, although anti-arrhythmic effects of SGLT2i seem plausible from our current
understanding of the pharmacodynamic features of this class of drugs, further clinical and
preclinical studies are warranted to corroborate this assumption and to clarify the potential
underlying mechanisms.

5. Conclusions

In this narrative review we focused on the effects of SGLT2i on cardiomyocyte Na+

handling and its potential implications for the observed cardioprotective effects in vivo.
Due to the great scientific interest in the identification of the cellular targets mediating

the cardioprotective effects of SGLT2i a plethora of potential mechanisms of action was
proposed in the recent years. As it is unlikely that one substance interacts with an array of
pathway specific targets, it is tempting to speculate that SGLT2i positively influence maybe
only a couple of targets that are far upstream in the pathological processes of cardiac disease
in general and heart failure in particular. CaMKII overactivation, Na+- and Ca2+-overload,
and oxidative stress are hallmarks of heart failure, tightly interrelated and common basis
for features of cardiac disease such as contractile and diastolic dysfunction, cardiac hy-
pertrophy, and fibrosis. Consequently, interference of SGLT2i with these pathways as one
of maybe a few major mechanisms is an appealing thought. Indeed, as outlined in this
review, a growing body of evidence has shown that SGLT2i directly or indirectly inhibit
CaMKII, reduce oxidative stress, and restore [Na+]i (potentially due to inhibition of late
INa, NHE1 and/or other Na+ -transporters (SGLT1, SMIT1)) and [Ca2+]i. However, in
regard to these effects, it is still unclear what is chicken and what is egg. Does inhibition of
CaMKII normalize ion homeostasis and decrease ROS levels or is it the other way around?
To address this issue further research, e.g., using specific knock-out models, is required
and will also aid to understand which of the observed beneficial effects of SGLT2i in vivo
indeed rely on this common pathway.
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