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Abstract

Artificial intelligence (AI) is increasingly employed in healthcare fields such as oncology, 

radiology, and dermatology. However, the use of AI in mental healthcare and neurobiological 

research has been modest. Given the high morbidity and mortality in people with psychiatric 

disorders, coupled with a worsening shortage of mental healthcare providers, there is an urgent 

need for AI to help identify high-risk individuals and provide interventions to prevent and treat 

mental illnesses. While published research on AI in neuropsychiatry is rather limited, there is a 

growing number of successful examples of AI’s use with electronic health records, brain imaging, 

sensor-based monitoring systems, and social media platforms to predict, classify, or subgroup 

mental illnesses as well as problems like suicidality. This article is the product of a Study Group 

held at the American College of Neuropsychopharmacology conference in 2019. It provides 

an overview of AI approaches in mental healthcare, seeking to help with clinical diagnosis, 

prognosis, and treatment, as well as clinical and technological challenges, focusing on multiple 

illustrative publications. While AI could help re-define mental illnesses more objectively, identify 
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them at a prodromal stage, personalize treatments, and empower patients in their own care, it must 

address issues of bias, privacy, transparency, and other ethical concerns. These aspirations reflect 

human wisdom, which is more strongly associated than intelligence with individual and societal 

well-being. Thus, the future AI or Artificial Wisdom (AW) could provide technology that enables 

more compassionate and ethically sound care to diverse groups of people.
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The global burden of mental illnesses accounts for 32% of years lived with disability, 

making mental illnesses the first in global burden of disease (1). Moreover, mental health 

challenges have increased in recent decades with a rise in suicides, substance use, and 

loneliness (2), worsened by the Covid-19 pandemic (3). Mental healthcare is compounded 

by a shortage of nearly 4.5 million mental healthcare providers, including well over 100,000 

psychiatrists in the US (4). Artificial Intelligence (AI) presents a potential solution to 

address this shortage, and is increasingly employed in healthcare fields like oncology, 

radiology, and dermatology (5–7). The global AI in healthcare market is expected to grow 

from $5 billion in 2020 to $45 billion by 2026 (8). Also, there are increasing numbers of 

large-scale databases like Electronic Health Records (EHRs) in various countries (9).

The use of AI in mental healthcare is, however, limited. The computational power harnessed 

by AI systems could be leveraged to reveal the complex pathophysiology of psychiatric 

disorders and thus better inform therapeutic applications (10). Mental healthcare relies 

on strong clinician-patient relationships that are often hindered by the limited interaction 

time allotted for clinical care. AI technologies offer a way to streamline tasks that do not 

require a “human touch” and thus provide complementary support that enables clinicians to 

focus on delivering more empathic care, thus “humanizing” medical practice (11). A recent 

survey of psychiatrists highlighted documenting/updating medical records and synthesizing 

information as two time-consuming tasks where AI could replace a human clinician (12). AI 

may further complement clinical intuition by enhancing diagnostic accuracy by supporting 

the clinical reasoning process (13) and advancing the mechanistic understanding of mental 

illnesses (14,15).

This article is the product of a Study Group held at the American College of 

Neuropsychopharmacology that included academic, clinical, and industry experts in mental 

health and AI in 2019. While there have been several excellent reviews of AI in psychiatric 

disorders, they have focused on specific conditions like autism (16) or bipolar disorder (17), 

or a specific goal such as genetic prediction (18). This article provides an overview of AI 

approaches in mental healthcare, to help with clinical diagnosis, prognosis, and treatment as 

well as clinical and technological challenges, and the future of AI (- i.e., Artificial Wisdom 

or AW), focusing on multiple illustrative examples.
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AI Approaches: Machine Learning and Natural Language Processing

No FDA-approved or FDA-cleared AI applications currently exist in psychiatry (19). 

However, such applications have long been envisioned – e.g., the potential of expert 

systems and computerized therapy (20). Reasons for the delayed adoption of AI into 

routine psychiatric practice include the sensitive nature of data generated by mental health 

patient-clinician interactions (e.g., written clinical notes, conversations with patients) and 

multi-faceted diagnostic criteria in the DSM-5 (21,22). These types of data and clinical 

decision-making in psychiatry are far more complex than specific and objective tasks (e.g., 

tumor identification from an image) that are well-supported by current AI methods (23). AI 

technologies are also notoriously “data-hungry,” and the field of mental healthcare has been 

limited in its access to large, high-quality datasets.

Machine Learning (ML):

This is the most commonly used subset of AI in healthcare. It employs data-driven 

algorithms to learn from data, estimating or predicting outcomes for new data and/or 

future events (13,24). ML differs from more traditional statistical approaches in several 

key ways: being more hypothesis-generating than hypothesis-driven; having minimal model 

assumptions rather than the strict assumptions required for statistical inference; and being 

focused more on predictions and pattern recognition than estimating parameters of interest 

(for details see (10,25)). Recommendations for using ML with mental health data are 

available. The International Society for Bipolar Disorders Big Data Task Force (17) has 

outlined the essential steps from acquiring patient data from multiple sources and biological 

levels to translating the knowledge to generate risk calculators. Similarly, Park, et al. (26) 

described clinical research strategies to systematically evaluate AI model performance in 

healthcare. Liu et al. (27) provided a guide on how to interpret ML-based publications and 

assess the appropriateness of the ML model for the size and type of input data.

AI is well-suited to handle “big data,” granular, or digitized data (28). The potential 

of a subset of ML, deep learning (DL), in psychiatry is just beginning to be realized 

[see (29)]. DL has been used to support diagnostics, in particular for dementia, using 

the largest possible publicly available datasets (e.g., Alzheimer’s Disease Neuroimaging 

Initiative, or ADNI) (30). EHRs, digital phenotyping data from mobile phones, and social 

media platforms represent additional sources of high-dimensional data that could provide 

the necessary inputs to fully harness the power of DL for mental health applications. 

Medical data sharing has become increasingly more important, as models trained on high­

dimensional data with small samples (e.g., more features than participants) lead to poor 

generalizability (31).

One potential solution to address small samples is transfer learning, which enables use of 

pretrained AI algorithms, designed for different purposes, as a starting point for analysis of 

new data (32). For example, Wang et al. (33) used a pre-existing algorithm (with fine tuning) 

called AlexNet that was originally trained on the large visual database ImageNet to classify 

alcoholism vs. non-alcoholism. Another example is that of Banerjee et al. (34) who used 

knowledge from a large speech-recognition database called TIMIT to detect post-traumatic 

stress disorder (PTSD). These approaches work because of similarities in the structure of 
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the different datasets. Transfer learning is an economical and efficient solution, avoiding the 

development of a new model from scratch and requiring less training data. Given the relative 

dearth of large psychiatric datasets, transfer learning could prove useful for AI in mental 

healthcare.

Natural Language Processing (NLP):

This includes techniques like speech recognition, sentiment, lexical, and semantic analysis, 

and optical character recognition to transfer text from unstructured to structured formats 

in order to enable subsequent analyses (35). NLP techniques are relevant for psychiatry 

because language and speech are the primary sources of information used to diagnose and 

treat mental disorders. Unstructured psychiatric evaluation records are readily available, 

inexpensive, and rich in information to help identify phenotypes and comorbidities (36,37). 

Relevant examples in mental health include applying NLP within the Clinical Record 

Interactive Search (CRIS) platform (38), and predicting the risk of suicide (39) and early 

psychiatric readmission (40), from hospital discharge notes within the EHR. NLP can also 

be applied more broadly to EHR or insurance claims data for automating chart reviews, 

clustering patients into particular phenotypes, and predicting patient-specific outcomes 

(41,42).

Assistance with Clinical Diagnosis, Prognosis, and Treatment

Clinical Diagnosis:

Today’s AI systems can help with differential diagnostic challenges in several key ways. 

First, AI approaches can bolster the ability to differentiate between diagnoses with similar 

initial clinical presentations but divergent treatment approaches (43) – e.g., identifying 

bipolar versus unipolar depression based on brain imaging features (44), or differentiating 

between types of dementia using structural MRI scans (45). Secondly, data-driven AI 

methods can help identify novel disease subtypes based on heterogeneity of presentations, 

demographic features, and environmental factors (43). Examples include neurocognitive 

profiles in bipolar disorder (46), genetic profiles in schizophrenia (47), biomarker profiles 

in psychoses (48), and neuroimaging subtypes in depression (49). Thirdly, AI approaches 

can build models from unusual/novel data sources and reconcile data from multiple 

heterogeneous data-streams, e.g., EHR, behavioral data from digital phenotyping and 

wearable sensors, speech, social media feeds, neurophysiology, imaging, and genetics 

(50), to coalesce explanatory and mechanistic models of mental illness across self-report 

to molecular assessments. Illustrations include Instagram photographs to predict risk of 

developing depression (51), speech data to predict psychosis onset in high-risk youth 

(52), and identifying individuals with PTSD (53). AI methodology can also incorporate 

both genetic and environmental risks (54), accounting for complex environment-gene 

interactions and psych-bio-social factors, particularly relevant in PTSD (55). Furthermore, 

AI methodologies are well-suited for deciphering patterns from longitudinal data (56), 

critical for honing the accuracy of diagnoses based on evolving psychiatric symptoms. 

Lastly, AI methods may have a growing role in gathering sensitive and accurate data 

from patients. One study found that individuals were more forthcoming disclosing sensitive 

information with a computer system than with a person (57).
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Use of Non-Clinical Data:

The digital health movement is closely aligned with AI methods using data outside of typical 

physician-patients interactions (58). Day-to-day and longitudinal monitoring of sensors 

(59) and social media can enable early detection of symptoms or relapse, and shed light 

on helpful versus harmful behaviors (60,61). Multimodal-sensing including smartphones, 

wearable devices, physiological sensors (e.g., heart rate, electrodermal activity), and ambient 

sensors (e.g., motion, temperature, light) enables collection of real-world, continuous 

data concerning symptoms, treatment response, and behaviors, thoughts, and emotions 

(62,63). Platforms designed to enable multimodal data collection, like mindLAMP (64), 

AWARE (65), and CrossCheck (66) aid in continuous remote monitoring and identification 

of subjective and objective indicators of psychotic relapse. ML techniques can derive 

meaningful or novel features from inherently noisy signals generated by sensors (62). 

Behaviors like social withdrawal may be detected using smartphones and Fitbit data (67).

Social media platforms represent a new form of social communication, reflecting day-to­

day functioning of many individuals (68), thus providing an unprecedented, unobtrusive 

“lens” into longitudinal behaviors and moods (69,70), especially for adolescents and young 

adults who are both the highest internet users and at the greatest risk for the emergence 

of mental disorders (71,72). Examining the content, language, and consumption patterns 

of social media provide novel insights into relationships and communication, as well as 

create new opportunities for seeking help (73,74). Web-based influences impact people’s 

knowledge of, and attitudes toward, healthcare practices like vaccination, at population 

and individual levels (75). Mental illnesses may be observable in online contexts, and 

social media data have been leveraged to predict diagnoses and relapses (51,72,76,77), with 

accuracies comparable to clinician assessments and screening surveys (78).

However, sensor data do not yet have clear usability in clinical mental health settings (79) 

due to lacking clinical validity and implementation challenges. Likewise, analyses of social 

media data need AI-based innovations, e.g., shared infrastructures for data collection and 

data donation. Furthermore, important privacy and ethical issues regarding social media data 

(80,81) as well as public distrust of data usage for sensitive purposes may hinder research 

and creation of large-scale data sets necessary for AI algorithms (82).

Prognosis:

AI methodologies applied to longitudinal data can bolster accurate prognoses for psychiatric 

patients (43). Studies have harnessed neuroimaging, EHR, genetic, and speech data to 

model trajectories of depression (83), suicide risk (84), future substance abuse (85), and 

functional outcomes (86). AI algorithms can also use data-driven approaches to build 

new clinical risk prediction models (87) without relying primarily on current theories of 

psychopathology. However, internal and external validation of an AI algorithm is essential 

for its clinical utility. Cross validation or split-sample validation are important steps for 

preliminary internal validation; though these steps do not ensure generalizability of the 

results. Temporal validation (newly recruited participants) and geographical validation (data 

from a different site) are more rigorous strategies to ensure clinical utility (see (87,88)).
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Treatment:

AI technologies have great potential to support clinical treatments in psychiatry in several 

ways. First, AI can be used to predict treatment response, potentially bypassing ineffective 

medication trials, invasive and expensive brain stimulation therapies, or time-consuming 

psychotherapies (43). Studies have predicted response to antidepressant medications using 

clinical questionnaire items (89) and EEG signals (90), response to antipsychotics based 

on EEG (91), response to electroconvulsive therapy (ECT) based on brain structure 

(44), response to CBT for anxiety based on brain fMRI (92), and response to brain 

stimulation based on MRI (93). Such studies can identify the target populations for various 

treatments (94), though not all studies are positive (95,96). Secondly, AI approaches can 

help predict serious side effects of treatments (97). One study used EHR data to predict 

development of renal insufficiency among patients treated with lithium (98). Thirdly, 

AI approaches can aid in building new theoretical models of disease pathophysiology. 

One study reported progressive divergence of neuroimaging abnormalities in bipolar 

patients (from non-psychiatric controls), supporting the hypothesis of bipolar disorder 

as a neuroprogressive disease (99). Similarly, characterizing the timing and course of 

brain changes during the conversion from psychosis prodrome to schizophrenia (100) 

can contribute to understanding risk and resilience factors during the prodromal phase. 

These approaches may also uncover novel opportunities for early intervention, through 

identifying the most heavily weighted risk factors for transitions to illnesses. Fourthly, ML 

approaches can help identify gene expression patterns characteristic of different psychiatric 

disorders (101). One study described a model that could accurately predict which individuals 

would develop PTSD based on pre-deployment blood transcriptome data (102), highlighting 

immune-related gene dysregulation as a risk factor for, and not just a consequence of, PTSD. 

Lastly, AI can aid directly in the discovery of new treatments (103). AI methods can aid 

in predicting the clinical action of drugs through simulation or data-driven approaches, thus 

discovering novel compounds with therapeutic potential (94) – e.g., pharmacodynamics of 

ketamine infusion through BOLD fMRI response to ketamine and other drugs (104).

Clinical Challenges

There are unique challenges to use of ML in psychiatry. Performance of supervised 

algorithms depends on the quality of the diagnostic labels used to train a model. Given 

the heterogeneity characteristic of mental illnesses, labels of disease states may not be 

specific enough to yield AI algorithms with high sensitivity and specificity. One possibility 

is to use ML algorithms to predict specific symptoms or functional consequences rather 

than diagnoses. Another opportunity lies in leveraging the strength of deep neural networks 

that can operate without human oversight to identify novel biomarkers for detecting specific 

diseases (29). However, a barrier to using ML algorithms is so-called “stealth science” 

which protects trade secrets though transparency and reproducible methods are necessary. 

Big data (e.g., EHR, clinical notes, sensor data, social media data) are inherently messy and 

require considerable transformation before they are usable (105). When the results of ML 

algorithms are published, they must include information regarding the quality of the data 

used to train the model as well as any potential biases in it, which is rarely done at present.
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The major advantage of AI tools is their superior ability to handle large quantities of data 

quickly to guide clinical decision-making. However, there are still relatively few examples of 

adoption of ML into clinical psychiatry practice and little evidence of clinical or economic 

impact. Sendak et al. (105) have proposed four phases of translation necessary to bridge 

this gap: design and development of ML products that can support clinical decision-making 

and are actionable; evaluation and validation; diffusion and scaling across settings such 

that the tools are more widely applicable; and continued monitoring and maintenance to 

remain current with clinical practice needs. An exemplar is the ML product IDx-DR used to 

automatically diagnose diabetic retinopathy.

Healthcare systems face key challenges in adopting AI systems (106,107). One case study 

at Yale University involved implementation of AI-based decision support for improving 

selection of antidepressant treatments (108–110). The cost-benefit assessment conducted by 

the healthcare system considered both clinical benefits for patients and financial benefits 

to the healthcare system. The upfront cost of building a specialized IT infrastructure, 

skepticism of its utility, and concern for unintended consequences were key hurdles. In 

addition, enabling a larger pool of primary care physicians to treat poorly reimbursed 

psychiatric disorders might increase the burden on these physicians and reduce their 

overall productivity, thus affecting the hospital’s revenues. Both clinicians and patients 

expressed concern about the eventual regular utilization of these clinical tools. Thus, for 

AI-based clinical tools to become fixtures of hospital-based clinical practice, they must be 

incorporated into the culture of the healthcare setting.

Another example of the promise and challenges of AI implementation in psychiatric 

population health is the REACH VET program at the US Veterans Affairs (111,112). The 

VA has leveraged its immense and harmonized EHR system to investigate a new ML-based 

program that identifies high suicide risk individuals. Qualitative research indicated that 

Veterans were less concerned about the predictive origin of the outreach than the tone and 

clinical skill of the clinician providing outreach. The ongoing Yale and VA projects are 

experiments in how large clinical datasets can potentially lead to predictive interventions and 

integrated into patient-centered care systems.

Technological Challenges

A major challenge for AI in mental health is that the underlying biological processes of 

psychiatric disorders are still poorly understood (113). Therefore, AI models have to be 

bootstrapped from observations, rather than be derived from first principles. However, a 

major problem for data-based derivations of models is the statistical bias-variance trade-off 

(114). A complex model may overfit – i.e., fit the observed data well (minimizing statistical 

bias) but is unstable and highly dependent on the specific data used to fit it (maximizing 

variance). Conversely, a simple model may underfit the observed data and miss relevant 

structures. Good ML approaches seek to optimize the statistical bias-variance trade-off by 

finding the “sweet spot” for prediction. Predictive models evaluate how accurately a built 

model can forecast future outcomes and need well-defined metrics of individual-level model 

performance (115); explanatory disease models identify robust effects on understandable 

variables (116). Despite the clear trade-off between accuracy and explainability, explainable 

Lee et al. Page 7

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models are needed to ensure safety of the patients and establish trust in the AI models. 

Recent developments in AI include recurrent neural network (RNN) variant models that 

can control data inputs at various stages and self-evaluate which timepoints and data inputs 

are most predictive of the outcome, visualizing techniques, association rule mining (using 

biologically-based relationships between data elements), and functional validation of the 

results (117,119). In instances where the biological associations are not well-understood, 

e.g., in analyses of complex imaging and language data, the AI models may not be as clearly 

interpretable. However, future AI models must strive to improve transparency in order to 

establish their clinical utility.

Regulatory oversight of AI technologies is essential for reducing another type of bias – 

evaluative bias, i.e., particularly for continually evolving AI models (118). Ungoverned AI 

might perpetuate such bias through furthering social inequities or demonstrating prejudices 

by arriving at different conclusions for individuals (e.g., based on race or gender) without 

any rational basis [see (120)]. Non-diverse unrepresentative training data or data that 

reflects human biases (e.g., due to systemic racism that leads to unequal treatment of racial 

minorities) can lead to evaluative bias in healthcare applications. Training ML models on 

human biases may lead to pernicious propagation of inequity. EHR data (generated by 

humans) can be less in-depth for some segments of the population than others, leading to 

erroneous conclusions (121). If a feature is rare in a training set, then a model will be 

less prepared to detect similar occurrences. Undetected evaluative bias is obviously difficult 

to eliminate, however, there are tools to help detect and mitigate bias in AI models. For 

example, the Google What-If tool enables visualization of AI algorithm results and manual 

manipulation of datapoints to view effects of changing certain parameters. The IBM AI 

Fairness 360 is an open-source tool available on Git Hub to test for algorithmic bias. Beyond 

rigorously assessing algorithms for bias, ML offers an opportunity to advance health equity 

through ensuring equality in patient outcomes, performance, and resource allocation (122).

It is important to highlight a distinction between pragmatic and explanatory approaches 

(29,123). Pragmatic approaches using automated ML (124) aim to develop tools that can 

lead to robust and accurate predictions that are clinically useful; however, these optimization 

procedures are computationally expensive, and are limited by interpretability of how the 

various workflows’ features contribute to the predictions – the black box. The explanatory 

models seek to establish relationships between variables that provide meaningful insights 

into how the system works. We need ML tools that provide pragmatic guidance and are 

explainable. More in-depth understanding of how to develop AI systems like DL to capture 

the complexity of patients is needed.

Federal and Private Funding Support

Driving the field forward will need careful navigation and long-term support from 

government and industry, such as the National Institute of Mental Health (NIMH) which 

emphasizes support of explainable AI in mental health. The National Science Foundation 

(NSF) and other federal agencies are funding AI Research Institutes, although they do not 

focus on mental health challenges. Spring Health, an AI-based company to match patients 

with mental health providers, was born from academic research at Yale University. In the 
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private sector, AI companies have collaborated with mental health startups and universities 

– e.g., a collaboration between Microsoft and Silvercloud Health, a digital platform 

for mental healthcare. Microsoft’s AI for Accessibility program funds industry-academic 

partnerships to improve mental healthcare. In one such project, Northwestern University, 

University of Toronto, and Mental Health America are co-developing a text message-based 

psychotherapeutic intervention. Amazon is partnering with University of Pittsburgh and 

Carnegie Mellon University to build sensors for speech and facial expression data and 

identify changes associated with depression. Georgia Tech University and Befrienders 

India are co-developing an AI-based system to match crisis-line callers with peer support 

specialists from similar sociodemographic, cultural, and lived experiences (coauthor MDC 

is a PI). Another academic-industry partnership example is the UC San Diego and IBM 

Research’s Center on AI for Healthy Living (Investigators include coauthors EEL, CAD, 

SAG, HCK, DVJ), which is conducting a longitudinal study of older adults residing within a 

continuing care senior housing community. The researchers assess the participants using 

wearable sensors, clinical, neuropsychological, and physical functioning measures, and 

microbiome-based biomarkers, with the ultimate goal of identifying the earliest predictors of 

cognitive and functional decline (10,36,125).

Future of AI: Artificial Wisdom (AW)

AI is modeled after human intelligence and today’s AI can accomplish various concrete 

tasks far more quickly than a human, through replicating discrete human intelligence 

skills like processing speed, memory, quantitative reasoning, visuospatial ability, auditory 

processing, and comprehension-knowledge. AI will continue to improve and develop into 

super-intelligence. Yet, it does not have the ability to make compassionate, fair, and 

equitable decisions. AI cannot self-reflect or self-correct or consider diversity among people 

and perspectives, ethics, and morality. Reframing such future AI for what it really is – i.e., 

Artificial Wisdom (AW) – highlights the limitations of today’s AI and the need for wisdom 

it should offer in the future.

Human wisdom is a multi-component personality trait that includes pro-social behaviors 

like empathy and compassion, emotional regulation, self-reflection (with self-correction), 

acceptance of uncertainty and diversity of perspectives, social decision making, and perhaps 

spirituality (126). Wisdom, rather than intelligence, is associated with greater individual and 

societal well-being. In all likelihood, only humans can be truly wise, as uniquely human 

characteristics including consciousness, autonomy, and will are key to cultivating wisdom. 

The notion of creating AI that shares our societal values and could be considered to be 

wise is a relatively new area of exploration (127–129). The future AI will need to have 

some aspect of emotional intelligence (130), morality (131), and empathy (132). Paiva et al. 

(133) defined “empathic agents” as “agents that have the capacity to place themselves into 

the position of a user’s or another agent’s emotional situation and respond appropriately.” 

It is improbable that human wisdom could be fully programmed into a robot, but partial 

examples exist in the form of robotic social workers and physical therapists deployed 

in nursing homes (134,135), social robots for loneliness, and those providing cognitive 

assistance to older adults (36). These tools illustrate the efforts to develop computers that 

can perform actions which employ wise principles and result in wise acts.
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Ethical and wise AI – i.e., AW, will help promote individual and societal well-being 

(136–138). As noted above, freedom from bias is essential for widespread practical use. 

Evolution of AW will require active collaboration between computer scientists, engineers, 

psychiatrists, psychologists, neuroscientists, and ethicists.

Common concerns about AI today often focus on the “four horsemen of the AI apocalypse”: 

loss of jobs for humans, unethical decision-making, hostile robot-led takeovers, and 

uninterpretable “black box” decision-making (139). These are countered by the hope for 

developing behavior-based digital biomarkers; re-defining diagnoses; facilitating earlier 

detection of mental illnesses; continuous learning systems that can assess patients in 

context; tools to help patients and clinicians better understand an illness and themselves; 

personalized approaches to diagnosis and treatment; and built-in computational models that 

make mental healthcare safer, more efficient, and personalized. This dichotomy between 

fears and aspirations can be reframed by considering ways to develop AW to support mental 

healthcare. The path to achieve sustainability, implementation, and clinician and patient 

acceptance will require transparency, trust, and wisdom.
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