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A B S T R A C T   

Massive vaccination against COVID-19 has become a global priority. Simultaneously, concerns regarding the 
safety of vaccines are growing. We describe two patients who developed sensory Guillain-Barre syndrome (GBS) 
shortly after the first dose of the ChAdOx1 vaccine. We also summarize 12 published cases of GBS after ChAdOx1 
vaccination, highlighting their unique clinical and paraclinical features. We propose a possible association be
tween the risk of GBS and the ChAdOx1 vaccine and recommend surveillance for GBS following vaccination. 
Population-based studies are needed to determine causality and whether specific subpopulations are susceptible.   

1. Introduction 

Massive vaccination against severe acute respiratory coronavirus-2 
(SARS-CoV-2) has become a global priority. However, concerns 
regarding the safety of COVID-19 vaccines are growing. For example, a 
causal relationship between the ChAdOx1 vaccine and thrombotic im
mune thrombocytopenia was recently established (Cines and Bussel, 
2021). Among the four major COVID-19 vaccines: ChAdOx1, BNT162b2 
mRNA, mRNA-1273, and Ad26.COV2⋅S; ChAdOx1 is the most used in 
South Korea, administered to >60% of people who have received ≥1 
dose of any COVID-19 vaccine (Agency KDCaP, n.d). We describe two 
patients who developed sensory Guillain-Barre syndrome (GBS) shortly 
after receiving the first dose of the ChAdOx1 vaccine. Further, we pro
vide a summary of published post-ChAdOx1 vaccine-GBS cases, high
lighting their unique features (Allen et al., 2021; Maramattom et al., 
2021; Patel et al., 2021). 

2. Case presentations 

2.1. Case 1 

A 58-year-old man with unremarkable medical history and no recent 
infections experienced focal aching pain on his right toes three days after 
the first dose of the ChAdOx1 vaccine. Over the next week, he developed 

severe burning and tingling sensations on both feet, which modestly 
improved with gabapentin (900 mg per day). Neurological examination 
on the 15th day post-vaccination revealed mild hypoesthesia in vibra
tion, temperature, and pain on both feet. The Modified Research Council 
(MRC) grades and deep tendon reflexes (DTR) were normal in all four 
limbs. A nerve conduction study (NCS) revealed decreased sensory nerve 
action potential amplitudes on both sural nerves, temporal dispersion on 
the left peroneal nerve, and absent peroneal motor responses on the 
right (Fig. 1D). A skin biopsy in the right distal leg (10 cm above the 
lateral malleolus) revealed an abnormal decrease in intraepidermal 
nerve fiber density (IENFD) (Fig. 1A). On magnetic resonance imaging 
(MRI), no abnormal signal changes, enhancement, or enlargement were 
noted in the spinal cord and nerve roots. Cerebrospinal fluid (CSF) 
analysis revealed albuminocytologic dissociation (2 white blood cells/ 
μL and protein 70 mg/dL). IgG and IgM for GM1, GD1b, GQ1b as well as 
IgM for myelin-associated glycoprotein (MAG) tested negative. Naso
pharyngeal swabs were negative for SARS-CoV-2 on the reverse 
transcription-polymerase chain reaction (RT-PCR) test. 

2.2. Case 2 

A 37-year-old woman without any previous medical history and in
fections developed tingling sensations over both lower extremities four 
days after receiving her first dose of the ChAdOx1 vaccine. Afterwards, 
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Fig. 1. Skin biopsy and electrophysiological findings of patient 1 (A, D) and patient 2 (B, E). (A) Intraepidermal nerve fiber density (IENFD), immunostained by 
protein gene product 9.5, was decreased in patient 1’s distal leg (2.7/mm, age- and sex-matched cut-off 9.1) (Provitera et al., 2016). (B) Distal leg IENFD was also 
decreased in patient 2 (6.2/mm, age- and sex-matched cut-off 11.3). (C) Representative example of normal IENFD in healthy control. (D) Peroneal motor nerve 
conduction study (NCS) of patient 1 showed temporal dispersion, indicative of demyelination. (E) The quantitative sudomotor axon reflex test (QSART) in patient 2 
was impaired in the forearm (abnormal) and distal leg (low normal) (reference value shown in the figure). Scale bars = 50 μm. 
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we developed painful cold sensations, and symptoms got worse over the 
next two weeks. Neurological examination on the 25th post-vaccination 
day revealed cold hypoesthesia in both legs, especially in the feet and 
posterior calf. The MRC grades and DTRs were normal in all four limbs. 
NCS, spine MRI, ultrasonography, and computed tomography angiog
raphy of the lower extremities were normal. However, a decrease in the 
distal leg IENFD demonstrated a small fiber neuropathy (Fig. 1B). 
Furthermore, the quantitative sudomotor axon reflex was abnormal in 
the right forearm and low normal in the right calf (Fig. 1E). The 
following laboratory tests were normal or negative: GM1, GD1b, GQ1b 
IgG/IgM, MAG IgM, anti-nuclear antibodies, anti-neutrophil cyto
plasmic antibodies, complement levels, serum electrophoresis with 
immunofixation, hemoglobin A1c, folate, thiamine, thyroid function 
test, D-dimer, and HIV antibody. Her symptoms moderately improved 

with gabapentin, duloxetine, and tramadol. Nasopharyngeal swabs were 
negative for SARS-CoV-2 on the RT-PCR test. 

3. Discussion 

The two patients shared many clinical features: pure sensory mani
festations, short-latency from vaccination to onset, progression dura
tion, and no serum antibodies against gangliosides. Neuropathic pain 
symptoms partially responded to pharmacotherapy in both patients. Due 
to the absence of weakness or respiratory disturbances, intravenous 
immunoglobulin (IVIg) was not administered. Other possible causes, 
such as systemic autoimmune diseases or paraneoplastic syndromes, 
were not suspected based on the detailed laboratory investigations. 
Therefore, sensory GBS was considered the most probable diagnosis. 

Table 1 
Summary of 15 cases of post-ChAdOx1 vaccine GBS.  

Author (n) Country Sex/ 
Age 

Time 
to 
onset/ 
nadir 
(days) 

Clinical presentation Limb NCS CSF 
WBC 
(/μl) 

CSF 
protein 
(mg/dl) 

Ganglioside 
antibodies 

Severity at 
nadir 

Treatment Outcome 

Marammatom 
et al. (7) 

India F/ 
43 

10/20 Quadriparesis, facial 
diplegia 

Demyelinating 2 85 NA MRCSS 8 
Respiratory 
failure 

IVIg, MV Full 
recovery 

F/ 
67 

14/16 Quadriplegia, facial 
diplegia, abducens 
palsy, bulbar palsy, 
distal pinprick 
impairment 

Axonal 3 345 Negative MRCSS 4 
Respiratory 
failure 

IVIG, PE, MV Bed- 
bound 

F/ 
53 

12/16 Quadriplegia, facial 
diplegia, right facial 
and tongue numbness, 
lower limb pinprick 
and vibration 
impairment 

Demyelinating 3 120 Negative MRCSS 8 
Respiratory 
failure 

IVIg, MV 

F/ 
68 

14/18 Quadriplegia, facial 
diplegia, bulbar palsy, 
limb numbness 

Demyelinating 4 75 Negative MRCSS 7 
Respiratory 
failure 

IVIg, MV 

M/ 
70 

11/NA Quadriparesis, facial 
diplegia, limb 
numbness, bulbar 
palsy 

Demyelinating NA NA NA MRCSS 24 
Respiratory 
failure 

IVIg, MV 

F/ 
69 

12/NA Quadriplegia, facial 
diplegia, 
ophthalmoplegia, 
bulbar palsy, distal 
limb numbness 

Demyelinating NA NA NA MRCSS 30 IVIG, PE 

F/ 
69 

13/NA Quadriplegia, facial 
diplegia, bulbar palsy, 
distal limb numbness 

Demyelinating 2 83 NA MRCSS 2 
Respiratory 
failure 

IVIG, MV 

Allen et al. (4) UK M/ 
54 

12/16 Distal dysesthesia, 
facial diplegia 

Normal (limb) 19 163 Negative MRCSS 60 Oral steroid NA 

M/ 
20 

22/23 Distal dysesthesia, 
facial diplegia 

Normal (limb) 14 123 Negative MRCSS 60 Oral steroid 

M/ 
57 

11/23 Back pain, facial 
diplegia, distal 
dysesthesia 

Normal (limb) 8 247 Negative MRC 3–4 
(UL), 4–5 
(LL) 

IVIg 

M/ 
55 

22/31 Lower limb 
paresthesia and 
numbness, facial 
diplegia 

NA 4 89 Negative MRCSS 60 None 

Patel et al. (1) M/ 
37 

14/NA Distal paresthesia, 
quadriparesis 

Axonal <1 177 NA MRCSS 44 IVIg Slow 
recovery 

Azam et al. (1) M/ 
67 

15/NA Quadriparesis with 
facial diplegia 

Demyelinating 0 390 Negative MRC NA 
(UL), 3 (LL) 
SIADH 

IVIg Partial 
recovery 

Min et al. (2) South 
Korea 

M/ 
58 

3/12 Distal dysesthesia 
(clinically pure 
sensory) 

Demyelinating 2 70 Negative MRCSS 60 
Severe pain 

Neuropathic 
pain drugs 

Partial 
response 

F/ 
37 

4/16 Normal NA NA Negative 

Abbreviations: NCS, nerve conduction study; CSF, cerebrospinal fluid; F, female; M, male; NA, not available; WBC, white blood cell; MRCSS, medical research council 
sum score; MRC, medical research council; UL, upper limb; LL, lower limb; SIADH, syndrome of inappropriate antidiuretic hormone secretion; IVIG, intravenous 
immunoglobulin; MV, mechanical ventilation; PE, plasma exchange. 
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Classically, acute flaccid weakness is required to be diagnosed with 
GBS (Asbury and Cornblath, 1990; Fokke et al., 2014). However, pa
tients can also present with atypical features or variant forms (Leonhard 
et al., 2019). Uncini and Yuki suggested an operative definition of sen
sory GBS, an acute monophasic polyneuropathy with exclusive sensory 
symptoms and signs that reach a nadir within six weeks without alter
native cause (Uncini and Yuki, 2012). Although albuminocytologic 
dissociation or ganglioside antibodies strongly support the diagnosis, 
they are not prerequisites. Sensory GBS can be further categorized into 
three subtypes according to the involved fiber types and locations: acute 
sensory demyelinating polyneuropathy (demyelination on NCS); acute 
sensory large fiber axonopathy-ganglionopathy (GD1b antibodies); and 
acute sensory small fiber neuropathy-ganglionopathy (normal NCS but 
small fiber denervation in skin biopsy). Patient 1 would represent acute 
sensory demyelinating polyneuropathy, and Patient 2 acute small fiber 
neuropathy-ganglionopathy. 

At the time of writing this writing, there are 13 published cases of 
GBS after the ChAdOx1 vaccine reported in the United Kingdom or India 
(Allen et al., 2021, Azam and Khalil, 2021, Maramattom et al., 2021, 
Patel et al., 2021). Table 1 summarizes all 15 patients, including the 
present report. All patients developed GBS after the first dose with a 
latency between 3 and 22 days. All but one showed rare phenotypes such 
as distal paresthesia with facial diplegia or quadriparesis with facial 
diplegia. There were marked differences in sex ratio and clinical patterns 
across countries, possibly attributed to genetic background. All tested 
patients revealed elevated CSF proteins, while three also showed 
lymphocytosis. Limb NCS revealed demyelinating features in eight pa
tients, axonal in two, and was normal in four. Antibodies against gan
gliosides, frequently found in axonal GBS subtypes, were negative in 
every tested patient (0/10). Ten patients received IVIg and/or plasma 
exchange, mostly leading to a partial recovery. 

A causal relationship between COVID-19 and GBS is under active 
discussion since the first report on their co-occurrence in January 2020 
(Dalakas, 2020; Fantini et al., 2020; Keddie et al., 2021; Palaiodimou 
et al., 2021; Zhao et al., 2020). A large-scale population-based study 
reported that the incidence of the whole GBS did not increase during the 
pandemic (Keddie et al., 2021). However, a recent meta-analysis based 
on 11 cohorts found an increased risk of the demyelinating subtype in 
COVID-19 patients compared to non-infected or historical counterparts 
(Palaiodimou et al., 2021). 

Conversely, little is known about the relationship between COVID-19 
vaccines and GBS. No GBS occurred in clinical trials of COVID-19 vac
cines, except for one among 19,630 Ad26.COV2⋅S recipients (Baden 
et al., 2021; Heath et al., 2021; Polack et al., 2020; Sadoff et al., 2021; 
Voysey et al., 2021). Although rare, we propose a possible association 
between GBS and the ChAdOx1 vaccine. The frequent observation of 
rare variants and demyelinating subtypes, which increased in COVID-19 
GBS, further supports our suspicion. However, the pathophysiological 
mechanisms underlying this vaccine-associated neuro-autoimmunity 
remain elusive; whether antibodies against the spike protein could cross- 
react with peripheral nerve constituents is controversial (Dalakas, 2020, 
Fantini et al., 2020, Keddie et al., 2021). As for DNA vaccines (ChAdOx1 
and Ad26.COV2⋅S), adenovirus vectors or aberrant splice variants may 
be alternative sources of autoimmunity (Almuqrin et al., 2021). Further 
mechanistic research is needed to demonstrate the pathophysiology of 
post-COVID-19 vaccine-GBS and whether a particular vaccine is asso
ciated with the increased risk. 

4. Conclusion 

We describe two cases of sensory GBS after ChAdOx1 vaccinations 
and provide a literature review on 12 additional GBS cases following the 
ChAdOx1 vaccine, highlighting their unique clinical and paraclinical 
features. Vigilance of GBS following COVID-19 vaccinations is manda
tory to determine a causal association. Moreover, it would be interesting 
to investigate the overall outcomes of the post-COVID-19 vaccine-GBS 

and if there are populations at an increased risk. 
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