Table 4. Performance of state-of-the-art methods in sumoylation site predictions.
State-of-the-art | Sn | Sp | ACC | Precision | MCC |
---|---|---|---|---|---|
iSumok-PseAAC | 0.9451 | 0.9424 | 0.9479 | 0.9714 | 0.8903 |
Sumogo[16] | 0.592 | 0.896 | 0.744 | 0.850 | 0.511 |
C-iSumo [109] | 0.734 | 0.757 | 0.746 | – | 0.494 |
GPS-L[1] | 0.668 | 0.810 | 0.739 | 0.778 | 0.482 |
GPS-M[1] | 0.642 | 0.833 | 0.738 | 0.794 | 0.484 |
GPS-H[1] | 0.540 | 0.897 | 0.719 | 0.840 | 0.468 |
SUMOsp2.0_L[13] | 0.709 | 0.750 | 0.730 | 0.739 | 0.460 |
SUMOsp2.0_M[13] | 0.655 | 0.823 | 0.739 | 0.787 | 0.485 |
SUMOsp2.0_H[13] | 0.608 | 0.873 | 0.740 | 0.827 | 0.498 |
JASSA[2] | 0.654 | 0.808 | 0.731 | 0.773 | 0.467 |
PCI-SUMO[5] | 0.687 | 0.530 | 0.609 | 0.594 | 0.220 |