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ABSTRACT
Background: Although fructose as a source of excess calories increases uric acid, the effect of the food matrix is

unclear.

Objectives: To assess the effects of fructose-containing sugars by food source at different levels of energy control on

uric acid, we conducted a systematic review and meta-analysis of controlled trials.

Methods: MEDLINE, Embase, and the Cochrane Library were searched (through 11 January 2021) for trials ≥ 7 days.

We prespecified 4 trial designs by energy control: substitution (energy-matched replacement of sugars in diets); addition

(excess energy from sugars added to diets); subtraction (energy from sugars subtracted from diets); and ad libitum

(energy from sugars freely replaced in diets) designs. Independent reviewers (≥2) extracted data and assessed the risk

of bias. Grading of Recommendations, Assessment, Development, and Evaluation was used to assess the certainty of

evidence.

Results: We included 47 trials (85 comparisons; N = 2763) assessing 9 food sources [sugar-sweetened beverages

(SSBs), sweetened dairy, fruit drinks, 100% fruit juice, fruit, dried fruit, sweets and desserts, added nutritive sweetener,

and mixed sources] across 4 energy control levels in predominantly healthy, mixed-weight adults. Total fructose-

containing sugars increased uric acid levels in substitution trials (mean difference, 0.16 mg/dL; 95% CI: 0.06–0.27 mg/dL;

P = 0.003), with no effect across the other energy control levels. There was evidence of an interaction by food source:

SSBs and sweets and desserts increased uric acid levels in the substitution design, while SSBs increased and 100%

fruit juice decreased uric acid levels in addition trials. The certainty of evidence was high for the increasing effect of

SSBs in substitution and addition trials and the decreasing effect of 100% fruit juice in addition trials and was moderate

to very low for all other comparisons.

Conclusions: Food source more than energy control appears to mediate the effects of fructose-containing sugars on

uric acid. The available evidence provides reliable indications that SSBs increase and 100% fruit juice decreases uric

acid levels. More high-quality trials of different food sources are needed. This trial was registered at clinicaltrials.gov as

NCT02716870. J Nutr 2021;151:2409–2421.
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Introduction
High blood uric acid is a risk factor for gout, cardiovascular

disease, and type 2 diabetes mellitus (1), and can be influenced
by diet (2). Fructose has a direct effect on uric acid metabolism,
with oral or intravenous administration of excess fructose
increasing blood uric acid levels in humans (3–5). Fructose
intake has also been associated with gout in individual large,
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prospective cohort studies and systematic reviews and meta-
analyses of prospective cohort studies (6–9). Total dietary
energy intake, however, may be an important mediating factor.
Systematic reviews and meta-analyses of controlled feeding
trials have shown that fructose increases uric acid when it
provides excess calories to diets, but not when given in isocaloric
substitution for other carbohydrates (mainly in the form of
refined starches or glucose) (10).
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Dietary guidelines for chronic disease prevention are moving
away from a focus on single nutrients towards a focus on foods
and dietary patterns, in recognition of the fact that a focus
on single nutrients may miss important interactions related
to the food matrix in which the nutrients are contained (11).
Much of the evidence linking fructose to the increased risk
of cardiometabolic diseases is derived from studies of sugar-
sweetened beverages (SSBs) (12–15). Whether the evidence for
SSBs holds for other commonly consumed food sources of
fructose, including fruit, 100% fruit juices, sweetened cereal
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grains, and sweetened dairy and dairy alternatives, or as a
component of crystalline sugars and other sources at different
energy control levels is unclear. To address this gap, we
conducted a systematic review and meta-analysis of controlled
trials to examine the effects of different food sources of fructose-
containing sugars at different energy control levels on blood
uric acid levels and assess the certainty of evidence using the
Grading of Recommendations, Assessment, Development, and
Evaluation (GRADE) approach.

Methods
We followed the Cochrane Handbook for Systematic Reviews of
Interventions (16) for the conduct of our systematic review and meta-
analysis and reported our results following the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis guidelines (17). The
study protocol is registered at clinicaltrials.gov as NCT02716870.

Data sources and search strategy
We conducted a systematic search in MEDLINE, Embase, and the
Cochrane Central Register of Controlled Studies through 11 January
2021. Supplemental Tables 1 and 2 show the search strategy based
on the population, intervention, comparator, outcome, time, and study
design framework without language restrictions. Validated filters from
the McMaster University Health Information Research Unit were
applied to limit the database search to controlled studies only (18).
Manual searches of the reference lists of included studies complemented
the systematic search.

Study selection
We included randomized and nonrandomized controlled feeding trials
in humans of all health backgrounds and ages that had intervention
periods ≥ 7 days investigating the role of orally consumed fructose-
containing sugars from various food sources compared with control
diets free of or lower in fructose-containing sugars on serum uric acid
or plasma urate levels. We excluded studies of liquid meal replacement
interventions and studies of interventions or comparators of rare sugars
that contain fructose (e.g., isomaltulose or melzitose) or were low-
calorie epimers of fructose (e.g., allulose, tagatose, sorbose). Four study
designs based on energy control were prespecified: 1) “substitution” or
isocaloric trials, in which energy from the food sources of fructose-
containing sugars was substituted for other nonfructose-containing
macronutrients under energy-matched conditions; 2) “addition” trials,
in which excess energy from the food sources of fructose-containing
sugars was added to the background diet compared to the same
diet alone without the excess energy (with or without the use of
nonnutritive/low-calorie sweeteners to match sweetness); 3) “subtrac-
tion” trials, in which energy from the food sources of fructose-
containing sugars was subtracted from background diets compared with
the original background diets through displacement by water or low-
calorie sweeteners or elimination altogether; and 4) “ad libitum” trials,
in which energy from the food sources of fructose-containing sugars
was freely replaced (that is, the participants could eat as much or as
little as they liked within reasonable limits: e.g., intake required to be
between 75% and 125% of predicted daily energy requirements) with
other nonfructose-containing macronutrients without any strict control
of either the study foods or the background diets, allowing for free
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replacement of energy. In reports containing more than 1 eligible trial
comparison, we included all available trial comparisons.

Data extraction
At least 2 independent reviewers (SA-C, QL, and/or LC) extracted
relevant data from eligible studies. Relevant information included the
food sources of fructose-containing sugars, number of participants,
setting, participant health status, study design, level of feeding control,
randomization, comparator, fructose-containing sugar types, macronu-
trient profiles of the diets, follow-up duration, energy balance, relevant
medication use, funding source, and outcome data. Different food
sources of fructose-containing sugars are coded based on definitions
shown in Supplemental Table 3. Authors were contacted for missing
outcome data when it was indicated that a fasting blood uric acid or
plasma urate level was measured but data were not reported. In the
absence of numerical values for fasting blood uric acid and an inability
to obtain the original data from authors, values were extracted from
figures using Plot Digitizer where available (19).

Quality assessment
Included studies were assessed for risk of bias independently and in
duplicate by ≥2 independent reviewers (SA-C, QL, and/or LC) with the
Cochrane Collaboration Risk of Bias Tool (20). An assessment was done
across 6 domains of bias (sequence generation, allocation concealment,
blinding, incomplete outcome data, selective outcome reporting, and
other). The risk of bias for each domain was assessed as either “low”
(proper methods taken to reduce bias), “high” (improper methods
creating bias), or “unclear” (insufficient information provided). A rating
of “high” on the other risk of bias domain was given to crossover trials
which had no washout between interventions; otherwise, the trial was
rated as “low” for this domain. Reviewer discrepancies were resolved
by consensus or arbitration by the senior author (JLS).

Outcomes
The primary outcome was the fasting serum uric acid or plasma urate
level, which is the ionized form of uric acid. For this analysis, fasting
serum uric acid and plasma urate were considered equivalent and are
collectively referred to as uric acid. Mean differences (MDs) between the
intervention and control arm and respective SEs were extracted for each
trial. If these were not provided, they were derived from available data
using published formulas (21). Mean pairwise differences in change-
from-baseline values were preferred over end values. When median data
were provided, they were converted to mean data with corresponding
variances using methods developed by Luo et al. (22) and Wan et al.
(23). When no variance data were available, the SD of the MDs was
borrowed from a trial similar in size, participant health status, and the
nature of the intervention.

Data synthesis and analysis
We used STATA software, version 16.1 (StataCorp) for all analyses.
As our primary research question sought to assess the effects of
different food sources of fructose-containing sugars at different energy
control levels, we performed separate pairwise meta-analyses for each
of the 4 prespecified designs by energy control level (substitution,
addition, subtraction, and ad libitum trials) and assessed the interaction
between food sources within each energy control level using the
Cochrane Handbook’s recommended standard Q-test for subgroup
differences (significance at P < 0.10) (24–26). According to the
Cochrane Handbook for Systematic Reviews of Interventions, we have
defined the term interaction as measuring the varying intervention effect
with different populations or intervention characteristics or testing the
differences across a subgroup analysis within each energy control level
(16).

The principal effect measures were the mean pairwise differences
in changes from baseline (or alternatively, end differences) between the
food sources of the fructose-containing sugars arm and the comparator
arm (significance at P < 0.05). Results are reported as MDs with 95%
CIs. Data were analyzed using the generic inverse variance method

with a DerSimonian and Laird random-effects model (27). A fixed-
effects model was used when the number of trials was <5 (28).
Paired analyses were applied to all crossover trials with the use of a
within-individual correlation coefficient between treatments of 0.5, as
described by Elbourne et al. (29–31). To mitigate a unit-of-analysis error,
when arms of trials with multiple intervention or control arms were
used more than once, the corresponding sample size was divided by the
number of times it was used for a calculation of the standard error (16).
Each pairwise trial comparison was considered a separate trial for the
purpose of this analysis.

Heterogeneity was assessed using the Cochrane Q statistic and
quantified using the I2 statistic (32). We considered an I2 ≥ 50%
and PQ < 0.10 as evidence of substantial heterogeneity (21). Sources
of heterogeneity were explored by sensitivity and subgroup analyses.
We conducted sensitivity analyses by an influence analysis, in which
each trial is systematically removed from the meta-analysis with
recalculation of the summary effect estimate. A trial whose removal
explained the heterogeneity or changed the significance, direction, or
magnitude [by more than the minimally important difference for uric
acid; ±0.113 mg/dL (33)] of the effect was considered an influential
trial. To determine whether the overall results were robust to the use of
different correlation coefficients in crossover trials, we also conducted
sensitivity analyses using correlation coefficients of 0.25 and 0.75.
If ≥10 trials were available (24, 34), we conducted subgroup analyses to
explore sources of heterogeneity using meta-regression (significance at
P < 0.05). An a priori subgroup analysis was conducted by participant
health status, age, baseline blood uric acid levels, fructose sugar type,
type of comparator, study design, follow-up, feeding control, fructose-
containing sugar dose, randomization, energy balance, funding source,
and domains of risk of bias. Post hoc subgroup analyses were conducted
by medication use, sugar regulatory designation, and type of mean
difference. Meta-regression analyses were used to assess the significance
of each subgroup categorically and, when possible, continuously.

Dose-response analyses were performed using meta-regression to
assess linear and nonlinear (restricted cubic splines) dose-response
gradients (significance at P < 0.05) if there were ≥6 trials (35). We
also assessed nonlinear dose-threshold effects with 3 prespecified spline
knots at the public health thresholds of 5% (36, 37), 10% (37, 38) and
25% (39) of energy.

If ≥10 trials were available (40), we assessed publication bias by
inspecting contour-enhanced funnel plots and conducting formal tests
with the Egger’s and Begg’s tests (significance at P < 0.10) (41–43).
If there was evidence of publication bias, we adjusted for funnel plot
asymmetry by imputing the missing trial data using the Duval and
Tweedie trim-and-fill method and assessed for small study effects (44).

Certainty of the evidence
The certainty of the evidence was assessed using the GRADE approach
(45) and software (GRADEpro GDT, McMaster University and
Evidence Prime Inc.) (46). Evidence was rated as being of high,
moderate, low, or very low certainty. The included controlled trials
were initially rated as high certainty by default and then downgraded
or upgraded based on prespecified criteria. Reasons for downgrading
the evidence included risk of bias [assessed via the Cochrane Risk
of Bias tool (21)], inconsistency (substantial unexplained interstudy
heterogeneity; I2 ≥ 50%; P < 0.100), indirectness (absence or presence
of factors that limit the generalizability of the results), imprecision
[95% CI for pooled effect estimates cross the minimally important
difference for harm or benefit for uric acid; ±0.113 mg/dL (33)], and
publication bias (significant evidence of small study effects). The reason
for upgrading the evidence was presence of a significant dose-response
gradient (47–54).

Results
Search results

Figure 1 shows the flow of the literature. We identified
1733 reports from databases and manual searches, 1518 of
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 1733 Reports identified  

 

564 MEDLINE (through to 11 January 2021) 

658 EMBASE (through to 11 January 2021)

428 Cochrane (through to 11 January 2021)

83 Manual search (through to 11 January 2021)  

1518 Reports excluded based on title and/or abstract  

 

678 Duplicate reports  

256 No/inappropriate fructose intervention 

24 Animal or in vitro studies 

105 Observational studies 

18 Case studies 

191 Meta-analysis, systematic review or literature review 

7 Unsuitable endpoints 

22 Acute or short-term studies 

97 No abstract available 

110 Trial registrations 

169 Reports excluded  

 

57 No/inappropriate fructose intervention 

1 Animal or in vitro studies 

8 Observational studies 

1 Case studies 

2 Meta-analysis, systematic review or literature review 

6 Unsuitable endpoint 

41 Acute or short-term studies 

2 Irretrievable  

11 Inviable outcome data  

1 Commentary 

8 No/inappropriate comparator 

30 Duplicate reports 47 Reports included in the analysis  

(85 trial comparisons, N = 2763)  

 

49 Substitution trial comparisons 

30 Addition trial comparisons  

4 Subtraction trial comparisons  

2 Ad libitum trial comparisons 

215 Reports read in full  

FIGURE 1 Flow of the literature for the effect of different food sources of fructose-containing sugars on blood uric acid levels.

which were excluded based on the title and abstract. Of
the 215 reports reviewed in full, 47 reports of controlled
feeding trials (85 trial comparisons) in 2763 participants
met the eligibility criteria (55–101). These trials included 9
different food sources of fructose-containing sugars [SSBs,
sweetened dairy, fruit drink (lemonade), 100% fruit juice,
fruit, dried fruit (raisins), sweets and desserts, added nutritive
(caloric) sweetener, and mixed sources] across 4 energy control
levels: substitution (49 trial comparisons), addition (30 trial
comparisons), subtraction (4 trial comparisons), and ad libitum
(2 trial comparisons) trials. The mixed-sources food category
includes those trials in which the intervention included more
than 1 of the food sources (e.g., SSBs and fruits). For the present
meta-analysis, all trials categorized as mixed sources included
SSBs. Out of the authors who were contacted for missing
blood uric acid data, 4 responded with unpublished data
(60, 76, 97, 99).

Trial characteristics

Table 1 and Supplemental Table 4 show the trial characteristics
for each energy control level. Mixed sources were the most
common food source in substitution (29%) and ad libitum
(100%) trials, while SSBs were the most common in addition
(43%) and subtraction trials (100%). In substitution trials, most

comparators were starch (33%), mixed comparators (33%), or
glucose (29%). Most comparators were diet alone (47%) in
addition trials, nonnutritive sweeteners (100%) in subtraction
trials, and sugar alcohols in ad libitum trials (100%). Trial
sizes ranged from a median of 14 participants (range, 8–142
participants) in substitution trials to 82 participants (range,
81–83 participants) in ad libitum trials. Most participants in
substitution and addition trials were healthy and had mixed
weights (mix of participants with normal weight, overweight,
or obese BMIs; 47% and 70%, respectively). Half (50%)
of the subtraction trials were conducted with overweight or
obese individuals and half (50%) with healthy, mixed-weight
individuals, and all ad libitum trials were conducted in healthy
and mixed-weight individuals. Participants tended to be middle-
aged, with ages ranging from a median of 28 years (range,
26–19 years) in subtraction trials to 40 years (range, 15–63
years) in substitution trials, with approximately equal ratios of
both sexes. Most trials were performed in an outpatient setting,
with over half of all substitution (57%) trials conducted in the
United States, nearly half of all addition (47%) trials conducted
in Europe, and half of all subtraction trials conducted in the
United States. All ad libitum trials were conducted in Europe.
Most trials were randomized (76% of substitution trials, 60%
of addition trials, and 100% of subtraction trials), except for
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ad libitum trials, which were partially randomized (where half
of participants were allocated based on their preferences). The
mean fructose-containing-sugar dose ranged from a median of
14% of total energy in ad libitum trials (range, 14%–15% of
total energy) to 21% in addition trials (range, 2%–35% of total
energy). The follow-up durations ranged from a median of 2
weeks in addition trials (range, 1–24 weeks) to 72 weeks in
the 1 ad libitum trial. Most of the addition trials were agency
funded (government, not-for-profit health agency, or university
sources; 73%), half of subtraction trials were agency or agency
and industry funded, and most substitution trials were both
agency and industry funded (33%). None of the ad libitum trials
reported funding sources.

Trial quality

Supplemental Figures 1–4 show the risk of bias assessments
by the Cochrane Risk of Bias Tool. Due to poor reporting,
most trials were assessed as having an unclear risk of bias
for most domains. Exceptions include blinding of the outcome
assessment, where most studies were assessed as having a low
risk of bias for substitution (69%), addition (73%), and ad
libitum (100%) trials. Few trials were assessed as having a high
risk of bias for each domain (24% for sequence generation, 24%
for allocation concealment, 5% for blinding, 0% for incomplete
outcome data and selective outcome reporting, and 26% for
other). Overall, there was no serious summary risk of bias across
the available trials.

Outcomes

Figure 2 and Supplemental Figures 5–8 show the effects of
different food sources of fructose-containing sugars on blood
uric acid levels at 4 energy control levels. The total of fructose-
containing sugars, independent of the food source, increased
uric acid in substitution [49 trials; MD, 0.16 mg/dL; 95% CI:
0.06–0.27 mg/dL; PMD = 0.003; no substantial heterogeneity,
I2 = 32.35% (PQ = 0.020)] trials but not in addition [30
trials; MD, 0.10 mg/dL; 95% CI: −0.07 to 0.27 mg/dL;
PMD = 0.243; substantial heterogeneity, I2 = 70.80% (PQ

< 0.001)], subtraction [4 trials; MD, 0.09 mg/dL; 95%
CI: −0.14 to −0.32 mg/dL; PMD = 0.450; no substantial
heterogeneity, I2 = 0.00% (PQ = 0.470)] or ad libitum [2 trials;
MD, 0.19 mg/dL; 95% CI: −0.26 to 0.64 mg/dL; PMD = 0.411;
no substantial heterogeneity, I2 = 11.11% (PQ = 0.290)] trials.

Although there was no statistical evidence for an interaction
by food source in substitution trials (P = 0.272), the
significant effect of harm seen for total fructose−containing
sugars was mainly driven by the significant harm from
SSBs, which contributed 30.7% of the weight in the overall
analysis. Further, a sensitivity analysis where we removed
SSBs changed the effect of the overall analysis so that it was
no longer significant (MD, 0.02 mg/dL; 95% CI: −0.07 to
0.1 mg/dL; PMD = 0.656). SSBs [9 trials; MD, 0.42 mg/dL;
95% CI: 0.24–0.59 mg/dL; PMD < 0.001; no substantial
heterogeneity, I2 = 33.00% (PQ = 0.150)] and sweets and
desserts [10 trials; MD, 0.35 mg/dL; 95% CI: 0.07–0.63 mg/dL;
PMD = 0.015; no substantial heterogeneity, I2 = 0.00%
(PQ = 0.990)] increased fasting uric acid, while all other food
sources showed null effects on fasting uric acid (PMD ranged
from 0.331 to 0.943) in substitution trials. There was an
interaction by food source in addition trials (P = 0.023)
that explained the heterogeneity in the pooled estimate for
total fructose-containing sugars, reducing the heterogeneity
from I2 = 70.80% (PQ < 0.001) to 39.50% (PQ = 0.023).
In addition trials, SSBs increased uric acid levels [13 trials;

MD, 0.43 mg/dL; 95% CI: 0.23–0.63 mg/dL; PMD < 0.001;
substantial heterogeneity, I2 = 56.17% (PQ = 0.010)], while
100% fruit juice [8 trials; MD, −0.28 mg/dL; 95% CI: −0.43
to −0.13 mg/dL; PMD < 0.001; no substantial heterogeneity,
I2 = 11.07% (PQ = 0.340)] and sweets and desserts (chocolate;
1 trial; MD, −0.38 mg/dL; 95% CI: −0.76–0.00 mg/dL;
PMD = 0.047) decreased uric acid levels. All other food sources
showed null effects on uric acid (PMD ranged from 0.524 to
0.842) in addition trials. We could not assess interactions by
food source at the other energy control levels, as SSBs and mixed
sources were the sole food sources in subtraction and ad libitum
trials.

Sensitivity and subgroup analyses

Supplemental Table 5 and Supplemental Figures 9–23 show
sensitivity analyses for the use of different correlation
coefficients and an influence analysis for the overall analyses
by energy control level and for the analysis by food source. The
sensitivity analyses did not alter the significance, direction, or
magnitude of any effects, nor did they reduce the evidence of
heterogeneity across the 4 energy control levels. Where there
was a significant interaction by food source in substitution
and addition trials and SSBs and mixed sources were the sole
food sources in subtraction and ad libitum trials, sensitivity
analyses similarly did not alter the results for most of the
individual food sources in these analyses, except for mixed
sources of fructose-containing sugars in substitution trials, for
which removal of Forster and Heller (sucrose) (66) changed the
MD direction and magnitude, without altering its significance
[original MD, −0.03 mg/dL (95% CI: −0.36 to 0.30 mg/dL;
PMD = 0.859) compared with adjusted MD, 0.11 mg/dL
(95% CI: −0.10 to 0.32 mg/dL; PMD = 0.314)], and SSBs in
addition trials, for which removal of Büsing et al. (SSB) (96)
reduced the heterogeneity from I2 = 56% (PQ = 0.007) to 24%
(PQ = 0.208), without changing the magnitude, direction or
significance of the effect. Supplemental Figures 24–38 show the
subgroup analyses. In substitution trials, there was evidence
of subgroup differences by risk of bias in the 2 domains of
blinding (P = 0.011, increasing effect of high risk of bias) and
other (carry-over effects; P = 0.011, increasing effect of low
risk of bias). In addition trials, there was evidence of subgroup
differences by fructose type (P = 0.004, increasing effect of
fructose and decreasing effect of fruit), comparator [P = 0.007,
increasing effect of nonnutritive sweetener (NNS)], feeding
control (P = 0.002, increasing effect of metabolic feeding
control), sugar regulatory designation (P = 0.006, increasing
effect of added sugars and decreasing effects of mixed and
naturally occurring sugar designations), and by risk of bias in
the domain of sequence generation (P = 0.046, decreasing effect
of low risk of bias). Where there was a significant interaction
by food source in substitution and addition trials, the only
food source showing significant subgroup differences was SSBs
in addition trials. Here, there were subgroup differences by
fructose type (P = 0.033, increasing effects of fructose and
sucrose), comparator (P = 0.019, increasing effects of NNS and
water), design (P = 0.014, increasing effect of parallel design),
follow-up duration (P = 0.011, increasing effect of trials ≤8
weeks and >8 weeks in duration), and the risk of bias in the
2 domains of blinding (P = 0.002, increasing effects of high
and low risk of bias) and other (carry-over effects; P < 0.001,
increasing effect of low risk of bias). There were also significant
subgroup differences by the continuous subgroup of follow-
up duration (P = 0.017; for each additional week, uric acid
increased by 0.05 mg/dL; 95% CI: 0.01–0.09 mg/dL). Subgroup

Food sources of fructose and blood uric acid 2415



FIGURE 2 Summary plot for the effects of different food sources of fructose-containing sugars on fasting blood uric acid. Data are weighted
mean differences (95% CIs) for summary effects of individual food sources and total food sources on fasting blood uric acid. Analyses were
conducted by generic, inverse variance random-effects models (at least 5 trials available) or fixed-effects models (fewer than 5 trials available).
Between-study heterogeneity was assessed by the Cochrane Q statistic, where PQ < 0.100 is considered statistically significant, and quantified
by the I2 statistic, where I2 ≥ 50% is considered evidence of substantial heterogeneity. The GRADEs of randomized controlled trials are rated
as “high” certainty of evidence and can be downgraded by 5 domains and upgraded by 1 domain. The filled black squares indicate a single
downgrade and/or upgrade for each outcome, whereas the black squares with a white “2” indicate a double downgrade for each outcome.
∗Where there was a significant interaction by food source in substitution and addition trials and SSBs and mixed sources were the sole food
sources in subtraction and ad libitum trials, we performed the GRADE analysis for each individual food source. To convert uric acid to mmol/L,
multiply by 0.0595. Abbreviations: GRADE, Grading of Recommendations, Assessment, Development, and Evaluation; MD, mean difference;
PMD, P value for the overall effect; PQ, Cochrane’s Q statistic; SSB, sugar-sweetened beverage.

analyses were not performed in subtraction or ad libitum trials,
as there were <10 trials.

Dose response analyses

Supplemental Figures 39–50 show the linear and nonlinear
dose response analyses. We observed a significant nonlinear
(P = 0.006) dose response and evidence of a dose threshold at
25% energy for total fructose-containing sugars (P = 0.003),
where increases in uric acid were only seen in up to 25%
energy in substitution trials. No dose-response gradient or
threshold was found in addition trials. As there was a significant
interaction by food source in substitution and addition trials, we
conducted linear and nonlinear dose response analyses for each
of the food sources in these analyses. We observed a significant
linear (P = 0.009) dose response for mixed sources of fructose-
containing sugars in substitution trials, and a significant linear
(P = 0.028) dose response for 100% fruit juice in addition trials.
No dose response gradient or threshold was found in any other
food source in substitution and addition trials. Dose-response
analyses were not performed for subtraction and ad libitum
trials, as there were <6 unique doses.

Publication bias

Supplemental Figures 51–55 show the funnel plots. There was
no evidence of publication bias in any overall analysis by
energy control level. Where there was a significant interaction
by food source in substitution and addition trials, we did not
detect evidence of a publication bias for any of the other
individual food sources. Publication bias analyses were not
performed in subtraction or ad libitum trials, as there were <10
trials.

GRADE assessment

Figure 2 and Supplemental Tables 6–7 show certainty of the
evidence assessments by GRADE. The evidence for the effects
of total fructose-containing sugars on blood uric acid levels
was graded as very low in substitution, addition, subtraction,
and ad libitum trials (double downgrades for indirectness and
single downgrades for imprecision in each case). As there was
a significant interaction by food source in substitution and
addition trials and because SSBs were the sole food source
in subtraction trials and mixed sources were the sole food
source in the ad libitum trials, we assessed the certainty of
evidence for each of the food sources in these analyses. The
evidence was graded as high for the increasing effects of SSBs in
substitution and addition trials (no downgrades or upgrades),
high for the decreasing effect of 100% fruit juice in addition
trials (upgrades for dose-response), moderate for the increasing
effect of sweets and desserts in substitution trials (downgrades
for imprecision in each case), and low for the decreasing
effect of sweets and desserts (chocolate) in addition trials
(downgrades for indirectness and imprecision in each case).
The evidence of the null effects of other food sources ranged
from high to low (owing to downgrades for indirectness and/or
imprecision).

Discussion

We conducted a systematic review and meta-analysis of 47
controlled feeding trials involving 85 trial comparisons in
2763 predominantly healthy, mixed-weight adult participants,
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assessing the effects of 9 different food sources of fructose-
containing sugars with median doses ranging from 14% to 21%
of total energy across 4 different energy control levels over a
median follow-up of 2–72 weeks. We showed that the effects of
fructose-containing sugars on uric acid were more dependent on
the food source than on energy control. Whereas total fructose-
containing sugars increased uric acid levels in substitution trials,
no effects were seen in addition, subtraction, or ad libitum trials
and there was evidence of an interaction by food source in
both substitution and addition trials. SSBs (median dose, 25%
energy) and sweets and desserts (median dose, 18% energy) at
high doses increased uric acid levels in substitution trials. When
consumed as excess calories, SSBs at high doses (median dose,
24% excess energy) increased uric acid, while 100% fruit juice
at high doses (median dose, 21% excess energy) decreased uric
acid in addition trials. Sweets and desserts (chocolate) providing
excess calories also decreased uric acid in an addition trial, but
this was based on 1 trial.

Findings in relation to the literature

We failed to replicate the overall results from our previous
systematic review and meta-analysis, which showed a harmful
effect of fructose on blood uric acid in addition trials, which
we did not find in our overall analysis. However, Wang et al.
(10) included only 3 trials, all of which were of SSBs, which is
consistent with our results for SSBs in the analysis.

These results appear to translate to gout risk. A recent sys-
tematic review and meta-analysis of prospective cohort studies
investigating the roles of different food sources of fructose-
containing sugars found significant, positive associations of
SSBs and fruit juice with the risk of gout, but no effect of
fruit (102). We found similar associations in our meta-analysis.
However, unlike the previous work, which included both fruit
drinks and 100% fruit juice as a single group, we were able to
separately assess the effects of 100% fruit juice in the addition
trials, which may explain our discrepant results.

Several mechanisms can explain the observed effects when
food sources of fructose-containing sugars, specifically SSBs,
are added to the diet. Excess intake of fructose can increase
uric acid through an unregulated fructokinase pathway that
uses substantial amounts of ATP (103) to convert fructose into
fructose-1-phosphate in the liver (104). Net ATP degradation
leads to the accumulation of AMP, which is subsequently
degraded to uric acid. Additionally, fructose can increase de
novo purine synthesis, which further produces uric acid (105).
SSBs do not offer many nutrients besides sugars, whereas other
foods, like fruits, present sugars in a complex food matrix in
which components like antioxidants, polyphenols, and so forth
may counteract the negative effects of fructose (11, 106–114).
Interestingly, the food sources which increased uric acid all
have a high glycemic index (GI), while food sources showing
a reduction in uric acid have a lower GI, which may counteract
the effect of fructose by itself on uric acid (115).

The lack of a reduction in uric acid with the displacement
of excess calories from SSBs in the subtraction trials was not
expected. Systematic reviews and meta-analyses of randomized
controlled trials have shown that displacing calories from SSBs
using low-calorie sweetened beverages [which was the main
method of displacement in the 4 included subtraction trials (83)]
leads to weight loss (116), an outcome which, combined with
the reduction in fructose exposure, would be expected to lead
to a reduction in uric acid. The lack of an effect may have
reflected the lack of weight loss in the trial and unexpected
reductions in intrahepatocellular lipid (IHCL) on SSBs in the

trial comparison in those with high baseline IHCL levels (84).
When mixed sources of fructose-containing sugars were freely
exchanged in the diet, we observed no effect, perhaps because
the diet in the 2 included ad libitum trials (68) included a range
of different foods, including SSBs, fruits, and fruit juices, which
may have opposing effects on uric acid levels.

Strengths and limitations

Our systematic review and meta-analysis has several strengths.
First, we employed a comprehensive and reproducible search
and selection process of the literature. Second, we collated
and synthesized available evidence from a large body (47
studies; N = 2763) of controlled feeding trials, a design which
provides the greatest protection against bias. Third, none of
our analyses had substantial unexplained heterogeneity. Fourth,
we comprehensively explored possible sources of heterogeneity.
Fifth, we evaluated the shape and strength of the dose-response
relationships. Finally, we used the GRADE assessment approach
to assess the certainty of evidence.

Our analysis also presented limitations. First, there was
evidence of serious indirectness in all overall pooled analyses
(substitution, addition, subtraction, and ad libitum trials). There
were significant interactions by food source in the substitution
and addition trials, and so we double downgraded the overall
evidence for indirectness for total fructose-containing sugars
at these energy control levels. Despite the inclusion of 85 trial
comparisons, there were also a limited number of food sources.
For example, few or no trials reported on 2 of the important
sources of added fructose-containing sugars outside of SSBs; no
trials reported on sweetened breakfast cereals; only 3 studies
included controlled trials, both from the same trial that reported
on sweetened dairy (117); and SSBs were the sole food source
in subtraction trials and mixed sources were the sole food
source in ad libitum trials, leading to double downgrades for
indirectness for total fructose-containing sugars at these energy
control levels. Other sources of indirectness that resulted in
downgrades included reduced generalizability due to limited
health status representations in several analyses [e.g., n = 3
trials with substitution of dried fruit (raisins), all in individuals
with nonalcoholic fatty liver disease or type 2 diabetes]. Further,
most included trials were conducted in healthy, mixed-weight
adults and did not include children, who have been shown to
be at risk for developing high blood pressure as a result of high
uric acid levels (118). We did not downgrade for this source
of indirectness, but instead elected to make our conclusions
specific to healthy, mixed-weight adults. Supporting this, our
categorical subgroup analysis by age and health status did not
support differences between these categories. Second, there was
potential inconsistency in some analyses. The pooled estimates
for both total fructose-containing sugars and SSBs in addition
trials were complicated by evidence of substantial heterogeneity
(I2 ≥ 50%; P < 0.1). We did not downgrade for inconsistency, as
heterogeneity was explained in addition trials by the interaction
by food source for total fructose-containing sugars and, in
addition trials of SSBs, the removal of a single trial [Büsing et
al. (96)] explained heterogeneity without altering the conclusion
of the overall estimate. Further, when looking at the forest plot,
we see that most addition SSB trials (12 out of 13) show harm,
indicating consistency in the results across trials. Finally, there
was evidence of serious imprecision in all overall analyses by
energy control level and in most analyses by food source, except
for SSBs in substitution and addition trials and 100% fruit
juice in addition trials, as CIs crossed the minimally important
difference for harm and/or benefit for uric acid.
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Weighing the strengths and limitations, the overall certainty
of evidence was graded as high for the increasing effects
of SSBs in substitution and addition trials and for the
decreasing effect of 100% fruit juice in addition trials,
moderate for the increasing effect of sweets and desserts in
substitution trials, and generally moderate to low for all other
comparisons.

Implications

As dietary guidelines have shifted towards a food and dietary
pattern–based approach to nutrition and health (11), our
findings have implications for guiding recommendations on
different food sources of fructose-containing sugars in the
prevention and management of hyperuricemia and gout and
their downstream cardiometabolic complications. Our results
support previous evidence that SSB consumption within or
above caloric needs increases uric acid; thus, public health
strategies to reduce consumption of SSBs could be useful. Our
demonstration of the benefit of 100% fruit juice may offer a
potential avenue of SSB replacement, although future research
is warranted.

Conclusion

In conclusion, the effects of fructose-containing sugars on blood
uric acid appear more dependent on the food source than on
energy control. SSBs increase uric acid at high doses and sweets
and desserts likely increase uric acid at high doses, whereas
100% fruit juice in excess calories decreases uric acid and other
food sources show null effects in predominantly healthy, mixed-
weight adults. The anticipated benefit of displacing excess
calories from SSBs was not observed. Our confidence in the
estimates is generally strongest for the increasing effects of SSBs
at high doses and/or when providing excess calories and for
the decreasing effect of 100% fruit juice on uric acid when
providing excess calories, owing to no downgrades and/or
an upgrade for the dose response. This evidence is of high
certainty, suggesting that the available evidence provides a
reliable indication that SSBs increase and 100% fruit juice
decreases uric acid. We are less confident in the evidence for the
other food sources at the different energy control levels, which
were graded as having generally moderate to low certainty.
Owing to serious imprecision in the evidence, there remains a
need for more large, high-quality randomized trials to improve
our estimates. Owing to serious indirectness in the evidence,
trials which broaden the variety of food sources of fructose-
containing sugars would be particularly useful to understand
whether certain food sources with an apparent benefit might
even have advantages for uric acid under free-living conditions
over the longer term (6 months or longer). While awaiting these
data, policy and guideline makers should consider the influences
of energy control and food sources in recommendations.
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