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Abstract
COVID-19 is an ongoing pandemic that is widely spreading daily and reaches a significant community spread. X-ray images, 
computed tomography (CT) images and test kits (RT-PCR) are three easily available options for predicting this infection. 
Compared to the screening of COVID-19 infection from X-ray and CT images, the test kits(RT-PCR) available to diagnose 
COVID-19 face problems such as high analytical time, high false negative outcomes, poor sensitivity and specificity. Radio-
logical signatures that X-rays can detect have been found in COVID-19 positive patients. Radiologists may examine these 
signatures, but it’s a time-consuming and error-prone process (riddled with intra-observer variability). Thus, the chest X-ray 
analysis process needs to be automated, for which AI-driven tools have proven to be the best choice to increase accuracy and 
speed up analysis time, especially in the case of medical image analysis. We shortlisted four datasets and 20 CNN-based 
models to test and validate the best ones using 16 detailed experiments with fivefold cross-validation. The two proposed 
models, ensemble deep transfer learning CNN model and hybrid LSTMCNN, perform the best. The accuracy of ensemble 
CNN was up to 99.78% (96.51% average-wise), F1-score up to 0.9977 (0.9682 average-wise) and AUC up to 0.9978 (0.9583 
average-wise). The accuracy of LSTMCNN was up to 98.66% (96.46% average-wise), F1-score up to 0.9974 (0.9668 average-
wise) and AUC up to 0.9856 (0.9645 average-wise). These two best pre-trained transfer learning-based detection models can 
contribute clinically by offering the patients prediction correctly and rapidly.

Keywords  COVID-19 detection · Deep learning · Chest X-ray images · Ensemble models · Convolutional neural network

1  Introduction

The first case of humans infected by Phinolophus bat orig-
inated in Zoonotic virus nomenclature in Wuhan City of 
China as severe acute respiratory syndrome Coronavirus-2 
(SARS-CoV-2 virus) December 2019, the world observed. 
The city would soon become a coronavirus disease epicentre 
(COVID-19). The epidemic spreads around the globe later, 
resulting in millions of human deaths and economic losses 
of billions of dollars. Many people have lost their jobs, along 
with millions of fatalities, and the GDP of economically 
sound countries such as the USA, Italy, Spain, India and 
many others is experiencing negative growth. Most coun-
tries, financially, medically and socially, were not prepared 
for this type of situation where the disease, due to its trans-
mittable nature, enters the stage of population spread. This 
results in many nations’ complete lockdown, contributing 
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to an adverse psychological effect on people’s health and 
minds.

The pandemic is widely spreading its wings across 
the world and is proliferating leading to the spread at the 
community level. The number of patients increased from 
2,810,325(confirmed case) and 193,825(deaths) in April 
2020 to 16,114,449(confirmed case) and 646,641(deaths) 
till July 27, 2020. Till August 17, 2020, 21.59 million con-
firmed cases were reported and 777.6 thousand death tolls 
[1], and upto September 17, 2020, there were 29.87million 
confirmed cases and 940.72 thousand death tolls (Refer 
Fig. 1). On 05.04.2021, there were approximately 131 mil-
lion patients worldwide, and the death count reached 2.85 

million. On 03.04.2021, India observed 93,249 new cases 
(7-day average was 73,412) and recorded 2, 40,766 new 
COVID-19 cases and 3,736 deaths on May 22 (Refer Figs. 2 
and 3). The country has so far reported a total of 2, 65, 
28,846 cases and 2, 99,296 deaths (till 22.05.2021) (Refer 
Figs. 2 and 3). India leads the world in the daily average 
number of new infections reported, accounting for one in 
every two infections reported worldwide each day. As of 
date, the top five countries infected by this disease are the 
USA, India, Brazil, France and the Turkey.

COVID-19 symptoms include acute respiratory disease, 
fever, dry cough, sore throat, chest pain or pressure, speech 
loss, myalgia, weakness, taste loss, weakness and nasal 

Fig. 1   Number of confirmed COVID-19 cases, by date of report and WHO region, 30 December2019 through 10 August2020 [1]

Fig. 2   Number of COVID-19 
cases reported in INDIA during 
last 18 months. [www. https://​
www.​world​omete​rs.​info/]

https://www.worldometers.info/
https://www.worldometers.info/
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blockage, critical care respiratory condition breathing and 
death. The virus is mainly transmitted through respiratory 
droplets. The virus can also be found on surfaces and in 
the environment. Patients aged more than 50 years and hav-
ing diabetes, cancer, cardiovascular diseases and chronic 
respiratory diseases are advised to follow precautions and 
preventions strictly. Many studies indicate 80% of mild-to-
moderate patients recovered without hospitalization. Some 
specific patterns such as bilateral involvement, peripheral 
distribution and basal predominant ground-glass opacity, 
multifocal patchy focal consolidation, vascular thickness and 
crazy-paving pattern with peripheral distribution are seen in 
chest CT images of positive patients [2].

There is no known exact cure; only prevention such as 
washing hands, covering the mouth and nose and social iso-
lation are available. Early diagnosis will allow for quaran-
tining patients, rapid intubation in specialized hospitals and 
monitoring of the diseases’ spread. There is a great need for 
the system to identify an infection to predict future patients 
quickly. Hence, we can minimize the death rate with the 
help of early diagnosis and immediate treatment. The medi-
cal tool specification (PPE package, ventilators, beds and 
masks) will increase if the disease spreads further. The most 
appropriate molecular assay is RT-PCR, which detects the 
SARS-CoV-2 RNA using nasal or throat swabs, but kits of 
these have some significant disadvantages. These disadvan-
tages include a potential lack of methodology, resource-
intensive, low production, less sensitivity, as compared to 
CT images, and their diagnosis time is 6–9 h [3–6]. PCR 
tests involve several stages where errors may occur.

While the thoracic radiological examination was accepted 
as the key to diagnosing potential COVID-19 patients, the 
approach faces its difficulties. Studies have shown that 
non-COVID-19 patients with community-acquired infec-
tions caused by agents such as Streptococcus pneumoniae, 

Mycoplasma pneumonia and Chlamydia pneumoniae are 
present [7]. The CT symptoms are identical to those found 
in patients with COVID-19. Symptoms such as fever, cough 
and tiredness are not peculiar to COVID-19 pneumonia and 
are seen in pneumonia cases infected with the virus. In com-
parison, clinical practice has demonstrated no abnormality in 
CT images of certain COVID-19 patients, raising the com-
plexity of diagnosing new coronavirus pneumonia infections 
in patients [7]. RT-PCR testing could be inaccessible in all 
confirmed cases due to the rapid dissemination of COVID-
19 pneumonia [7]. A detailed diagnosis of COVID-19 pneu-
monia in patients with clinical symptoms and CT signs by 
an easy-to-implement approach will be helpful to implement 
selective and efficient isolation. Another type of test is also 
called an antibody test, which is a slow process and takes 
about 9–28 days to validate the patient as ’positive.’ There 
is a risk that the infected person can multiply the infection 
these days if the quarantine is not successful.

The radiologist informs the patient of early (and timely) 
diagnosis, treatment and distinguishing of COVID-19 from 
other similar viruses (MERS). In this type of pandemic 
situation, a substantial increase in chest CT’s is necessary. 
We require highly experienced radiologists, but there is a 
shortage of them [8, 9]. This will help improve their per-
formances by providing them with a computer-aided alter-
native. Moreover, radiologists have some issues, too; the 
COVID-19 diagnosis is based on the radiologist’s assess-
ment and evaluation of CT and X-Ray images. The work 
can be time-consuming, and it is often riddled with intra-
observer variability. To overcome these limitations, we need 
an advanced Artificial Intelligence system that is reliable 
and reproducible. With these systems, we may reduce the 
dependence on radiologists. Discussing from the other per-
spective, World Health Organization (WHO) has strongly 
recommended exhaustive testing of potential suspects and 

Fig. 3   Number of COVID-
19 deaths reported in INDIA 
during last 18 months [www. 
https://​www.​world​omete​rs.​info/]

https://www.worldometers.info/
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citizens living in hotspot areas, but the guidelines are not 
sincerely followed due to the scarcity of the resources/per-
sonnel/testing-kit. So it is an immediate priority to develop 
and test Artificial Intelligence (AI)-based fast and robust 
alternative approach that can help limit the rate of spread 
because prior studies, like lung cancer detection [10], heart 
disease prediction [62], liver lesions in CT scans [63], have 
justified the performance of AI-based models in clinical 
practice. These AI-assisted models have high accuracy, 
which will aid clinical in best decision making. Prior stud-
ies [11, 12] conclude that manual examination in the case 
of X-ray images provides precise recognition of the disease 
in 60–70%, and in the case of the CT images, manual analy-
sis performance lies between 50 and 75%. The experienced 
radiologists decide based on prior clinical experience; how-
ever, such verdict is easily influenced by subjective factors 
and individual proficiency. More automated and intelligent 
methods are needed to search globally, especially in regions 
with limited resources. Deep learning has been a corner-
stone in AI healthcare and medicine for over a decade. Then 
there should be a computer-based (deep learning approach) 
alternative for diagnosis of the disease. It supports users in 
the COVID-19 screening. The last issue in using the manual 
methods for evaluating chest X-rays is the low sensitivity of 
ground-glass opacity (GGO) nodules. Hence, early detection 
of the disease using X-ray is not possible. Deep learning can 
differentiate between nodules that an untrained human will 
not detect.

The above discussed factors inspire researchers to dis-
cover an artificial intelligence-based alternative health sys-
tem solution that can diagnose the disease more cheaply, 
produce results in less time and be highly accurate. X-ray 
images are limited by low patient exposure and result in 
the diagnosis of soft tissues or disease areas in the thorax. 
Computer-aided diagnosis (CAD) systems eliminate the lim-
itations of chest X-rays and help radiologists detect poten-
tial conditions automatically in low-contrast X-ray images. 
Computing technology makes use of more advanced compo-
nents and recent image processing algorithms. Deep learn-
ing has recently become the most advanced approach in AI. 
They can learn by labeling previously labeled examples, like 
learning facial expression recognition in computers. A new 
subfield of computer vision involves using neural networks 
to analyze medical images. CT results cannot be reproduced 
accurately when lungs are affected in a large amount. AI-
based artificial intelligence can provide a complete analysis.

With the rapid advancement of computers and their appli-
cations in multidisciplinary fields, the researcher’s fraternity 
in the medical field, such as organ segmentation and image 
enhancement and repair, is actively introduced, actively 
promoting medical diagnosis [13, 14]. By being additional 
supporting instruments for clinicians, machine learning has 
proved its applicability in the medical field [15, 16].

Deep learning methods, such as CNN, have been shown 
to predict clinical results from the classification of skin and 
breast cancer classification, glaucoma detection, lung seg-
mentation, lung-related abnormalities like cancer and nodule 
detection, chest X-ray pneumonia detection, classification 
of brain disease, detection of arrhythmias, viral infections 
and biomedical studies [11, 17, 18]. The CNN models have 
also shown their ability to achieve human-like accuracies, 
or more than that in concise span, in image classification 
issues. Expertise in diagnosis can be found by digitizing and 
standardizing image knowledge to help medical profession-
als make a perfect decision [19].

The above discussion motivates us to develop a Com-
puter-Assisted Diagnosis (CAD) framework based on deep 
learning to predict COVID-19 infection. The device must 
deliver an appropriate screening method that can distinguish 
the CT and X-ray images of potential COVID-19 patients 
from related viral pneumonia, SARS and MERS diseases. 
The CAD concept was introduced in 1966 [17] and has been 
fully applied since 1980 [18]. CAD systems have demon-
strated their ability to support radiologists with high trust 
in making their decisions (such as triage, quantification 
and follow-up of promising cases). They also have advan-
tages over radiologists, such as reproducibility and subtle 
improvements that are not apparent by visual examination.

The paper’s organization begins with simple COVID-
19 coverage and the motivation to construct a diagnostic 
method based on artificial intelligence. The literature on 
COVID-19 chest X-ray and CT images using a deep learning 
method are reviewed in Sect. 2. Information on shortlisted 
datasets and information on models selected for experimen-
tation is provided in Sect. 3, along with discussing appro-
priate settings and procedural phases. Section 4 reports the 
method of investigation, along with results in tabular and 
graphical presentations. Section 5 provides a discussion of 
the findings and a comparison of recent works. We presented 
a detailed debate on the functional applicability and outlook 
of our presented work in Sect. 6. Finally, we conclude in 
Sect. 7.

The main contribution of this paper is as follows:

1.	 In this paper, X-ray and CT images are used to over-
come the RT-PCR sensitivity problem. It was noted that 
COVID-19 reveals some signatures which can easily be 
observed via X-ray images. Deep learning approaches 
can automatically analyze chest X-rays, which can accel-
erate the time of the investigation. Applying multiple 
pre-trained convolutional neural networks proposed by 
the scientific community and our proposed ones that 
are selective and reliable to achieve the best pulmonary 
classification X-ray picture illnesses. The generated 
results are remarkable and highly encouraging and prove 
that deep learning is successful, and more specifically, 
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transfer learning with CNNs to the automatic detec-
tion of abnormal X-ray images related to the COVID-
19 disease. The study is an end-to-end solution for the 
diagnosis of COVID-19 which can be converted into a 
low-priced, quick, robust and reliable intelligent screen-
ing tool to reduce the error rate in binary classification 
between COVID-19 patients and healthy people (Non-
COVID Pneumonia and Normal).

2.	 Extensive experimentation (16 experiments) and evalu-
ation has been conducted using 20 pre-trained transfer 
learning deep models on 4 datasets to validate the best 
model performance while addressing the COVID-19 
detection. Performance is measured by standard met-
rics such as accuracy, AUC and F1 score. Through 21 
premium studies recently published in SCI indexed 
COVID-19 studies, we have concluded that we are the 
first to do such an extensive experiment with so many 
models.

3.	 We also have designed three novel CNN models (one 
from scratch, next one hybrid and last one an ensemble 
model) based on deep transfer learning system with dif-
ferent pre-trained CNNs architecture to detect the use of 
X-ray and CT images in COVID-19 patients. The mod-
els are quick in nature and are highly acceptable for its 
accuracy.

4.	 This study contributes to scientific research by recom-
mending two novel best classifier models with over 98% 
accuracy in the detection of COVID-19 cases in all 15 
experiments for the binary class task. These two best 
performed deep learning models would help radiologists 
and doctors to diagnose and decide on the disease as a 
hand and also as a second opinion.

1.1 � Literature Survey

We have recently examined several research studies in 
world-renowned journals to present what scientists have 
recently implemented to diagnose X-ray and/or CT image 
COVID-19 infection using different approaches based on 
profound learning. Of these, more than 25 studies (Spring-
er’s 10, Elsevier’s 14, and the Romanian Journal of Informa-
tion Science and Technology’s remaining 1) were shortlisted 
and recently published in highly indexed journals. Below is 
a concise summary of the study’s key points. We also built 
Table 1 displayed at the end of this section to present key 
points of selected analysis.

Butt et  al.[20] observed CT image radiographic pat-
terns of potential COVID-19 patients using a CNN-based 
approach. Authors evaluated two CNN models; one was 
RestNet23, and the other was designed. ResNet-18 was used 
to extract image features. The CT images dataset achieved 
an overall accuracy of 86.7%. Das et al.[21] selected X-ray 
images to identify COVID-19 infection using a deep-transfer 

learning-based approach using a modified Inception 
model(Xception). Eleven existing machine and deep learn-
ing models/algorithms (including one proposed) were com-
pared; a maximum accuracy of 97.40% justifies the superi-
ority of the proposed model. Alakus et al. [22] selected 18 
laboratory findings from 600 COVID-19 patients using four 
different types of deep learning models and two hybrid mod-
els. In the case of tenfold cross-validation, maximum accu-
racy is achieved by LSTM (86.66%), and maximum accu-
racy is conducted in the CNNLSTM hybrid model (92.30%) 
train-test split approach. Ardakani et al. [23] compared ten 
convolutionary neural networks to diagnose COVID-19 
from CT images. Over 1000 images private dataset was 
selected for training and testing. The authors conclude that 
ResNet-101 and Xception achieved the best performance 
of their shortlisted models. Singh et al. [24] used modified 
XceptionNet to identify COVID-19. The dataset contains 
1419 images with fewer than 132 images of COVID cases. 
Compared to the other three competitive models, the pro-
posed modified model (95.80%) achieved the best accuracy. 
Panwar et al. [25] proposed a new VGG-16 deep learning 
neural network, nCOVnet, for X-ray detection. The limited 
COVID-19 images, 142, are selected for training and testing; 
the proposed model’s performance is not compared with any 
other pre-trained or modified image. Limited data achieved 
an overall accuracy of 88.10%. Wang et al. [26] applied deep 
learning to chest X-ray images for two purposes (discrimi-
nation and location). For COVID-19 discrimination, the 
first objective was lung features extraction, and the second 
objective was to identify infected pulmonary tissues from 
each detected chest X-rays. Abraham et al. [27] selected 
X-ray images to investigate COVID-19. The authors chose 
10 CNNs and 15 multiCNNs for performance evaluation. 
The best result was obtained in combining five pre-trained 
CNN’s: SqueezeNet, DarkNet-53, MobileNetV2, Xception 
and ShuffleNet. Authors also used correlation-based feature 
selection and Bayesnet classifier to identify infection. Bayes-
net ’s performance was compared to seven other classifiers. 
The authors also showed that Bayesnet’s accuracy (91.15%) 
is equivalent to 5 CNN’s best combination.

Authors, Toraman et al. [28], suggested a novel small 
number of layer-based imagenet, Convolutional CapsNet, 
for X-ray diagnosis. The model uses tenfold cross-valida-
tions to generate outputs in two classes, binary classifica-
tion (COVID-19 and No-Findings) with 97.24% accuracy 
and multi-class classification (COVID-19, No-Findings and 
Pneumonia) with 84.22% accuracy. Researchers, Ozutark 
et al. [29], used deep neural networks to find COVID-19 
infection using potential patient X-ray images. The investi-
gators used the presented model for you to look only once 
at real-time object detection system. DarkNet model used 
to perform binary classification with 98.08% accuracy and 
multi-class classification with 87.02% accuracy when using 
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fivefold cross-validation. The count of COVID-19 images 
selected for training and testing is less, and the study imple-
ments only one model. Xu et al. [19] selected CT images 
for screening Coronavirus disease with the support of a 
ResNet-based deep learning system. Initially, deep-learning 
models were used to segment infection regions. Using the 
local-attention classification model, these images were then 
categorized into three classes (including COVID-19). Using 
Noisy-or Bayesian function, the infection type and overall 
confidence score were calculated as a final step. Khan et al. 
[30] introduced a new deep-neural network-based image 
architecture based on Xcpetion, CoroNet, to detect and infect 
COVID-19 from X-ray images. They selected 284 COVID 
images (total 1,600 images) for performance evaluation. The 
system classifies images into 2-class (99% accuracy), 3-class 
(95% accuracy) and 4-class (89.6% accuracy) classification. 
In Ucar et al.’s next study [31], authors explored a novel 
Deep Bayes-Squeeze-based COVIDiagnosis net for chest 
X-ray glaucoma screening. Dataset consists of 76 COVID-19 
images. The authors demonstrated their model ’s superiority 
in accuracy achieved with other existing network designs 
using fine-tuned hyperparameters and augmented data sets. 
They justify the performance by presenting the accuracy 
as 100% (single recognition of COVID-19 among other 
classes) and 98.3% (among Normal, COVID and Pneumo-
nia). In their study, Nour et al. [2] presented a new system for 
detecting COVID-19 infection from chest X-rays based on 
deep features and Bayesian optimization. Model was trained 
from scratch to transfer learning approach. The deep features 
were extracted from the self-designed five-layer-based CNN 
model and finally fed into Machine Learning (ML) clas-
sifiers. Model hyperparameters were optimized using the 
Bayesian optimization algorithm. However, the text lacks 
a detailed description of extracted features. Brunese et al. 
[32] applied customized VGG16 deep learning model for 
COVID-19 chest X-ray detection. The approach consists of 
three phases: first, pneumonia detection, if the answer is 
yes, the next phase is called, which distinguishes between 
COVID-19 and pneumonia, and finally the last phase is 
implemented to locate the areas in the COVID-19 presence 
X-ray. In the subsequent study by Panwar et al. [33], a fusion 
of deep learning (VGG-19 inspired model) and Grad-CAM-
based color visualization approach was employed on chest 
X-ray and CT-scan images for COVID-19 infection detec-
tion in the form of binary image classification. Grad-CAM-
based color visualization approach was used to interpret 
and explains the detection of radiology images. The system 
attains an overall accuracy of 95.61%.

Goel et al. [34] proposed an optimized OptCoNet pic-
ture classifying model to automatically detect COVID-19 
from chest X-ray images with six CNN architecture lay-
ers. The Grey Wolf Optimizer algorithm played the role of 
optimizing hyperparameters required for training the CNN 

layers. Authors Jain et al. [35] compared three models, 
Inception V3, Xception and ResNeXt, in the subsequent 
study recently published to examine their efficacy detecting 
COVID-19 infections in patients with radiation images. The 
public repository has been selected for approximately 575 
COVID-19 images; the Xception model is the most exact. 
Researchers suggested a deep CNN(DeTraC), which DCom-
pose, Transfer and Compose for the classification of X-ray 
chest pictures of COVID-19 in the subsequent empirical 
study of Abbas et al. [36]. Five different CNN pre-trained 
ImageNet models were used for DeTraC ’s transfer learning 
phase. Combining VGG-19 and DeTraC, model achieved the 
highest accuracy by 97.35%. For X-ray pictures detection, 
Practitioners Zebin et al. [37] used VGG-16,ResNet50 and 
EfficientNetB0. In the following study by Pun et al. [38], 
researchers have used five pre-trained CNN models to iden-
tify chest X-ray infections in patients from 153 COVID-19 
shortlisted images. In the subsequent article by Gianchan-
dani et al. [5], the authors proposed two different ensemble 
deep transfer learning models to predict subject disease and 
classify subject patient images into binary and multi-class 
problems. Researchers selected two different datasets for 
validation of the proposed models. The proposed ensem-
ble model’s performance (VGG16 + DenseNet) was com-
pared with VGG16, ResNet152V2, InceptionResNetV2 and 
DenseNet201 and found to be best with 96.15% accuracy 
on the binary dataset. Later, in the case of Kaur et al. [39] 
authors used the same dataset of [5] for their experimenta-
tion. Researchers show the novelty in their work by pro-
posing modified AlexNet architecture for feature extraction 
and classification. Strength Pareto evolutionary algorithm-
II(SPEA-II) was employed to tune the hyperparameters of 
this modified imagenet. The proposed model’s performance 
was compared with 09 models in which it performs the best 
with more than 99% accuracy. They tested for classifying 
images of the patients into four classes. Another approach 
was developed by researchers in [40] by ensembling the deep 
transfer learning models, ResNet152V2, DenseNet101 and 
VGG16. They gather approximately 11,000 images to clas-
sify them into four classes (COVID-19, Pneumonia, Tuber-
closis and Healthy). The model’s performance was com-
pared with 06 existing models, and the generated results 
reveal that the proposed one was the best with more than 
98% score (in all parameters like Accuracy, AUC, F-meas-
ure, sensitivity and specificity). Jaiswal et al. [41] presented 
a pre-trained deep learning architecture (DenseNet201) to 
classify COVID-19, infected patients, on the basis of their 
CT scan. They evaluate the performance with the other 
three competitive models (VGG16, InceptionResNet and 
DenseNet) on five efficiency measuring parameters. Authors 
conclude that their presented model with more than 96% 
score (in all parameters like Precision, Recall, F-Score, 
Specificity and Accuracy). In just recently published study 



	 Arabian Journal for Science and Engineering

1 3

researchers, Tiwari et al. [42] suggested a system based on 
visual geometry group capsule network (VGG-CapsNet) to 
screen COVID-19 disease based on input images. The com-
posed dataset contains around 2900 images belonging to 
three classes (normal, pneumonia and COVID-19). Their 
presented model achieved an accuracy of 97% for segre-
gating COVID-19 samples from non-COVID-19 samples 
and 92% accuracy for segregating COVID-19 samples from 
normal and other viral pneumonia samples.

2 � Materials and Models

The dataset used and the methodology used is explained in 
the subsequent sections.

2.1 � Dataset Description

The first three datasets selected for the validation of the 
shortlisted models are open-access publicly available 
repositories. The fourth one is a self-crafted dataset whose 
images (X-ray and CT both) are collected from the inter-
net and private hospitals. As per the best of our knowledge 
(gathered from various shortlisted prior published studies), 
we are the first to experiment with four datasets. Next, as 
per the acquired knowledge, very few studies have tested 

on so many COVID-19 images; although the count of the 
COVID-19 images is not very large still it is greater than 
experiments performed by previous researchers. After that, 
regarding the first dataset, we want to communicate that as 
per the best of our knowledge, none of the earlier studies 
have experimented on this dataset; this dataset belongs to 
the University of California, where an open coding competi-
tion was going on (01.09.2020). Last observation regarding 
dataset, while going through these studies, the practitioners 
have discriminated the images into classes (X-ray or CT). 
They have selected either X-ray images for experimentations 
or CT images for the same. We have overcome this discrimi-
nation by creating our customized dataset consisting of both 
X-ray and CT images of COVID and non-COVID patients. 
The details of the images are stated in Table 2.

2.2 � Preprocessing

Images in the dataset may be of different sizes, so we need 
to pre-process them using the steps displayed in Figs. 4, 5. 
Initially, all the images are passed through the preprocessing 
module, and then 

they are converted into a gray scale using OpenCV. After 
that, we have converted images into the binary conversion 
of images. We then resized each image into 224 × 224 pix-
els for the following processing steps in the deep learning 

Table 2   Datasets used in the study

Data Set 
Serial 
Number

Total 
Number of 
Images

Count and nature 
(COVID/Non-
COVID)

Address (Last Access Date 01/10/2020) X-ray/CT images

1 746 COVID: 349
Non-COVID: 397

https://​github.​com/​UCSD-​AI4H/​COVID-​CT/​tree/​master/​Images-​
proce​ssed

X-ray images

2 516 COVID: 278
Non-COVID: 238

https://​ieee-​datap​ort.​org/​open-​access/​COVID​19act​ion-​radio​logy-​
cxr

X-ray images

3 418 COVID: 210
Non-COVID: 218

https://​www.​kaggle.​com/​bachrr/​COVID-​chest-x-​ray?​select=​
images

X-ray images

4 770 COVID: 142(CT 
images) and 
183(X-ray)

Non-COVID: 
207(CT images) 
and 238(X-ray)

Private Customized dataset. Images collected from different 
resources available on internet and private hospitals located in 
author’s hometown

X-ray images and CT images

Fig. 4   Pictorial representation of the initial stage

https://github.com/UCSD-AI4H/COVID-CT/tree/master/Images-processed
https://github.com/UCSD-AI4H/COVID-CT/tree/master/Images-processed
https://ieee-dataport.org/open-access/COVID19action-radiology-cxr
https://ieee-dataport.org/open-access/COVID19action-radiology-cxr
https://www.kaggle.com/bachrr/COVID-chest-x-ray?select=images
https://www.kaggle.com/bachrr/COVID-chest-x-ray?select=images
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framework pipeline. The output of the images after conver-
sion is shown in the above diagram. We have then applied 
different flips and rotation while executing data augmenta-
tion as more images will help train the data out of which are 
available to us.

2.3 � Deep Learning, CNN, Transfer Learning, 
Fine‑Tuning and Ensemble Method

Deep learning (DL) is a branch of machine learning that 
discusses approaches focused on data representation learn-
ing. Deep learning with convolution is an effective way to 
simplify data processing. Computer models learn to per-
form classification tasks from pictures, text and sound. DL 
methods using several neural network layers can precisely 
extract and acquire specific characteristics from the data. 
These models are reliable, often sometimes outperform-
ing humans. These models are trained by inputting a wide 
range of data. In Deep Learning, superior model efficiency 
can be observed as data quantity increases. With traditional 
methods, the output is the same after an initial wave. With 
vast volumes of data, Deep Learning will also be an optimal 
alternative to current classification methods. Additionally, 
CNN deep learning has fascinating advantages like low pro-
cessing time, superior performance, high computing power 
and reliable outcomes (Prediction). Recent advancements in 
neural network architecture design and training have allowed 

researchers to solve previously unsustainable DL method 
learning tasks. Profound learning algorithms are contrasted 
with traditional algorithms. Convolution neural networks are 
one of the most popular DL approaches in medical imaging. 
The DL approach is a multi-stacked convolutionary algo-
rithm. The CNN is composed of a convolutionary layer, a 
nonlinear layer and a softmax layer, a maximum or average 
pooling layer. Convolutionary layers also use pooling layers 
to increase invariance and reduce function map computing 
costs. It subsamples, the convolutional layer to reduce the 
feature map’s size and computes the maximum and average 
function over the convolutional layer and are called max 
pooling and average pooling concerning the function they 
perform. Spacing in the pixels of the image is used with 
pooling and is called stride.

The number of parameters in the model grows as net-
works deepen to optimize learning performance. Deep learn-
ing models require large volumes of data. Deeper networks 
lead to more complicated computation and more difficult 
training data. We don’t have many photos to train, check and 
evaluate data. It appears too small to train a deep CNN, and 
we need a definition of transfer learning. Transfer learning 
uses the CNN model in an extensive database to understand 
the objective mission (e.g., diagnosis of COVID-19 from 
X-ray CT scans) with limited preparation details. Learning 
transition is the mechanism by which previously acquired 
information is passed to an alternate mission. This means 

Original CT 
image of patient 

Original CT 
image of patient 

Gray scale image 
of       (a) 

Gray scale image 
of       (b) 

Binary 
conversion of (b)  

Binary 
conversion of 
(a) 

(a) (b) (c) (d) (e) (f) 

(g) (h) (i) (j) (k) (l)
Original X-ray 
image of patient 

Original X-ray 
image of patient 

Gray scaled 
image of       (g) 

Gray scaled 
image of       (h) 

Binary 
conversion of (g) 

Binary 
conversion of 
(h) 

Fig. 5   Outputs of the various processes implemented during initial stage
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we move information (learning descriptive and widespread 
representations of features) to our database’s insufficient 
issue. We are concerned about the use of this technique. 
Big picture data belong primarily to the general domain, 
such as pet, dog and chair, while our pictures are X-ray and 
CTs(of COVID-19) with different visual appearances. As a 
result, the visual representations learned from these large 
images cannot represent CT images correctly. It makes the 
network extraction feature partial to the source data and less 
widespread to the target data. The pre-trained models are 
also ideally suited to our current data collection of fewer 
numbers of images. In other words, our task is to change 
the pre-trained CNN structures. Usually, this approach is 
much easier than conventional CNN style random weight 
lifting. Too much data are required to train the enormous 
CNN model parameters correctly. We use transfer learn-
ing to mitigate the scarcity of such datasets and produce 
improved performance. A vast number of different types of 
images are trained in various special CNN architectures and 
are then considered the pre-trained CNN model. However, 
these models need a lot of data to prevent overfitting.

To solve this dilemma, techniques of transfer learning are 
applied. Transfer learning (TL) considers the standard neural 
architecture and prepared weights on broad datasets and then 
changes the weights of the goal task with limited training 
data. Transfer learning is a technique used to pretrain models 
to its best growth so that we can have better efficiency than 
the present model we are using. It is a machine learning 
approach in which a model designed for one task is used 
as the foundation for a model on a different task. Given the 
large computing and time resources needed to build neural 
network models on these problems and the massive leaps 
inability to provide on similar problems, it is a common 
method in deep learning where pre-trained models are used 
as the starting point on computer vision and natural language 
processing tasks. When modeling the second mission, trans-
fer learning is an optimization that makes for faster develop-
ment or increased results. Transfer learning enhances the 
learning of a new task by transferring information from a 
previously learned similar task. When modeling the second 
mission, transfer learning is an optimization that makes for 
faster development or increased results. TL is associated 
with multi-task learning and paradigm drift, and it is not 
solely a field of research for deep learning. Transfer learning 
is common in deep learning due to the immense resources 
needed to train deep learning models or the vast and chal-
lenging datasets used to train deep learning models. Deep 
learning only fits with transfer learning if the model features 
learned from the first challenge are standard. Shift learning 
entails initially training a base network on a base dataset and 
task and then repurposing or moving the learned features to 
a second target network trained on a target dataset and task. 
This process is more likely to succeed if the functionality is 

universal, applicable to both the base and target tasks, rather 
than unique to the base role. By reducing errors, an ensem-
ble of transfer learning networks can be a stable solution. It 
generates optimum outcomes from the integrated networks 
for the fewest errors necessary. The convolutional neural 
network architecture is designed utilizing pre-trained mod-
els after data preprocessing. Researchers also applied the 
same approach in the recently published study for COVID-
19 prediction [5, 41, 43, 44]. Researchers in their work [5] 
designed ensemble deep transfer learning models to predict 
this disease from chest X-ray images. Authors focused that 
TL uses feature extraction capabilities of pre-trained models 
on large datasets such as ImageNet, capturing class bounda-
ries well. TL not only eliminates the need for a large dataset 
but also provides quick results. This motivates authors to 
incorporate these techniques into their proposed deep learn-
ing framework for COVID-19 classification. The authors of 
[43] employed a deep convolutional neural network as the 
backbone. They suggested three improvements (i) stochastic 
pooling to replace average classical pooling and maximum 
pooling methods; (ii) developing conv block by combining 
conv layer and batch normalization, and (iii) creating a fully 
connected block by combining dropout layer and fully con-
nected layer. In the following study [44] by Zhang et al., the 
authors developed a novel method combining DenseNet and 
optimization of transfer learning setting (OTLS) strategy to 
solve COVID-19 prediction. Authors suggest that transfer 
learning is a solution to (i) accelerate developing CNN and 
(ii) avoid overfitting. Authors explore that with this tech-
nique’s employability, researchers can develop a better per-
forming deep neural network rapidly. The authors of [41] 
justify that hyper-tuning of Deep transfer learning models 
(DTL) can improve the results further; a DTL model with 
DenseNet201 was suggested in this study.

TL acquires the knowledge from solving another prob-
lem and applies that knowledge to a different but related 
problem. Authors further explored that three elements are 
paramount to support the transfer are (i) The triumph of pre-
trained models supports the user get rid of hyperparameter 
tuning” (ii)The initial layers in pre- trained models can be 
thought of as feature descriptors which extract low-level fea-
tures and (iii) The target model may only need to re-train the 
last several layers of the pre-trained model. In this technique, 
we take one model, for example, VGG-16, and train it first; 
then we freeze all the models’ layer; after that, we apply 
layers from our side on the model so we train the model on 
that part using the weights of VGG-16. This is a solid and 
robust technique for increasing the efficiency of the model. 
In other words, our approach is to train a solid, deep net-
work to extract comprehensive visual properties by prepar-
ing broad data sets and then translating the network weights 
of this deep network into a small dataset’s targeting mission. 
Fine-tuning is used to fine-tune the model we are using after 
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the transfer learning technique; we used two parameters for 
fine-tuning early stopping and reducing rl over plateau. This 
technique helps to make the graph straighter and to reduce 
ridges in the graph. Early stopping is mainly used to stop 
the model when the validation accuracy or testing accuracy 
reaches its best height and when the loss is minimum in 
validation accuracy and training accuracy. For example, if 
we have used 50 epochs to train the model, the training is 
more sure to stop before 50 epochs when minimum loss and 
maximum accuracy have been reached. A general algorithm 
for all the models can be visualized as given below.

models must be good in various ways; they must have dif-
ferent prediction errors. Combining projections from several 
neural networks introduces bias, which offsets the volatility 
of a single learned neural network construct. The result is 
forecasted that are less vulnerable to the particulars of the 
training data, training scheme selection, and the chance of 
a successful training run. In addition to minimizing predic-
tion uncertainty, the ensemble can provide better predictions 
than any single model. This method is part of a broader class 
of techniques known as "ensemble learning," which defines 
methods that aim to make the best use of predictions from 

Fig. 6   Block diagram representation of the proposed work

Nonlinear methods include neural network simulations. 
Nonlinear methods include neural network simulations. This 
means they can discover dynamic nonlinear interactions in 
results. The disadvantage of this adaptability is that they are 
vulnerable to initial conditions, both in terms of initial ran-
dom weights and statistical noise in the testing dataset. Since 
the learning algorithm is stochastic, each time a neural net-
work model is learned, it can retain a marginally (or dramati-
cally) different version of the mapping function from inputs 
to outputs, resulting in other performance on the training 
and holdout datasets. As such, we should consider a neural 
network to be a system with a low bias and a high variance. 
When trained on massive datasets to accommodate the high 
variance, allowing some variance in a final model designed 
to render predictions can be disappointing.

The high variance of neural networks can be resolved 
by training several models and integrating their predictions. 
The aim is to incorporate forecasts from many strong yet 
distinct models. A good model has talent, which means that 
its predictions outperform random chance. Notably, the 

several models prepared for the same challenge. In general, 
ensemble learning entails training several networks on the 
same dataset, then predicting using one of the trained models 
before integrating the predictions in some manner to produce 
an outcome or forecast. Indeed, the model ensemble is a 
common technique in advanced machine learning to ensure 
the most reliable and best possible prediction. So the main 
focus for using the ensemble approach is reducing the vari-
ance of neural network models.

Ensemble learning is a method in which all models are 
combined using either soft or hard voting. For this, we use a 
voting classifier. Using a single model, the model’s bound-
ary curve is not as smooth as the ensemble produced. The 
curve that follows the ensemble better separates the COVID 
and non-COVID cases than the curve that precedes it. As 
a result, we used Ensemble learning with a voting classi-
fier to reduce our model’s errors. The voting classifier also 
aids in reducing the likelihood of overfitting, thus improv-
ing the models’ overall accuracy. Ensemble approaches are 
among the most appealing techniques. First and foremost, 
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it connects the distinct core model through the Ensemble 
framework and generates a new optimal predictive model. 
Bagging is a form of ensemble process that uses bootstrap-
ping and aggregation to create the ensemble system. Boot-
strapped selected a random section of the dataset and built 
a decision tree for each random partition of the dataset. Fol-
lowing the development of each partition of the Decision 
Tree dataset, an algorithm is used to aggregate the Decision 
Trees to construct the most valuable predictors. The ensem-
ble method’s main aim is to generate the best predictor after 
combining various models. By reducing errors, an ensemble 
of transfer learning networks can be a robust solution. It cre-
ates optimum results from the combined networks with the 
fewest errors possible (Refer Fig. 6).

A hyperparameter is a machine learning technique that 
can improve a classical neural network’s overall perfor-
mance. This optimization method chooses the best param-
eters to describe the model architecture, also known as 
hyperparameters. The entire training process, precision, and 
necessary modifications are used to tune hyperparameters. 
The model is being revised to find the best combination to 
meet the challenge. The hyperparameter can be tuned to 
improve classification techniques. Hidden layer number, 
learning rate, epochs, batch size, activation functions, and 
so on are examples of common hyperparameters.

2.4 � Motivation

The rapid spread of the novel coronavirus (COVID-19), which 
has since become an ongoing pandemic, has necessitated fast 
detection methods to avoid further virus spread and mortality. 
Globally, three methods are used for screening COVID-19 
infectious patients. This includes screening via chest X-ray 
images, chest CT images, and the RT-PCR examination. 
Because of the many issues associated with the RT-PCR 
test, it is not always recommended on its own. Many stud-
ies have proposed using both CT/X-ray and RT-PCR parallel. 

Meanwhile, the scarcity and overburdening of expert radiolo-
gists to diagnose infection from CT/X-ray is a severe problem.

Furthermore, revealing radiological signatures from 
suspicious patient’s photographs is a time-consuming and 
human-error-prone operation (riddled with intra-observer 
variability), so we must automate X-ray/CT image analysis. 
Thus, the development and application of a fast and accurate 
early-stage classification screening method is critical, and 
deep learning models may be used, as one of the efficient 
available alternative, to meet this requirement. The scientific 
community has made numerous serious attempts to predict 
suspected infectious patients using deep transfer learning 
models. However, these models are still plagued by the over-
fitting problem. In this paper, one novel hybrid model and 
another created by ensembling deep transfer learning models 
are developed for classifying suspected artifacts into two 
categories (COVID-19 infected patients and healthy peo-
ple). We have worked on four datasets to validate the best 
performing model(s). The best performing model should 
perform paramount on all datasets and their combinations 
and should not be a dataset-specific performer.

2.5 � Model Formulation

For this highly intensive experimental study, we have short-
listed different state-of-the-art ImageNet pre-trained CNN 
networks which have proven their performance previously. 
We have proposed three models from our side, first one was 
built from scratch (called as Proposed Model in this study), 
and the next one is the hybrid model called as LSTMCNN and 
last one is the ensemble deep transfer learning model called 
as “DarkNet-53 + MobileNetV2 + ResNet-101 + NASNet-
Large + Xception + GoogLeNet” in this paper. It should be 
noted that, to the best of the author’s knowledge, this is the 
first attempt to use the LSTMCNN model for COVID-19 
detection from X-ray and CT images, and possibly the first 
attempt in medical image analysis.

Table 3   List of models implemented in the study

Model Inspired/Adapted Model Inspired/Adapted Model Inspired/
Adapted

VGG-16 [60] VGG-19 [23] MobileNet [47]
InceptionResNetV2 [48] InceptionV3 [48] ResNet-101 [49]
ResNet50V2 [50] Xception [51] SqueezeNet [52]
DarkNet-53 [53] SqueezeNet + DarkNet-53 + Mobile-

NetV2 + Xception + 
ShuffleNet

[27](Adapted) EfficentNetB7 [54]

DCGAN [55] LSTMCNN Our proposed U-Net(Glaucoma) 
(Adapted)

[45]

Proposed Model (Self-Made Model) NASNetLarge [38, 56] ResNet-101V2 [61]
COVID research paper [2](Adapted) DarkNet-53 + Mobile-

NetV2 + ResNet-101 + NASNet 
Large + Xception + GoogLeNet

(Self-Made-ensemble 
deep transfer learning 
model)
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Moreover three models are adapted from the previous stud-
ies where they have shown their incredible performance to 
solve the problem; first one is named as “COVID research 
paper” which is adapted as such from [2]; next one as 
“U-Net(Glaucoma)” which is exactly adapted from [45] where 
this model has shown auspicious performance for Glaucoma 
binary classification on very large dataset; final one is named 
as “SqueezeNet + DarkNet-53 + MobileNetV2 + Xcep-
tion + ShuffleNet” which is adapted from [27] as this hybrid 
model yielded impressive performance in COVID-19 classi-
fication. The complete list is displayed in Table 3. Next, we 
discuss the necessary settings, pre-trained backbones, and 
procedural stages along with some compulsory abstract level 
discussion on all the models (including abstract level pictorial 
representation of only some). The self-explanatory block dia-
gram of the proposed work is shown below (Fig. 6).

VGG-16 has been applied in transfer learning fashion. 
First a model of VGG-16 from scratch is being downloaded 
and put upon the base model after that own model is cre-
ated with layers of average pooling 2D with pool size 4, 4, 
Flatten layer, Dense layer of 64 neurons with ReLU activa-
tion, Dropout layer of 0.5 and dense layer of 2 neurons with 
Softmax activation. All these layers have been fine-tuned 
using early stopping and reducer lover plateau. Also due to 
the less quantity of images these images have been passed 
through data augmentation with batch size 16 and which 
flips the images, rotation angle set to 15 degrees and fill 
mode is nearest. The optimizers which have been tested are 
SGD, Nadam, AdaGrad. Here Nadam comes out to be best 
which fits the data for each dataset. In early stopping, the 
patience level is 5 and the learning rate for the optimizer 
is 0.001. Experiment has been performed up to 50 epochs.

Total params: 14,747,650
Trainable params: 32,962
Non-trainable params: 14,714,688.

ResNet-101 has been applied in transfer learning fash-
ion here, a model is put on the top of the base model which 
includes the following layer;Flatten, Dense(64),Batch Nor-
malization, Activation tanh, Dropout 0.25,Dense 64,Batch 
Normalization, Activation tanh, Dropout 0.25,Dense 32,Batch 
Normalization, Activation tanh, Dropout 0.5,Dense 2,Activa-
tion Softmax. All these layers have been fine tuned and data 
augmented with batch size 16 and rotation angle 15 degree 
to increase the quantity of images. In fine tuning we have 
used early stopping with patience level of 5. Here also we 
have used optimizer Nadam with learning rate 0.01 to get the 
accuracy. Experiment has been performed upto 50 epochs.

Total params: 49,088,898
Trainable params: 6,430,338
Non-trainable params: 42,658,560.

Xception net is used for classification of images in a more 
précised way with some different layers as its base model 
and head model keeps the same as we have stated above like 
from the scratch. Its base model includes the layers of Global 
Average pooling 2D, Dense 200, Activation ReLU, Dropout 
0.4, Dense 170,Activation ReLU, Dense 2 and Activation 
Softmax. This net is also data augmented with the same 
rotation angle of 15 degrees and fill mode to the nearest 
having early stopping with patience value of 6 setting up 
the best weights quality also using reduce rl over plateau for 
the softening of the graphs and to increase the accuracy of 
each dataset on which we have worked on. Optimizer here 
which we have used is Nadam which remains top in the list.
Experiment has been performed upto 50 epochs.

Total params: 21,305,792
Trainable params: 21,251,264
Non-trainable params: 54,528.

InceptionV3 net is a highly rated net and been applied in 
the phase of transfer learning having base model of Flatten, 
Dense 1024,Dropout 0.25,Dense 2 and Activation Softmax. 
This model also used data augmentation and fine tuning with 
early stopping having patience level of 5 and batch size 
of 16; the optimizers tested were nada, Nadam, SGD and 
AdaGrad. Experiment has been performed upto 50 epochs.

Total params: 74,234,658
Trainable params: 52,431,874
Non-trainable params: 21,802,784.

InceptionResNetV2 net was proudly said to be used in 
transfer learning phase with data augmentation and fine 
tuning with early stopping and reducer lover plateau batch 
size 16 optimizer Nadam learning rate of 0.001 patience 
level 5. It’s base model includes the following layers, Flat-
ten, Dense(64),Batch Normalization, Activation tanh, 
Dropout 0.25,Dense 64,Batch Normalization, Activation 
tanh,Dropout 0.25,Dense 64,Batch Normalization, Acti-
vation tanh, Dropout 0.25,Dense 64,Batch Normalization, 
Activation tanh, Dropout 0.25,Dense 32,Batch Normaliza-
tion, Activation tanh, Dropout 0.5,Dense 2,Activation Soft-
max. Experiment has been performed upto 50 epochs.

Total params: 56,802,530
Trainable params: 2,465,410
Non-trainable params: 54,337,120

In case of EfficientNetB7 for the improvement of accu-
racy the base model for transfer learning which we have used 
Batch Normalization, Activation tanh, Dropout 0.25,Dense 
32,Batch Normalization, Activation tanh, Dropout 0.5,Dense 
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2,Activation Softmax. Experiment has been performed upto 
50 epochs.

Total params: 72,134,041
Trainable params: 8,035,970
Non-trainable params: 64,098,071.

VGG-19 is the model which we have worked on with 
data augmentation, fine tuning and transfer learning includ-
ing all the concepts of early stopping patience level 5 batch 
size 16 optimizer Nadam using binary cross entropy having 
the base model of Average pooling 2D with pool size 4,4 
Flatten layer, Dense layer of 64 neurons with ReLU activa-
tion, Dropout layer of 0.5 and Dense layer of 2 neurons with 
Softmax activation. Experiment has been performed upto 
50 epochs.

Total params: 20,057,346
Trainable params: 32,962
Non-trainable params: 20,024,384.

ResNet50V2 has been used with the help of transfer 
learning having base model content as follows: Flatten, 
Dense(64),Batch Normalization, Activation tanh, Drop-
out 0.25,Dense 64,Batch Normalization, Activation tanh, 
Dropout 0.25,Dense 64,Batch Normalization, Activation 
tanh, Dropout 0.25, Dense 64,Batch Normalization, Acti-
vation tanh, Dropout 0.25,Dense 32,Batch Normalization, 
Activation tanh, Dropout 0.5,Dense 2,Activation Softmax, 
The Nadam optimizer is applied with learning rate of 0.001.
It also has early stopping with patience level of 5 and having 
the best weights set this model is the best as compared to any 
other model having the less data leakage value as compared 
to other models it also used data augmentation which has a 
value of 15 degree angle of rotation batch size of 16 and 50 
epochs. The epochs in all the cases remains same that is 50.

Total params: 29,995,522
Trainable params: 6,430,338
Non-trainable params: 23,565,184.

MobileNet is another deep learning net which has been 
applied in the transfer learning fashion with head model as a 
mobile net and base model as stated below: Global average 
pooling 2D, Dense 1024,Activation ReLU,Dense 1024,Acti-
vation ReLU,Dense 512,Activation ReLU,Dense 2 and Acti-
vation Softmax. The optimizer here which we have used 
is Nadam with learning rate of 0.001with early stopping 
patience level 5 batch size 16 50 epochs. Data augmenta-
tion is applied with rotation angle of 15 degree. We have 
also used the best fit here in this case.

Total params: 23,301,729
Trainable params: 5,627,522
Non-trainable params: 17,674,207.

DarkNet-53 has been trained also in the transfer learning 
phase with all the optimizers tested namely Adam, AdaGrad 
and sgd.

Total params: 120,466
Trainable params: 119,154
Non-trainable params: 1,312.

DCGAN model has been trained on two models which 
are imposed on discriminator and generator. In this model 
discriminator has been used for discriminating the images 
from the right and wrong images the architecture of the dis-
criminator and generator has been added.

NASNetLarge has been implemented in the transfer 
learning phase and the vital details are shown with the help 
of screen shot. Batch size is16, Nadam optimizer used to 
compile the whole model with learning rate of 0.0001.
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Most of the models we use are either pre-installed librar-
ies or on Google; we apply transfer learning to them by 
creating our small neural network. But making a self-made 
model (Fig. 7) from scratch is an extraordinary task, so here 
is the novelty coming out to be. To make our model of our 
own, we first have made four layers of zero paddings, Con-
vo2D, Batch Normalization with activation ReLU and then 
added them with one layer of such type; we have put this 
configuration in such a manner that it fits our each and every 
dataset on which we have tested our network.

LSTM’s (Long short term memory) [60] are rarely used 
for image classification but it has been discovered that after 
incorporating certain convolution neural network layers 
we can use CNN for the classification of images. It can be 
observed from the diagram of the proposed model, certain 
layers have been added to the LSTM network to aid in clas-
sification of images into COVID-19 and Non-COVID. Such 
modifications made are highly practical for detection as 
LSTM runs faster than any CNN network. LSTM has been 
mostly used to compile the code in regression task but after 
some modification in transfer learning phase it can be used 
for image classification as it helps to classify the images; 
most of the aspects of it remains the same as the other mod-
els but the basic difference in this model is that there is large 
difference between the base model which we have used here. 

To apply for classification we have used the following steps 
with a CNN model: Input, CNN model, LSTM, Dense 2 
and Activation Softmax. This is how LSTMCNN (Fig. 8) is 
used as a tool to classify images; this model comes out with 
a high expectation of images with good results. We are the 
frontrunners in using this LSTMCNN model for COVID-
19 detection from X-ray and CT images to the best of our 
knowledge (Fig. 9).

Total params: 213,301
Trainable params: 213,301
Non-trainable params: 0

It can be observed from Fig. 10, we have proposed ensem-
ble deep transfer learning model (DenseNet-53 + Mobile-
NetV2 + ResNet-101 + NASNetLarge + Xception-
Net + GoogleNet) where these models have displayed range 
of performances during classification of similar type of 
problems. We have combined all the models; after that, 
we have applied a dense layer of 1024 units with activa-
tion function ReLU. Next, we have applied a dense layer 
with value 2 for this layer, activation function Softmax 
has been selected; finally we compiled the model. Here we 
have trained one best model, create its weights and used 
those weights for another model. From another model, we 
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have created weights, and we have used those weights in 
another model. By doing so, we finally conclude that in 
between performance may decrease, but after passing those 

weights of the best model, it helps for sharpening of slopes 
and ultimately increases in accuracy. For each phase, we 
have trained the model on batch size 16 with Nadam as an 

Fig. 9   Block diagram of an 
ensemble learning model by 
considering n number of artifi-
cial neural networks[5]

Fig. 10   Detailed representation of proposed ensemble deep transfer learning model
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optimizer. It can be analyzed that maybe the accuracy for 
a single model is less but cumulatively each model’s accu-
racy comes out to be best. Broadly default parameter settings 
were used for all pre-trained networks used for creating this 
multiCNN ensemble deep transfer learning model.

3 � Experimental Results and Models 
Evaluation

3.1 � Experimental Setup

We have planned 16 experiments to demonstrate each mod-
el’s robustness, where various combinations of selected data-
sets are used. Fifteen studies are known examples, while the 

other is an unknown one. Established example means that 
the data for training and testing are the same, while unknown 
means that training is carried out on a dataset(s) and testing 
is carried out on different data sets. In Table 4, the specif-
ics of the experimental setup are illustrated. During all 16 
studies, we have carried out fivefold cross-validation. The 
tests were conducted using a 6GBGPU corei7, GTX1060 
and coding in Python 3.8 were implemented. Figures 11, 12 
display the complete layout of the proposed study.

3.2 � Performance Indicators, Evaluation Metrics 
and Generated Results

In classifying the images into COVID-19 and Non-COVID, 
this subsection presents the output of the models shortlisted. 
Confusion Matrix is a performance calculation used to solve 
classification problems in Deep Learning where output can 
be two or more classes (Refer Table 5). It is a table com-
posed of four distinct variations of predicted and actual val-
ues. The confusion matrices are in the order of 2 X 2. It is 
a chart that is typically used to portray how the particular 
classification network is performing on a given test dataset 
for which the actual values are already known. The matrix of 
uncertainty consists of four values: True Positive (TP), False 
Positive (FP), True Negative (TN) and False Negative (FN). 
In this analysis, various normative performance assessment 
metrics such as accuracy, precision, recall, F-score, and 
AUC have been computed. These are based on four words, 
i.e., TP, FP, TN and FN. TP means prediction is positive and 
the person is COVID-19 positive, we want that; while FP 
is the occurrence in which we anticipated true and the real 
yield was likewise false, a false alarm that is bad. Similarly, 

Table 4   Details of the requisite 
experimental setup

Experiment 
Number

Dataset Used to Train 
the model(s)

Dataset used for 
Testing

Cross-validation rate 
(number of folds)

Example Type

1 (1) (1) 5 Known Examples
2 (2) (2) 5
3 (3) (3) 5
4 (4) (4) 5
5 (1,2) (1,2) 5
6 (1,3) (1,3) 5
7 (1,4) (1,4) 5
8 (2,3) (2,3) 5
9 (2,4) (2,4) 5
10 (3,4) (3,4) 5
11 (1,2,3) (1,2,3) 5
12 (1,2,4) (1,2,4) 5
13 (2,3,4) (2,3,4) 5
14 (1,3,4) (1,3,4) 5
15 (1,2,3,4) (1,2,3,4) 5
16 (1,2) (3) 5 Unknown Example

Fig. 11   Representation of the Confusion Matrix used in proposed 
work
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TN applies to people who do not have an infection, and the 
result is negative, and FN is a disease patient, but the test is 
negative which means prediction is negative, and a person 
is COVID-19 positive, the worst.

Figure 11 shows the confusion matrix for proposed work 
where Negative (0) represents normal and Positive (1) rep-
resents COVID-19.
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Table 5   Confusion matrix

Predicted cases

COVID-19 Healthy (Non-COVID)

Actual cases
Positive True Positive (TP) False Negative (FN)
Negative True Negative (TN) False Positive (FP)
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Sensitivity (a true positive rate) and Recall (the number 
of true positives separated by the sum of a number of true 
positives and false negatives) are the preeminent measures of 
diagnostic precision. The evaluation shows us the frequency 
at which CNN accurately predicts COVID-19 infection. The 
sum of sensitivity and false negative incidence is the num-
ber of true negatives divided by the total number of checks. 
The accuracy is the number of true negatives divided by the 
number of true negatives and false positives. The sensitivity 
measure calculates just how much of the positive cases were 
correctly predicted, while the specificity measure determines 
just how much of the negative cases were correctly expected. 
The research shows that CNN’s medical reporting is reli-
able for individuals who don’t have COVID-19 infection. 
The recall is the number of accurate outcomes. Precision 
is how close to the target the sample comes. F1-score tests 
the accuracy of a source. The F1-score is a metric used to 
gauge model accuracy. It represents both accuracy and the 
test which is a recall for the computation of the score. The 
method incorporates the accuracy and recall of the model 
to determine a single value, the harmonic mean. Precision 
is the amount of significance the measurement has with the 
outcome. Precision can be defined as the number of true pos-
itives divided by the number of true positive and false posi-
tive. Accuracy is the most critical metric used to measure 
the efficiency (trueness) of the classifier model. The algo-
rithm calculates the ratio of correctly defined photos vs the 

overall number of photographs in the dataset. Sensitivity and 
specificity scores help assess the accuracy of performance. 
A receiver operating characteristic curve (ROC curve) is a 
graph of a classification model that shows how well a clas-
sification performs to decrease classification thresholds. 
A ROC curve maps True and False Positive against True 
Positive at differing degrees of classification. The Receiver 
Operational Characteristic (ROC) study shows a reliable cal-
culation of COVID-19 classification. The region under the 
ROC curve indicates the sensitivity of the measurement; it is 
a curve drawn as the relationship between 1-specificity and 
sensitivity, showing the characteristic representation of the 
classification. The field under the curve is a partially inde-
pendent vector. The plot of True Positive Rate versus False 
Positive Rate is the receiver operating characteristics (ROC) 
curve. By calculating the degree of separability between dif-
ferent groups, the ROC reflects the model’s investigative 
competence. It explores how our CNN can discriminate 
between normal and COVID-19.

The area under the receiver operating characteristic curve 
(AUC) is used to assess the model’s performance; the area is 
the entire two-dimensional area under the receiver operating 
characteristic curve from (0,0) to (1,1). The greater superior 
region under the curve (AUC) is the model in which various 
groups are divided. Ideally, the AUC should be 1.0, its value 
is 0, and 0.5 is when the model is equal to random guessing 

Table 6   Comparative analysis 
of the classification results 
of the 19 models during 
experiment 1

Experiment -1 Metric -1 Metric-2 Metric-3

Image nets F1 Score AUC​ Accuracy
VGG-16 0.79330 0.79375 0.82350
VGG-19 0.83333 0.83482 0.77240
MobileNet 0.90000 0.90000 0.91000
InceptionResNetV2 0.83000 0.84000 0.90000
InceptionV3 0.53000 0.50000 0.52100
ResNet-101 0.79000 0.79330 0.86000
ResNet-101V2 0.9012 0.9147 0.9167
ResNet50V2 0.82410 0.82660 0.83000
Xception 0.79333 0.79370 0.73790
SqueezeNet 0.52000 0.53000 0.53000
DarkNet-53 0.53450 0.54230 0.53240
SqueezeNet + DarkNet-53 + MobileNetV2 + Xception + ShuffleNet 0.89650 0.90120 0.87450
EfficentNetB7 0.51230 0.52330 0.53000
DCGAN 0.82145 0.82569 0.90000
LSTMCNN 0.84123 0.82365 0.87456
U-Net(Glaucoma) 0.83645 0.82654 0.88975
Proposed Model 0.98746 0.98654 0.99655
COVID research paper 0.87645 0.88875 0.86457
NASNet Large 0.87457 0.88570 0.98746
DarkNet-53 + MobileNetV2 + Resnet-101 + NASNet Large + Xcep-

tion + GoogLeNet
0.84563 0.87163 0.86347
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Table 7   Comparative analysis of the classification results of the best performing 9 models during experiments 2 and 3

Experiment-2 Metric-1 Metric-2 Metric-3 Experiment-3 Metric-1 Metric-2 Metric-3

Image nets F1 AUC​ Accuracy Image nets F1 AUC​ Accuracy
VGG-19 0.98756 0.96587 0.99634 InceptionResNetV2 0.96359 0.97584 0.96359
InceptionResNetV2 0.96548 0.96387 0.96471 ResNet-101 0.99785 0.97458 0.98745
Xception 0.96348 0.94127 0.96547 ResNet50V2 0.96547 0.95412 0.98745
DCGAN 0.93647 0.94226 0.96785 DCGAN 0.97465 0.96548 0.97845
LSTMCNN 0.96355 0.98564 0.97459 LSTMCNN 0.96359 0.97855 0.96359
Proposed Model 0.92940 0.96245 0.99245 U-Net(Glaucoma) 0.93235 0.96235 0.96984
COVID research paper 0.97459 0.96326 0.96458 Proposed Model 0.95487 0.95055 0.96358
NASNet Large 0.97847 0.98636 0.97414 COVID research paper 0.97423 0.98746 0.98632
ResNet-101V2 0.8865 0.8659 0.8737 ResNet-101V2 0.8963 0.9147 0.9213
DarkNet-53 + MobileNetV2
 + Resnet-101 + NASNet Large
 + Xception + GoogLeNet
 + Resnet-101 + NASNet Large
 + Xception + GoogLeNet

0.99483 0.93584 0.98742 DarkNet-53 + MobileNetV2 0.97478 0.99789 0.97779

Table 8   Comparative analysis of the classification results of the best performing 9 models during experiments 11 and 13

Experiment-11 Metric-1 Metric-2 Metric-3 Experiment-13 Metric-1 Metric-2 Metric-3

Image nets F1 AUC​ Accuracy Image nets F1 AUC​ Accuracy
ResNet50V2 0.80426 0.84035 0.89550 MobileNet 0.98763 0.97856 0.98565
Xception 0.84660 0.86301 0.89206 InceptionResNetV2 0.96547 0.95635 0.98615
DCGAN 0.93642 0.93348 0.93476 ResNet50V2 0.98236 0.96584 0.99655
LSTMCNN 0.97457 0.97895 0.97456 LSTMCNN 0.97845 0.98746 0.97855
U-Net(Glaucoma) 0.96805 0.98069 0.98660 U-Net(Glaucoma) 0.89233 0.98698 0.98524
Proposed Model 0.98630 0.98604 0.98936 Proposed Model 0.89975 0.98555 0.92126
Covid research paper 0.97456 0.95479 0.96470 Covid research paper 0.96325 0.98464 0.97456
ResNet-101V2 0.8924 0.9124 0.9010 ResNet-101V2 0.8947 0.9214 0.9007
NASNet Large 0.96548 0.94756 0.94752 NASNet Large 0.94365 0.96412 0.97413
DarkNet-53 + Mobile-

NetV2 + Resnet-101 + NASNet 
Large + Xception + GoogLeNet

0.95686 0.97845 0.98875 DarkNet-53 + Mobile-
NetV2 + Resnet-101 + NASNet 
Large + Xception + GoogLeNet

0.97878 0.98747 0.99785

Table 9   Comparative analysis of the classification results of the best performing 9 models during experiments 14 and 15

Experiment-14 Metric-1 Metric-2 Metric-3 Experiment-15 Metric-1 Metric-2 Metric-3

Image nets F1 AUC​ Accuracy Image nets F1 AUC​ Accuracy
VGG-19 0.89641 0.84563 0.94567 ResNet-101 0.94563 0.93654 0.96413
MobileNet 0.95675 0.95641 0.96875 ResNet50V2 0.92146 0.96285 0.96421
DCGAN 0.98745 0.93647 0.97456 DCGAN 0.94569 0.93215 0.97459
LSTMCNN 0.97855 0.97465 0.96578 LSTMCNN 0.94742 0.97456 0.96458
U-Net(Glaucoma) 0.98523 0.96785 0.96875 U-Net(Glaucoma) 0.99455 0.99214 0.98669
Proposed Model 0.97854 0.96874 0.98756 Proposed Model 0.93298 0.94783 0.98547
ResNet-101V2 0.8938 0.8997 0.9045 ResNet-101V2 0.8932 0.8897 0.8740
COVID research paper 0.98631 0.96346 0.97852 COVID research paper 0.93648 0.97413 0.98746
NASNet Large 0.96875 0.98215 0.99785 NASNet Large 0.96335 0.94758 0.96354
DarkNet-53 + Mobile-

NetV2 + Resnet-101 + NASNet 
Large + Xception + GoogLeNet

0.98634 0.98632 0.94578 DarkNet-53 + Mobile-
NetV2 + Resnet-101 + NASNet 
Large + Xception + GoogLeNet

0.97459 0.98875 0.97879
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in the worst case. This is an overall indicator of success 
across every conceivable degree of identity.

(1)Sensitivity =
True positives

True Positives + False Negatives

(2)Specificity =
True negative

True Negatives + False positives

(3)Recall =
True positives

True Positives + False Negatives

(4)Precision =
True positives

True Positives + False Positives

(5)
Accuracy

=
True positives + True Negatives

True Positives + False Positives + False Negatives + True Negatives

(6)F1 − Score = 2 ∗
(Precision*Recall)

(Precision + Recall)

Table10   Comparative analysis 
of the classification results of 
the best performing 7 models 
during experiment 16

Experiment-16 Metric-1 Metric-2 Metric-3

Image nets F1 AUC​ Accuracy
DenseNet53 + Mobile-

Netv2 + ResNet-101 + NASNetLarge + Xcep-
tion + GoogLeNet

0.9156 0.9063 0.9074

LSTMCNN 0.8765 0.91368 0.8936
ResNet-101V2 0.9111 0.8993 0.9054
U-Net(Glaucoma) 0.8623 0.8836 0.8845
COVID research paper 0.9012 0.90014 0.8856
NasNetLarge 0.8745 0.91141 0.8763
Self-Made Model 0.9123 0.91256 0.8934

Table 11   Average-wise performance comparison of all the models

Model NAME All experiments aver-
age F1

All experiments aver-
age AUC​

All experiments 
average accuracy

VGG-16 0.920733 0.888575 0.914426
VGG-19 0.915139 0.903742 0.921005
MobileNet 0.911087 0.919878 0.925677
InceptionResNetV2 0.904686 0.913151 0.920659
InceptionV3 0.896025 0.885667 0.882325
ResNet-101 0.899679 0.900224 0.899411
ResNet50V2 0.880875 0.910234 0.919958
ResNet-101V2 0.8971 0.9036 0.8989
Xception 0.917826 0.902268 0.91461
SqueezeNet 0.521689 0.530245 0.51925
DarkNet-53 0.529491 0.54358 0.532157
SqueezeNet + DarkNet-53 + MobileNetV2 + Xception + ShuffleNet 0.897339 0.902605 0.894416
EfficentNetB7 0.513148 0.532155 0.532913
DCGAN 0.949983 0.940607 0.957902
LSTMCNN 0.966804 0.964544 0.964641
U-Net(Glaucoma) 0.962745 0.959091 0.950293
Proposed Model 0.945833 0.960826 0.946373
COVID research paper 0.961163 0.957247 0.962947
NASNetLarge 0.959736 0.957844 0.954607
DarkNet-53 + MobileNetV2 + Resnet-101 + NASNetLarge + Xcep-

tion + GoogLeNet
0.968263 0.95837 0.965129
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Table 12   Average-wise best performing 5 models on three efficiency measuring parameters

Ranking of Models On the basis of Accuracy On the basis of AUC​ On the basis of F1-SCORE

First DarkNet-53 + Mobile-
NetV2 + Resnet-101 + NASNet-
Large + Xception + GoogLeNet

LSTMCNN DarkNet-53 + Mobile-
NetV2 + Resnet-101 + NAS-
Net Large + Xception + Goog-
LeNet

Second LSTMCNN Proposed Model LSTMCNN
Third COVID Research Paper U-Net(Glaucoma) U-Net(Glaucoma)
Fourth U-Net(Glaucoma) DarkNet-53 + Mobile-

NetV2 + Resnet-101 + NASNet 
Large + Xception + GoogLeNet

COVID Research Paper

Fifth NASNetLarge NASNetLarge NASNetLarge

                            (a)                              (b) 

                            (c)                              (d) 

Fig. 13   Generated Training loss, Validation loss, Training accuracy and Validation accuracy curves of 5 models during 4 experiments
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The result of confusion matrixes for binary classifica-
tion problem in detecting COVID-19 positive are shown 
in Figs. (16, 17, 18). In order to show the produced result 
during each experiment, Tables 6, 7, 8, 9, 10, 11, 12 are 
compiled. During the first experiment, Table 6 shows the 
performance of all 20 selected models; we presented the per-
formance of the best 09 models (top 50 percent) in experi-
ments 2,3,11,13,14,15 and16 (Refer Tables 7, 8, 9, 10) due 
to space constraint. After that, a cumulative average table 
is generated where the effects of each model are summed 
and presented on individual performance metrics during all 
16 experiments (Table 11). Combined Table 12 is extracted 

from this Average Table, which highlights the final best five 
models for each metric. Bold numbers highlight the best 
score produced, corresponding to each metric, in particular 
experiment, during each table (Refer Tables 6, 7, 8, 9, 10, 
11, 12).

Four graphs, where each one displays Validation_loss, 
Training_loss, Validation_accuracy and Training_accuracy, 
for four experiments (11,13,14 and 15) performed on 6 
models ((DarkNet-53 + MobileNetV2 + Resnet-101 + NAS-
Net Large + Xception + GoogLeNet), LSTMCNN, 
U-Net(Glaucoma),COVID research paper, NASNetLarge 
and Self-Made Proposed Model) are demonstrated using 

                                    (a)                                        (b) 

                                    (c)                                        (d) 

Fig. 14   Generated Testing accuracy curves of 5 models during 4 experiments
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Fig. 13. As we increase epochs in the validation phase, the 
training and testing losses become almost equal which shows 
that the model is fit adequately and well. Regarding for train 
and validation accuracy, we found that training and valida-
tion accuracy is almost equal, shows that there is no overfit-
ting and the accuracies are showing an upward trend which 
shows the model is performing well with each epoch.

Four graphs, where each one displays testing_accuracy, 
for four experiments (11,13,14 and 15) performed on 6 

models ((DarkNet-53 + MobileNetV2 + Resnet-101 + NAS-
NetLarge + Xception + GoogLeNet),LSTMCNN,U-
Net(Glaucoma), COVID research paper, NASNet Large and 
Self-Made Proposed Model) are demonstrated using Fig. 14.

Five ROC graphs(Fig. 15), where each one displays AUC, 
for five experiments (11,12,13,14 and 15) performed on 6 
models (DarkNet-53 + MobileNetV2 + Resnet-101 + NAS-
NetLarge + Xception + GoogLeNet,LSTMCNN,U-
Net(Glaucoma),COVID research paper, NASNet Large and 

Fig. 15   Generated ROC curves of the 6 models during 5 experiments
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Self-Made Proposed Model) were generated to analyze the 
classification effectiveness.

Comparison in terms of confusion matrixes is illustrated 
in Figs. 16, 17, 18.

Based on intensive experiments on a considerably large 
dataset, the acquired outcomes and in-depth data analysis, 
we find out that our proposed hybrid LSTMCNN model 
and our proposed ensemble deep transfer learning model 
(DarkNet-53 + MobileNetV2 + Resnet-101 + NASNet-

Fig. 16   Confusion Matrixes for Proposed Model build from scratch (Experiment 14(Fig-a), 15(Fig-b), 16(Fig-c), 17(Fig-d), 18(Fig-e))

Fig. 17   Confusion Matrixes for LSTMCNN Model (Experiment 14(Fig-a), 15(Fig-b), 16(Fig-c), 17(Fig-d), 18(Fig-e))
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Large + Xception + GoogLeNet) performed auspiciously 
in COVID-19 detection and produced better performance 
metrics such as accuracy and F1-score than current 

state-of-the-art methods. Our last proposed model (Fig. 7) 
yields outstanding average-wise performance for AUC, 
but average-wise results for F1 and accuracy were less 

Fig. 18   Confusion Matrixes for Proposed Ensemble Model (Experiment 14(Fig-a), 15(Fig-b), 16(Fig-c), 17(Fig-d), 18(Fig-e))

Fig. 19   (a) Healthy Ima (b) 
COVID-19 Image

Fig. 20   (a) COVID-19 Image 
(b) COVID-19 Image
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promising; however, if we observe some of the experiment, 
for example Experiment 1, the response was overwhelming.

Our reproducible research reveals that patients with no 
apparent CT abnormalities could be distinguished from 
COVID-19 positive patients. While COVID-19 character-
istic such as bilateral involvement, peripheral dispersion, 
mixed ground-glass opacity or naked eye consolidation or 
vascular thickening has occurred, subtle COVID-19 changes 
have occurred. Various filters recorded differences in the 
semantic features in the digital deep learning network. While 
other profound learning algorithms were proposed for the 
COVID-19 screening compared to other studies, this study 
had advantages using X-ray images and CT pictures.

3.3 � Success and Failure Cases

In this subsection, classification of the given COVID-19 
images is focused with the help of four scenarios. Figure 19 
shows two images from the Healthy class. Case represented 
by Fig. 19a. is a successful because the image is normal 
and our proposed system also predict as normal. Case rep-
resented by Fig. 19b. is a failure case because the image 
represents COVID-19 and our proposed system predict as 
normal. Figure 20 depicts two scenarios with the help of 
two images of COVID-19 and suspicious class. Figure 20a 
presents a success case and 20-b presents failure case.

4 � Discussion on the Results and Comparison 
with Other State‑of‑the‑Art Methods

When all the selected studies are compared with the pre-
sent study, our datasets are comparatively more immense in 
terms of the number of COVID-19 positive images used for 
classification. According to the shortlisted studies, the three 
more extensive datasets are found to be used in [27] with 
453 COVID-19 dataset images, [35] with 580 images and 
1000 COVID-19 images in [34]. Still, COVID-19 images 
count scale is far greater than that of 580 and 453 images in 
our many experiments. Many previous studies have justified 
that the number of datasets should be the highest for training 
and testing is applied in this work. We say that we are the 
first to undertake such a systematic experiment where 20 
CNN models have been used for 16 experiments on different 
combinations of 4 chosen datasets to provide a comprehen-
sive analysis of artificial intelligence’s duty to recognize this 
infection. Besides, on all 16 experiments, we have summed 
the output of all the shortlisted image networks, showing 
the corresponding average values in Table 11. For all per-
formance appraisal metrics, which shows the best models, 
we have complied Table 12. We conclude that our selected 
models have demonstrated auspicious efficiency by achiev-
ing greater than 99% maximum accuracy and more than 96% 

average accuracy. Similarly, executing a maximum AUC 
greater than 0.995 and an average performance greater than 
0.96, we have achieved fantastic performance. Finally, our 
models have produced the best F1 score of more than 0.99 
again, focusing on F1 score, the average performance is also 
excellent with a value of 0.9682. Considering all the model’s 
average performance over all the experiments, we infer from 
Tables 11, 12 that LSTM generates the highest average of 
0.9645 AUC. In contrast, the highest generated standalone 
value of 16 experiments is greater than 0.99.

When we tried to compare our performance with other 
shortlisted studies, we realize that a fair comparison cannot 
be made because of the difference in the chosen datasets, 
performance metrics and validation. However, in a com-
paratively large dataset, we have justified the use of ours. 
The scale of the dataset that other researchers have cho-
sen is slightly smaller. For instance, in the study [25], the 
subject model achieved 88.10% accuracy on 284 images 
(142 COVID images). When the performance comparison 
is made between ours and [24], we find that in the case of 
[24], the number of tests, the number of models chosen for 
research and the size of the dataset is smaller, the accuracy 
shown by the model is 95.80% which is lower than that of 
average performance and highest performance.

In [29], practitioners suggested a deep neural network-
based DarkNet inspired model with seventeen convolu-
tion layers, with LeakyReLU, which was tested on a total 
of 125 COVID images and 1125. The accuracy generated 
(87.08%), and the F1-score (0.8737) is either on average 
or without averaging less than ours. With nine studies pub-
lished in arXiv and medRxiv, the authors [29] have indeed 
justified their models’ success. However, with only recently 
published premium studies [2, 19–33], we have made a sin-
cere attempt to explain our work. In-depth analysis shows 
that if the F1-score is treated as an efficiency parameter, 
Table 13 shows that our best model will perform higher than 
that proposed in [29] on an average classification basis and 
standalone basis.

However, in the case of precision, we do well in binary 
classification on a standalone basis and satisfactorily on 
an average basis. Researchers [20] tested 219 COVID-
19 images using their proposed model, consisting of a 
ResNet23 model and a self-designed model. The F1 score 
and the model’s measured accuracies are 83.9% and 86.7%, 
respectively, both of which are well behind ours. Besides, 
the size of the data set chosen for testing is not too large, 
and, also, the performance of the proposed model is not 
compared to any other pre-existing models. Practitioners, 
[21], by addressing various advantages over it, justified the 
usability of X-ray images against CT image. The Incep-
tion (Xception)-based model implemented by automated 
deep transfer learning is proposed in the study using the 
same dataset [29] for preparation, testing and validation. 
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The efficiency of the ten pre-existing versions was com-
pared with proposed one. Compared to all, the proposed 
model reached the highest accuracy of 97.40%, which is 
almost equal to ours on average and less than our highest 

achievement. Similarly, focusing on the proposed model’s 
F1 score, 0.9696 score was produced, which also follows the 
same course, which in average cases is roughly comparable 
to ours and more petite than our highest achieved. In a study 

Table 13   Comparison of the results with state-of-the-are CNN methods

Reference Number of COVID-19 
images

Method Accuracy (in %) F1-Score AUC​ Split method Or 
Cross-Validation

Goel et al. [34] 1000 Optimized CNN 97.78 0.9525 – Split
Jain et al. [35] 580 Xception 97.97 0.86 – –
Das et al.[21] 127 Deep CNN and Xcep-

tion-based self-crafted 
model

97.40 0.9696 – Split

Ardakani et al. [23] 108 patients CT slices ResNet-101 and Xcep-
tion

99R.51 0.994 Split

Singh et al. [24] 132 Modified XceptionNet 95.80 0.9588 – Split
Ozturk et al. [29] 127 DarkNet inspired model 98.08 0.9651 – Cross-Validation
Panwar et al. [25] 192 VGG-16 inspired 

nCOVnet
88.10 – – Split

Abraham et al.[27] 453 Squeezenet + Dark-
Net-53 + Mobile-
NetV2 + Xcep-
tion + ShuffleNet

91.16 0.914 0.963 Cross-Validation

Abbas et al.[36] 105 DeTraC method with 
ResNet

93.10 – – Split

Zebin et al. [37] 202 EfficientNetB0 96.80 – – Cross-Validation
Punn et al. [38] 108 NASNet Large 98.00 – 0.99 Cross-Validation
Song et al.[7] 98 patients Chest CT 

images
Customized GAN 

Model
– – 0.972 Split

Shalbaf et al.[57] 349 CT images Ensemble model of 5 
deep transfer learning 
architecture

85.00 0.852 – Split

Autee et al.[58] 868 Chest X-ray images StackNet-DenVIS 95.07 0.955 
(Weighted 
Average)

– Cross-Validation

Apostolopoulos et al.
[59]

224 Chest X-ray images VGG-19 and MobileNet 
v2

96.78 – – Cross-Validation

Gianchandani et al.[5] 401 Chest X-ray images Ensemble model of 2 
deep transfer learning 
architecture

96.15 0.961 – Split

Singh et al.[40] 2373 Chest CT scanned 
images

Ensemble model of 3 
deep transfer learning 
architecture

98.83 0.9830 0.9828 Split

Jaiswal et al.[41] 1262 chest CT scan 
dataset

Modified DenseNet201 96.25 0.9629 – Split

Our Proposed Maximum upto 1250 LSTMCNN (Standalone 
Performance)

Upto 98.66 Upto 0.9974 Upto 0.9856 Cross-Validation

Our Proposed Maximum upto 1250 LSTMCNN (Average-
wise Performance)

96.46 0.9668 0.9645 Cross-Validation

Our Proposed Maximum upto 1250 Hybrid/multiCNN 
(Standalone Perfor-
mance)

Upto 99.78 Upto 0.9977 Upto 0.9978 Cross-Validation

Our Proposed Maximum upto 1250 Hybrid/multiCNN 
(Average-wise Perfor-
mance)

96.51 0.9682 0.9583 Cross-Validation
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[22] focusing on the diagnosis of COVID-19 infection, prac-
titioners suggested a predictive model from the 18 laboratory 
findings of 600 patients. This study was a unique study on 
COVID-19 diagnosis and maybe the first of its kind. The 
experimental findings show that 86.66%, 0.9189 and 0.6250 
respectively, were the highest produced accuracy, F1-score 
and AUC values when identifying patients with infection. 
Two approach tests, tenfold cross-validation and train-test 
split was conducted. LSTM performs best in the previous 
strategy, while one CNNLSTM combination performs best 
with 92.30% accuracy, 0.9300 F1-score and 0.900 AUC in 
the latter. Researchers [23] have experimented with a private 
dataset for clinical screening of COVID-19 infection using 
10 pre-existing transfer-learned structured convolutionary 
networks. A single experiment on a moderate size dataset 
(510 COVID-19 images) was performed during the study. 
Researchers propose ResNet-101 and Xception as the best 
performing model that can play an adjuvant instrument in 
the radiology departments of medical colleges/hospitals 
due to this experimental research. These models obtained 
the highest AUC (0.994) and accuracy (99.51%), however, 
the number of tests, the size of combined datasets, and the 
number and form of selected models are more significant.

The authors of [25] proposed a transfer-learned CNN 
model based on VGG-16, called the nCOVnet model, for 
rapid diagnosis of infection from patients’ X-ray images. 
The authors used 127 positive patients with COVID-19 as 
a dataset to validate nCOVnet performance using a single 
experiment only. Also, we note that the efficiency of the pro-
posed nCOVnet is not compared to any other current/novel 
model/technique. The analysis does not explicitly present the 
accomplished AUC and F1-score. In the meantime, we can 
claim that our number of experiments, the size of combined 
datasets and the number and form of models shortlisted 
again exceeds them.

Two deep learning (DL) models, one for discrimination 
and another for localization, were presented in the subse-
quent study by Wang et al. [26]. The first model extracts 
lung characteristics from chest X-rays radiographs and the 
second locates and assigns known X-ray radiographs to the 
left, right or bipulmonary lungs. A total of 3500 images 
containing only 225 images of COVID-19 positive patients 
were selected. The first model, which corresponds to our 
target, provided 98.71% accuracy, somewhat lower than our 
best model(s). For research on 453 COVID-19 X-ray images, 
Abraham et al. [27] used 10 pre-trained CNN models and 
15 combinations of pre-trained CNNs. Only two experi-
ments were conducted. The authors conclude on the results 
obtained that their hybrid model (comprising 5 pre-trained 
models) performs best with 0.963 AUC, 0.914 F1-score and 
91.15% accuracy. In our case, the average accuracy (of six-
teen experiments) and standalone (non-averaged) accuracy 
are also higher. In standalone (non-averaging) F1 and AUC, 

a similar trend is also observed. The second test’s dataset 
size consists of 71 infectious images and 7, non-COVID 
images.

The authors of [19] presented research to screen for 
COVID-19 infection from private CT images of 618 
patients. Using a 3D deep learning model to be classified 
into COVID-19, Influenza-A viral pneumonia, and irrel-
evant to infection groups and their corresponding confi-
dence scores, segmentation is initially carried out to classify 
infection regions employing a local-attention categorization 
model. The system provided a total accuracy rate of 86.7%. 
In their empirical study [30], practitioners suggested a deep 
neural network based on Xception CNN called CoroNet for 
automatic 3-class classification (COVID, Pneumonia and 
normal) with 95% accuracy. The experiment was conducted 
on 284 chest radiograph images of COVID-19 and approxi-
mately 1250 images in total. Binary classification has also 
been performed by authors where the model generates a 
99% and 0.985 accuracy and F1 score, respectively. Binary 
classification has also been carried out; our highest results 
are also in the same line as that produced in this report. 
Besides, the authors have not compared their proposed 
model to other existing models, and the number of models 
tested and the size of COVID-19 images used in experiments 
is also smaller than that of our research. Researchers from 
the following study [31] present a deep SqueezeNet-based, 
COVIDiagnosis-Net, Bayesian optimization-based method 
to diagnose the disease from X-ray images. The experimen-
tation was carried out on 5310 images that contain only 66 
images of COVID-19. Overall, the technique yields 0.9826 
precision and 0.9825 F1-score. Due to the proposed system’s 
very high delivered accuracy, no other model is compared 
to the proposed one. The count of COVID-19 images is too 
limited, and it is expected that the model’s output should 
also be validated on a large dataset.

A convolutionary layer-based CNN model is built in 
the subsequent study by Nour et al. [2] that also includes 
the Bayesian optimization algorithm for the detection of 
COVID-19 infection. The proposed method yields 98.97% 
accuracy on a limited size of 219 public COVID-19 images, 
but the total number of images is 2905. Our research has 
implemented this CNN model (without a Bayesian opti-
mization algorithm) to assess the output of our datasets 
and compare the results achieved with other topic models. 
In this study by Brunesa et al. [32], investigators applied 
model pre-trained VGG-16 imagenet to build their model 
on the top of it to screen COVID-19 from X-ray images. 
3520 images were selected in which the size of COVID-
19 positive patient’s images count is 250 only. The model 
achieves overall 97% accuracy. Similarly, like others, the 
performance of the proposed model was not compared with 
any pre-existing imagenets. In the following study by Tora-
man et al.[28], a novel ANN, convolutional CapsNet was 
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proposed, which achieved accuracy and F1-score of 97.24% 
(with data augmentation),both for binary class classification. 
231 COVID-19 were used to validate the performance of 
the proposed one; only one model was presented. VGG-19-
based model was offered in the experimental research by 
Panwar et al. [33] where 285 images of COVID-19 patients 
were shortlisted for performance assessment. Three experi-
ments were performed to finally achieve the best accuracy 
of 95.61% and 0.97 F1-Score.

Approximately 850 COVID-19 positive patient X-ray 
images were chosen by Goel et al. [34] from the publicly 
accessible repositories for the work. The best accuracy 
97.78% and the best F1-score of 0.9525 was offered; for both 
of these performance assessment metrics our best perform-
ing model(s) generated best scores is better than these ones. 
Jain et al.[35] compared three models, Inception V3, Xcep-
tion and ResNeXt, in the following study just published; 
authors shortlisted the public repository for about 575 
COVID-19 images. Authors of [35] have raised a cause of 
concern stating that the high accuracy obtained may be due 
to overfitting influence. In this context, we want to assure 
that there is a very rare chance of this in present empirical 
work. Data augmentation was used to correct the imbalance 
dataset and avoid overfitting during training. The Xception 
model was the best performer, with the highest accuracy 
and F1 score of 97.97% and 0.95, respectively. Researchers 
suggested a deep CNN (DeTraC) that decomposes, trans-
fers and composes for the classification of COVID-19 chest 
X-ray images in the subsequent empirical analysis by Abbas 
et al. [36]. Just 105 COVID-19 images were in the data-
base selected for function, 70:30 split ratio training–testing 
was preserved. For the transfer learning stage in DeTraC, 
five dissimilar ImageNet pre-trained CNN models were 
used. The highest accuracy of 97.35 percent was achieved 
by combining VGG-19 with DeTraC. Practitioners Zebin 
et al. [37] used VGG-16, ResNet50 and EfficientNetB0 for 
classification and 202 shortlisted COVID-19 images were 
split into training–testing ratios of 80:20. In the case of 
EfficientNetB0, the best accuracy of 96.8% was achieved. 
The investigators engaged five pre-trained CNN models in 
this final analysis by Punn et al. [38]; authors shortlisted 
153 COVID-19 photos. NASNetLarge was the best model 
that achieves an accuracy of 98% and an AUC of 0.99 for 
two classifications. Table 13 is compiled, which indicates 
that the acquired performance parameters for our two pro-
posed CNN’s are superior to those of other state-of-the-art 
approaches.

Based on the above intensity comparison, we discover 
that our and other effective deep learning-based models can 
detect the COVID-19 infection’s biomarkers, such as asym-
metric peripheral ground-glass opacities without pleural 
effusions, multifocal patchy consolidation regions, and nod-
ular opacities. Our best performing deep learning model(s) 

can easily sense bilateral, lower lobe, and lesion localization 
(areas on chest X-ray images) involvement.

We are also skeptical about the comparison, as they used 
different datasets, comparison techniques, and performance 
metrics. However, the number and scale of datasets, the 
number of experiments conducted, and the number and 
variety of image networks used made the findings evident 
and valuable to the medical community. The present study 
presents a computer-assisted diagnostic method using X-ray 
and CT images and delivering results like a radiologist.

Our proposed model(s) accuracy is optimistic and supe-
rior to other shortlisted competitive models; the others have 
less classification accuracy; this may be since the other 
architectures have a larger and more complicated struc-
ture and more training parameters than our proposed ones. 
Our proposed architecture(s) provides better generalization 
capabilities than the other shortlisted models. With the aid 
of generated results, a deep learning framework can help 
detect infection subjects using X-ray/CT images by provid-
ing a fast, cheap and accurate solution for the diagnosis of 
the disease. The study showed that a promising model(s) 
for diagnosing and classifying infections is suggested as the 
LSTMCNN and ensemble model (consisting of 6 networks). 
These automated models can identify complex patterns from 
medical images with an expert radiologist’s equivalent abil-
ity. The model does not entail extensive costs and can be 
used in radiology departments as the best supporting method 
during image analysis.

5 � Discussion on Practical Applicability 
and Outlook

Early diagnosis of coronavirus disease 2019 (COVID-19) is 
crucial for disease treatment and control. A rise in patients, 
insufficient government planning, and an increase in fund-
ing (people and services) add to the crisis. The situation is 
more difficult because the RT-PCR test kits (having lower 
sensitivity) are not readily available in certain countries. The 
patients have not been diagnosed as expected (suspected or 
proven) and have not been placed in an isolated area, result-
ing in hotspots (potential infection source). The detrimental 
impact is profound in all industries like engineering, tours 
and tourism, vehicles, culture, and the education market. A 
report (https://​www.​dento​ns.​com/​en/​insig​hts/​alerts/​2020/​
march/​11/​COVID-​19-​and-​its-​impact-​on-​the-​global-​econo​
my) predicts the global loss of 1.1 trillion dollars. To date, 
the exact solution to this deadly disease is not found, and 
even the just retired first citizen of the USA got also infected 
from it.

It is a common challenge to differentiate and reliably 
diagnose COVID-19 from other diseases. We proposed a 
system in which a fully automated end-to-end chest X-ray 
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and CT interpretation was evaluated using well-known 
and designed deep-learning-based approaches. The system 
extracts what they need on their own, and there is no need 
for human intervention. When training is done on large data-
sets, network weights are trained and fine-tuned on small 
datasets. The data is standardized, and preprocessing steps 
are carried out first, and then models produce outputs by 
differentiating the input images from unsafe ones.

As seen in the previous section of this paper, we are the 
front runners to perform systematic experiments on four 
datasets and their comparative review to justify the robust 
and best model(s), out of 20, for COVID-19 outbreak predic-
tion. This will satisfy the immediate need for human soci-
ety to explain its practical applicability. Anyone can see the 
results within 5 s from our trained models with high accu-
racy and discriminative ability; it can also play an assistant’s 
role during X-ray/CT imaging in radiology departments of 
hospitals / medical colleges. To check the outcomes, all the 
standard performance evaluation indicators such as Accu-
racy, AUC and F1-score are validated. Our hybrid and 
ensemble deep learning model offer a unique benefit in this 
study. The user can pick the deep learning model’s best out-
put to identify each diseased case separately.

Our research demonstrated that deep learning-based 
techniques helped radiologists to identify the COVID-19 
infection accurately. The best results were found using our 
LSTMCNN model and our proposed ensemble deep trans-
fer learning model. We have used these two robust deep 
learning-based models to characterize and detect the infec-
tion; they can recognize chest X-ray/CT images abnormali-
ties. The outputs of these auspiciously performing model(s) 
can be used as a second opinion and can help physicians 
make the best decision and accurate diagnosis by effectively 
detecting abnormalities. These models capture radiographic 
features from low-level image data and can recognize com-
plex patterns that radiologists may overlook. These models 
reduce wait times for diagnosis. Using these models, hos-
pitals can identify and isolate the patients early, preventing 
the virus from spreading in the community, ultimately sav-
ing the life and money. Besides, it reduces the exposure of 
nurses and medical staff to the outbreak. We can use this 
proposed system to guide isolation in a real-time setting for 
patients at risk for COVID-19. Preliminary analysis of the 
samples can help in determining whether quarantine meas-
ures are appropriate. Our best performing, fully automated, 
inexpensive, rapid and accurate binary classifier models can 
be employed in health care centres situated at remote loca-
tions to analyze X-ray and CT images to resolve the issues 
like the absence of qualified radiologists and wait for the 
testing kits to arrive.

6 � Conclusion

In this paper, a hybrid model (LSTMCNN) and ensem-
ble model using deep CNN are proposed for COVID-19 
detection from chest X-ray images and CT images. Intense 
experimentation is performed in this work, where 16 experi-
ments are performed using 20 models. The proposed models 
are tested over three well-known datasets and one private 
dataset to prove their versatility. Extensive experimental 
results reveal that the proposed models achieved incred-
ible accuracy for binary classification and outperformed 
the other shortlisted competitive COVID-19 classification 
models. Health practitioners and researchers may leverage 
these models to improvise this infection’s prediction in this 
worldwide ongoing pandemic situation. Although two of our 
models (LSTMCNN and ensemble deep transfer learning 
model) produced an encouraging performance in a consid-
erably more extensive dataset, it has few limitations worth 
mentioning. The method is limited to 2 class classifications, 
COVID-19 and Non-COVID, of the X-ray and CT images. 
Testing in multi-class classification (like COVID-19, normal 
and pneumonia) is not performed in this work. Moreover, 
the segmentation of the infected region is not performed. In 
this study, it is believed that patients have a single disease 
if it exists.

In future, more patient data can be leveraged that can 
support better feature extraction capability of the proposed 
model(s). We can also extend this work by adding factors 
like risk and survival prediction of the potential patients that 
can be useful in framing a stronger healthcare framework. In 
the future, we will analyze how the hyperparameters were 
tuned in with available algorithms and how feature extrac-
tion approaches can be applied on X-rays/CT images for this 
infection identification.
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