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A B S T R A C T   

Due to COVID-19, demand for Chest Radiographs (CXRs) have increased exponentially. There
fore, we present a novel fully automatic modified Attention U-Net (CXAU-Net) multi-class seg
mentation deep model that can detect common findings of COVID-19 in CXR images. The 
architectural design of this model includes three novelties: first, an Attention U-net model with 
channel and spatial attention blocks is designed that precisely localize multiple pathologies; 
second, dilated convolution applied improves the sensitivity of the model to foreground pixels 
with additional receptive fields valuation, and third a newly proposed hybrid loss function 
combines both area and size information for optimizing model. The proposed model achieves 
average accuracy, DSC, and Jaccard index scores of 0.951, 0.993, 0.984, and 0.921, 0.985, 0.973 
for image-based and patch-based approaches respectively for multi-class segmentation on Chest 
X-ray 14 dataset. Also, average DSC and Jaccard index scores of 0.998, 0.989 are achieved for 
binary-class segmentation on the Japanese Society of Radiological Technology (JSRT) CXR 
dataset. These results illustrate that the proposed model outperformed the state-of-the-art seg
mentation methods.   

1. Introduction 

In the year 2020, Coronavirus Disease 2019 (COVID-19) a serious health issue badly affected the lives of people worldwide. The 
Reverse Transcription Polymerase Chain Reaction (RTPCR) clinical test and CXR the first-line screening tool are mainly used for early 
diagnosis of this disease. Mostly, COVID-19 CXR images are observed with lung abnormalities such as Ground Glass opacities (GGOs), 
consolidation, cardiomegaly, and infiltrates [1]. Fig. 1 demonstrates the structural information of various lung abnormalities. It can be 
observed from Fig. 1 that increased density area in consolidation due to alveoli filled with fluid, pus, etc. result in ill-defined opacities 
and indicate pneumonia disease. The reticular opacities due to interstitial pattern causes pulmonary edema, mass or nodule lesion due 
to fluid-filled sac may result into lung cancer and atelectasis due to collapsed lungs may result in pneumothorax problem. Similarly, 
cardiomegaly is idiopathic that results in enlargement of the heart show symptoms like chest pain, edema, etc. and infiltration results 
when substance denser than air lingers within the lungs may result in tuberculosis [2]. Reading a CXR image require high-level 
knowledge of radiologists, years of expertise in this field, and needs more time for interpretation. Although, there are numerous 
research systems available that focus on segmenting specific pathologies such as nodules, tuberculosis in CXR images. But there is a 
need of designing an architecture embedded with expert domain knowledge that can efficiently localize and segment multi-class 
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abnormalities of COVID-19 in CXR images. 
This has motivated us to propose a novel Deep Learning (DL) segmentation method that can automatically localize and segment 

lung abnormalities specifically GGOs, consolidation, cardiomegaly, and infiltrates because these abnormalities are inherently inter
related. This trained system can assist radiologists to detect COVID-19 findings easily, and fight against this pandemic, and help in 
making correct decisions for further treatment. 

The main strategies used in the proposed CXAU-Net model are summarized as:  

• We modified the architecture of the Attention U-Net model that extracts rich image features and structures along lung field 
boundaries. This model uses attention blocks in the encoder and decoder architecture of U-Net. These blocks apply channel and 
spatial attention that provides information of small areas i.e., low-level feature maps, that enables this architecture to detect 
multiple lung pathologies.  

• We apply dilated convolution in all layers that expands receptive field i.e., the field of the convolution kernel, and maintains feature 
maps spatial dimension without increasing parameters of the model. This process extracts multiscale features through multiple 
convolution paths and improves the sensitivity of the model.  

• We introduced a hybrid loss function based on Active Contour (AC) loss and Dice Similarity Coefficient (DSC) loss in this model. 
This loss function concatenates pixel and geometrical information for optimizing, updating weights and reducing error of seg
mentation model.  

• Despite hybrid loss function, this model is trained and tested on different loss functions such as Categorical Cross-Entropy (CE), 
Tversky loss, and DSC loss functions. Out of all these loss functions, the hybrid loss function shows the highest DSC and overlap 
scores due to better control on small-scale edges and regions of the segmentation contours. 

• Moreover, this model used different training strategies and applied both image-based and patch-based approaches for the seg
mentation of sub-regions and detection of multiple lung pathologies.  

• We also checked the convergence of the proposed model using distinct activation functions like Rectified Linear Unit (ReLU), 
Exponential Linear Unit (ELU), Scaled Exponential Linear Unit (SeLU), Leaky ReLU, and Parametric ReLU.  

• In addition to multi-class segmentation on the COVID-19 dataset, this model enables to perform of binary-class segmentation of 
lung fields on the JSRT dataset. 

The rest of this paper is organized as follows: Section 2, introduces related work on CXR images in tabular form. Section 3 describes 
the methodology of the proposed architecture. In Section 4 the experimental results are evaluated and compared with other state-of- 
the-art methods. At last, Section 5 concludes this paper. 

2. Related work 

In the literature, many attempts are conducted that segment CXR images using DL methods but their solutions vary as per their 
toolsets and targets. In this section, existing DL methods for the segmentation of medical images particularly CXR images and COVID- 
19 images are presented. 

The most commonly used architecture in medical image segmentation is U-Net which is introduced by Ronneberger et al. [3]. It 
consists of contraction path built with convolutional and pooling layers that extracts high-level features which are concatenated with 
low-level features in the expansion path. A modified encoder-decoder Convolutional Neural Network (CNN) is designed by Kalinovsky 
et al. [4] with Broyden-Fletcher-Goldfrab-Shanno (L-BFGS) algorithm which optimized lung segmentation model. Although, DSC score 
of 96.2% is achieved but model needs to be validated on different dataset as same dataset is used for training and testing the model. 
Some of the important DL-based methods utilized for the segmentation of CXR images mentioned in the literature can be found in  
Table 1. These methods have utilized multiple processing layers with linear and non-linear transformations for the abstraction of 

Fig. 1. Visual appearance of various lung abnormalities [2].  
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multiple-level features. Further, a literature review on studies regarding the detection of COVID-19 using CXR and CT images is shown 
in Table 2. The study illustrates the importance of DL-based image analysis for detecting COVID-19 infections. Most of these cases 
employed CXR as the primary screening method but cases with severe GGOs and consolidation used CT image analysis. Although, 
above mentioned attempts have succeeded in showing promising results for segmentation tasks. But, still, there is a crucial need to 
explore a new horizon because factors like overfitting due to the use of small datasets, vanishing gradient problem, dying ReLU 
problem, etc., affect the performance of DL-based models. Motivated from these challenges in existing segmentation networks in the 
literature review, we adapted Attention U-Net architecture and applied different training strategies intending to improve results for 
detection and segmentation of different lung abnormalities. 

3. Methods 

This section explains in detail all the steps that are used for the design of the proposed CXAU-Net model for segmentation and 
detection of COVID-19 chest pathologies. First, patches of CXR images are extracted from the COVID-19 dataset. Then, the proposed 

Table 1 
DL based methods for segmentation of CXR images.  

Approaches Strategy Dataset & Results Pros/Cons 

Novikov et al.  
[5] 

Modified U- Net JSRT CXR dataset Improvement in experimental results can be 
achieved using more dataset Overlap: lungs 95%, heart 88.2% 

and clavicles 86.8% 
Wang [6] Multi-task Fully Convolutional Networks JSRT CXR dataset More dataset can be used to improve the 

performance of the model Overlap: Lungs 96% heart 94.3% 
and clavicles 90.6% 

Arbabshirani 
et al. [7] 

Multi-scale CNN PACS and JSRT dataset The patch-based approach applied but 
performance is low in comparison to other 
methods 

Overlap: 91% 

Jiang et al. [8] CNN model with Recurrent layers JSRT Dataset Only quantitative results are given 
Quantitative results not given 

Xie et al. [9] Multi-view knowledge-based collaborative (MV-KBC) 
model using ResNet-50 and U-Net model 

LIDC-IDRI dataset Low-performance results and Patch-based 
approach applied DSC: 80.23% 

Eslami et al. [10] Mukti-task organ segmentation using conditional 
Generative Adversarial Network (GAN) pix2pix 
network 

JSRT dataset Outperforms other multi-class segmentation 
methods Overlap:98.4%, 

DSC: 99.2% 
Park et al. [11] Deep CNN model for segmentation of Diffuse 

Interstitial Lung Diseases (DILD) 
High-Resolution Computed 
Tomography (HRCT) dataset 

The model is applied to different diseases. 

Overlap: 96.76%, 
DSC: 98.84% 

Gaál et al. [12] Adversarial Attention U-Net model for lung 
segmentation 

JSRT and MC dataset Good performance for lung segmentation 
DSC: 97.5% 

Wang et al. [13] Multitask Dense U-Net (MDU-Net) model for rib and 
clavicle segmentation 

CXR dataset A small dataset of only 88 CXR images used, no 
data extension method is used DSC: 88.38%  

Table 2 
DL based methods for segmentation of COVID-19 images.  

Approaches Strategy Dataset & Results Pros/Cons 

Chen et al.  
[14] 

Residual Attention U-Net for multi-class segmentation of 
COVID-19 CT images 

CT images Achieved low DSC score 
DSC: 83% 

Oh et al. [15] Fully Convolutional (FC) DenseNet103 for segmentation of 
lungs and heart 

JSRT and MC dataset Poor segmentation results in images with severe 
consolidation and opacities abnormalities DSC:84.4% 

Alom et al.  
[16] 

NABLA-3 built with encoding and decoding units for 
segmentation of chest regions 

JSRT and MC dataset The model needs to train and tested on more 
dataset Overlap: 86.50% 

DSC:88.46% 
Amyar et al.  

[17] 
Multi-task DL model with two decoders for segmentation 
and image reconstruction 

CT images, DSC: 88.0% Modification required in segmentation network 

Qiu et al. [18] MiniSeg DL model made of Attentive hierarchical Spatial 
Pyramid (AHSP) module for segmentation of COVID-19 data 

COVID-19 CT dataset The model achieves results with high speed and 
high efficiency Speed: 516.3 fps, 

DSC:80.06% 
Teixeira et al.  

[19] 
U-Net architecture for lung segmentation JSRT, MC, and Covid-19 

dataset, DSC:98.2% 
Poor performance for segmented images 

Kim et al. [20] DL model for segmentation of four regions of lung CXRs of 
COVID-19 images 

RSNA pneumonia and 
JSRT dataset DSC:90% 

The model can be evaluated from multiple sites 

Chen et al.  
[21] 

U-Net++ DL model applied for segmentation of COVID-19 
pneumonia 

CT dataset, Accuracy: 
92.59% 

Useful resource for fighting COVID-19 
pneumonia 

Shan et al.  
[22] 

COVID-19 infection regions segmentation using VB-Net CT dataset, DSC:91.6% Generalization of the model is missing  
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CXAU-Net is constructed, and trained, and tested for multi-class and binary-class segmentation. Table 3 provides detail of datasets used 
by this model. 

3.1. Datasets 

The easily accessible four CXR datasets used for multi-class and binary-class segmentation and detection of chest pathologies are as 
follows:  

1) COVID-19 Dataset: For the study of multi-class segmentation and detection of COVID infections, we selected the COVID-19 dataset 
[23] which contains about 105 CXR images of COVID positive patients from different countries. All these images are resized to 
256×256×3 pixels and are in Portable Network Graphics (PNG) format. These images show radiological signs of COVID-19 
conditions such as GGOs, consolidation, cardiomegaly, and infiltrates. An expert thoracic radiologist generated a mask of these 
images using label me python library for image annotation according to RTOG1106 guidelines.  

2) NLM-The Shenzhen and Montgomery County (MC) CXR Datasets: It consists of 800 CXR images with 394 cases of tuberculosis 
and 406 normal cases. Out of these 800 images, gold standard lung segmentation masks of only 704 images are available, so the rest 
of the 96 images are discarded during the training of the proposed CXAU-Net model [24,25].  

3) ChestX-ray14 and Japanese Society of Radiological Technology (JSRT) Datasets: To test the performance of this model for 
multi-class segmentation, we used publicly available Chest X-ray14 dataset [26]. It consists of a total of 640 images with 160 
images of each case i.e., GGOs, consolidation, cardiomegaly, and infiltrates. This model is separately tested for binary-class seg
mentation with JSRT CXR dataset [27]. It consists of 247 images with both lung and heart segmentation masks. All these images are 
also resized to 256×256×1 pixels. 

3.2. Pre-processing operations 

The low contrast CXR images are improved by using Contrast Limited Adaptive Histogram Equalization (CLAHE) method [28]. This 
technique adaptively equalizes intensity values of the image in a range of [0,255] such that the Cumulative Distribution Function 
(CDF) reaches close to CDF of the uniform distribution. The quality of these images is further enhanced through gamma correction 
operation and using a gamma of value 0.5. Also, to achieve high performance of the proposed model, the COVID-19 dataset is increased 
8 times using data augmentation. We used the albumentations python library for augmenting these images. The augmented images and 
their corresponding masks are obtained by performing transformations such as flip, random contrast, transpose, crop transforms, 
elastic transform, and grid distortion. 

3.3. Patch extraction 

Since the proposed CXAU-Net model is also implemented with the patch-based approach for multi-class segmentation of COVID 
infections. So, patches of the cropped left lung and right lung ROIs are extracted based on their relative positions. The extracted 1680 
ROIs patches are then resized to 128×128×3 pixels and used for training and testing the model. This approach helps the model to focus 
on small regions and generate ground-truth segmentations. As the model runs through each patch and also through overlapping 
patches, it decreases the processing speed of the model. But the resulting outputs detect and segment COVID-19 conditions of GGOs, 
consolidation, cardiomegaly, and infiltrates effectively. 

3.4. Proposed method 

In this paper, a CNN architecture is implemented after considering a balance between network size and training data. The detail of 
the architecture used for multi-class and binary-class segmentation is described in the following sub-sections. 

Table 3 
Detail of datasets used by the proposed CXAU-Net model.  

Segmentation type Multi-class Segmentation Binary-class Segmentation 

Approach used Image-based Patch-based Image-based 

Dataset type Training 
dataset 

Testing dataset Training 
dataset 

Testing dataset Training dataset Testing 
Dataset 

Dataset COVID-19 
dataset 

Chest X-ray 14 dataset COVID-19 
dataset 

Chest X-ray 14 dataset NLM-China and MC 
CXR datasets 

JSRT dataset 

Number of Images 105 images 640 images with 160 
images of each case 

210 patches 640 patches with 160 
patches of each case 

704 images 247 images 

Number of Augmented 
Images used 

840 images – 1680 patches – 5632 images – 

Size of images 256×256×3 256×256×3 128×128×3 128×128×3 256×256×1 256×256×1  
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3.4.1. Multi-class segmentation 
The proposed CXAU-Net model modifies the Attention U-Net model for the segmentation task. The original Attention U-Net model 

consists of two paths i.e., encoder and decoder also known as contracting and expanding paths respectively. The contracting path 
extracts low-level features from the input image and its architecture repeatedly applies two 3×3 convolution layers followed by 
nonlinear activation function ReLU and 2×2 max-pooling operations. After each down sampling operation in the contracting path, 
image size is reduced while the number of feature channels doubles. The symmetrical architecture is applied in the decoder with the 
difference that the number of feature channels is halved during up sampling operations. The decoder side concatenates the extracted 
high-resolution low-level features of down sampling operations with high-level features of up sampling operations that produce more 
accurate segmentation masks [3]. However, the modified Attention U-Net model encoder side consists of 5 blocks of dilated convo
lution layers with dilation factors of 1,2,4,8, and 16 respectively, followed by ReLU activation function and 2×2 max-pooling oper
ations as shown in Fig. 2. The advantage of using dilated convolution with x dilation rate is that it increases filter size by incorporating 

Fig. 2. Block consists of dilated convolutions with x dilation rate followed by ReLU and 2×2 max-pooling operation, used in the CXRAU-Net model.  

Fig. 3. Schematic diagram of Attention Gate (AG) consists of input features xl and gating signal g processed by both activation functions and 
ascended by attention coefficients αi, provide spatial and contextual information of the salient regions [30]. 

Fig. 4. Architecture of the proposed CXAU-Net model for multi-class segmentation with encoder and decoder blocks, channel and spatial attention 
with (AGs). Output image indicate the medical condition of cardiomegaly by yellow mask, GGOs with red, consolidation with green, and infiltrate 
with sky blue masks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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x-1 zeros between consecutive filter values. This increases receptive fields of the network and thus extracts more discriminative 
high-level features that represent the better performance of the network [29]. In this model, the decoder side incorporates soft additive 
AGs [30] that perform element-wise weighted aggregation of outputs from the previous two layers of the encoder network. These 
self-learning weights are implemented by convolutional layers and are applied to feature values of different positions. 

The resultant vector is followed by the ReLU activation function and is up sampled to original dimensions using bilinear inter
polation. This step is repeated for each output value from 5 blocks of the encoder network as shown in Fig. 4. The AG as shown in Fig. 3 
which preserves only salient features from image pixel values by computing multiplication of input feature maps with multi- 
dimensional attention coefficients αi for segmenting multiple classes. Where, gating vector g Є Fg identifies contextual information 
and high-dimensional local features xl which are concatenated using channel-wise 1*1*1 convolution for input tensors. This linear 
transformation is followed by non-linear ReLU and sigmoid activation function which normalizes attention coefficients at the output. 
The AGs capture non-linear low-level inter-spatial features such as contours, edges of chest abnormality areas and ignores the irrel
evant ones, and increases the generalization power of the model. Mathematically, the attention mechanism is represented in Eq. 1: 

αi = σ2
(
ψ
(
σ
(
Wxxl + Wgg

)
+ bg

) )
(1)  

where σ and σ2 are ReLU and sigmoid activation functions, ψ is intermediate space, Wx and Wg are convolutions for input tensor and bg 
is bias term. 

Also, the last layer of the encoder network of this model incorporates a channel attention module [31]. It performs aggregation 
operation on complex features extracted from different channels, similar to spatial features that are extracted from different layers of 
the encoder network. Thus, spatial and channel attention processes tend to segment multiple abnormal areas with aligned weights and 
drops down the regions with unaligned weights in the encoder-decoder network. 

3.4.2. Binary-class segmentation 
The proposed CXAU-Net model is authenticated by performing binary-class segmentation of lung fields i.e., right and left lungs in 

CXR images. The CXAU-Net model is trained on gray-scale 704 images and masks of NLM Shenzhen and MC CXR datasets of tuber
culosis and is resized to 256 ×256 pixels. Since gray-scale images have only one channel, so only the spatial attention module performs 
aggregation operations. This module concatenates extracted low-level spatial features from encoder network with up sampling high- 

Fig. 5. Architecture of the proposed CXAU-Net model for binary-class segmentation with encoder and decoder blocks, spatial attention with (AGs). 
Output image segments left and right lung fields with yellow masks and background with the purple region. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Architecture of the proposed CXAU-Net model for patch-based multi-class segmentation. Given input are patches of ROI i.e., left and right 
lung fields, and provide output with masks of ROI indicating cardiomegaly by yellow mask, GGOs with red, consolidation with green, and infiltrate 
with sky blue masks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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level features from decoder network and perform segmentation of lung fields as shown in Fig. 4. (Fig. 5). 

3.4.3. Patch-based multi-class segmentation 
In addition to multi-class and binary-class segmentation, the network is simulated on more data by extracting patches of left and 

right lungs from full-scale images of the COVID-19 dataset, so that it can better learn characteristics of chest abnormalities is shown in  
Fig. 6. The 2D patches of size 128×128 pixels with three channels are obtained by crop and cut operation. The proposed CXRAU-Net 
architecture analyses additional local information i.e., ROIs marked by the radiologist on these patches, and inefficient manner 
characterize and localize dense predictions such as GGOs, cardiomegaly, consolidation, and infiltrates in CXR images. To avoid 
overfitting of the model, 1680 patches are generated by applying data augmentation on training patches. The model is trained in an 
end-to-end manner that minimizes cross-entropy loss. Then, tested on unseen 680 patches obtained from the ChestX-ray14 dataset and 
thus segments all the COVID-19 infections effectively. 

3.5. Loss functions 

The loss or cost function plays a significant role in optimizing the model and providing high-precision segmentation results. Here, a 
brief review of different loss functions and newly proposed hybrid loss function used in the proposed CXAU-Net model is given below:  

1) Categorical Cross Entropy (CCE) Loss Function: It is most commonly used loss function for classification and segmentation tasks 
[3]. It is expressed as: 

CCE Loss = −
∑n

i=1

⎛

⎜
⎜
⎝ailog

esp

∑n

i
esp

⎞

⎟
⎟
⎠ (2)  

where n is the number of classes, and ai is actual probabilities for each class and sp is the gradient for each predicted positive class  
2) Dice Similarity Coefficient (DSC) Loss Function: DSC calculates pixel-wise intersection-over-union between actual and predicted 

segmentation masks. It can be expressed as: 

DSC Loss(a, p) = 1 − 2 ×

⎛

⎜
⎜
⎝

∑n

i=1
ai × pi

∑n

i=1
ai + pi

⎞

⎟
⎟
⎠ (3)  

where n is the number of classes and ai and pi are actual and predicted probabilities for each class  
3) Tversky Loss Function: In medical images, models often get biased to background pixels due to class-imbalance problems. To 

avoid such issues, Tversky loss weighs more on False Negatives (FNs) than False Positives (FPs) during training, unlike DSC loss that 
weighs equally FNs and FPs. Thus, Tversky loss function enables network to detect boundaries of small regions preciously [32]. The 
mathematical expression for Tversky loss is: 

Tversky Loss (α, β) =

∑n

i=1
x × y

∑n

i=1
x × y + α

∑n

i=1
x × y′

+ β
∑n

i=1
x′
× y

(4)  

where x and x’s are the probability of pixels to be an infection and non-infection respectively and y is 1 for pixels with infection and 
0 for pixels that are not infected and vice versa for y′. The α and β are weighed for FP and FN respectively. 

Although CE, DSC, and Tversky losses tend to produce improved segmentation results but they do not consider geometrical 
information of regions. So, a novel hybrid loss function is introduced that incorporates semantic information i.e., size and area 
information for every pixel in an image, as well as similarity and diversity information of predicted and ground-truth masks.  

4) Hybrid Loss Function: A new hybrid loss function is introduced by combining AC and DSC losses, which back-propagates and 
optimizes weights of all layers and measures the segmentation error. This loss function aims to precisely detect small region 
boundaries and segment ROIs accurately. A brief review of AC loss function is given as: 

3.5.1. Active contour (AC) loss function 
The concept behind the AC loss function is to minimize the global energy function of the Active Contour Without Edge (ACWE) 

model. The AC loss function applies boundaries length term, inside and outside region terms, and thus predicts irregular edges and 
contours of different shapes [33]. The area and length functions used are defined as: 

Region =

⃒
⃒
⃒
⃒
⃒

∑i=1, j=1

Ω
ui,j ×

(
c1 − vi,j

)2

⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒

∑i=1, j=1

Ω

(
1 − ui,j

)
×
(
c2 − vi,j

)2

⃒
⃒
⃒
⃒
⃒

(5) 

R. Arora et al.                                                                                                                                                                                                          



Optik 246 (2021) 167780

8

Length =
∑i=1, j=1

Ω

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒
(
∇uxi,j

)2
+
(
∇uyi,j

)2
⃒
⃒
⃒+ ϵ

√

(6)  

where u and v, indicates predicted and actual image respectively. The signs xi, yj, Ω symbolizes pixel coordinates in horizontal, 
vertical, and all directions respectively. The parameters c1 and c2 indicate inside energy and outside energy terms of regions 
respectively. 

The length term includes the square root of gradients of predicted pixels in the horizontal and vertical direction with ε > 0 which 
avoids it to be 0. The hybrid loss function is defined as: 

Hybrid Loss Function = AC Loss + DSC Loss (7)    

5) Other Loss Function: Weighted cross-entropy loss calculates the real error for each class based on the cross-entropy function and 
weights of each class. 

WCEL =
∑n

i=1
wti × (pti) (8) 

Focal loss calculates loss for object detection tasks specifically for imbalance classes using a modulating factor and focusing 
parameter with cross-entropy function. 

FL(pt) = − αt(1 − pt)
γlog(pt) (9) 

The Log cosh dice loss calculates loss by utilizing the log-cosh approach for regression problems with features of dice loss. 

LL = logcosh( DSC Loss) (10)  

4. Results and discussion 

This section presents a quantitative and qualitative analysis of the proposed CXRAU-Net model for both multi-class and binary-class 
segmentation. The subsections report about the performance of this model on both image-based and patch-based approaches and also 
compares it with four state-of-the-art segmentation methods i.e., U-Net, Link-Net, FCN, and FPN. All the experiments are performed on 
a system equipped with Intel Xeon W-2255@3.7 GHz CPU and NVIDIA GPU Quadro P5000 with 16 GB memory using Keras on top of 
TensorFlow software packages. 

4.1. Evaluation metrics 

The performance of the CXRAU-Net model is evaluated via metrics accuracy, DSC score, and Jaccard index that are defined in  
Table 4. Where True Positive (TP) indicates a case truly with the abnormality, True Negative (TN) is a case truly without abnormality, 
FP is a case falsely considered as an abnormality but normal and FN is a case falsely considered as normal but abnormal. Although, the 
value for all the above-mentioned metrics ranges in [0,1] it should have a value close to 1 for perfect segmentation results. 

4.2. Multi-class segmentation with hybrid loss function 

As mentioned above, the proposed CXRAU-Net model is evaluated on both image-based and patch-based approaches. The 
experimental results of both schemes are reported as: 

4.2.1. Image-based multi-class segmentation 
First training of the proposed CXRAU-Net model and four other state-of-the-art segmentation models is done on full-scale COVID-19 

dataset images. All the models are trained for 500 epochs with a batch size of 5 and optimized with Adam optimizer using a learning 
rate of 0.0001. Then, performance of all the trained models is checked and validated on full-scale unseen testing images i.e., ChestX- 
ray14 dataset. The segmented results of randomly selected 8 test images for all the models that show regions with abnormalities i.e., 
GGOs, cardiomegaly, consolidation and infiltrates are visualized in Fig. 7. The predicted regions are obtained after using an empirically 
found threshold value of 0.3 on pixels of the test images. A comparison between the proposed CXRAU-Net model and four segmen
tation models is provided in Table 5 after finding statistical results in terms of accuracy, DSC score, and Jaccard index values on the test 

Table 4 
Detail of metrics used by the proposed CXAU-Net model.  

Metrics Description 

Accuracy Accuracy is the ratio of correct predictions to the total number of predictions. A = (TP+TN) /(TP+TN+FP+FN) 
DSC DSC-score measures similarity between target and predicted masks. DSC = (2TP) /(2TP+FP+FN) 
Jaccard Index Jaccard index is the intersection-over-union of the target mask and prediction mask. Jaccard index = (TP) /(TP+FP+FN)  
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Fig. 7. Visual segmentation results, columns left to right are (a) input images, (b) ground truths and (c)–(g) results by proposed CXRAU-Net model, U-Net, Link-Net, FPN, and FCN models respectively. 
Output patches obtained indicate the medical condition of cardiomegaly by yellow mask, GGOs with red, consolidation with green and infiltrate with sky blue masks. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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dataset. Also, a graphical analysis of all these models is presented by bar graph in Fig. 8 considering values of evaluation metrics from 
Table 5. These results clearly show that the proposed CXRAU-Net model outperformed the four state-of-the-art segmentation models. 

Another fair comparison is shown in Table 6 between CXRAU-Net model and other multi-class segmentation models in the liter
ature which are designed for CXR image datasets obtained from different sources. The best score of DSC and Jaccard index with values 
99.3% and 98.4% respectively are achieved by the proposed CXRAU-Net model. Also, Table 7 shows the accuracy score of the proposed 
CXRAU-Net model and other models that applied COVID-19 datasets. The accuracy score of 95.15% depicts the comparable perfor
mance of the proposed method with other methods. 

Table 5 
Summary of evaluation metrics of the proposed CXAU-Net model with different segmentation models.  

Methods/Metrics Accuracy DSC Jaccard Index 

U-Net model [8]  0.9402  0.9820  0.959 
Link-Net model [34]  0.8053  0.4048  0.29 
FPN model [35]  0.9197  0.8859  0.40 
FCN model [36]  0.9268  0.9584  0.862 
Proposed CXRAU-Net model  0.95156  0.9932  0.984  

0
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1.2

Accuracy DSC Jaccard
Index

MULTI-CLASS SEGMENTATION 
ON TEST DATASET

U-Net model
Link-Net model
FPN model
FCN model

Fig. 8. Comparison of all models to a range of accuracy, DSC, and Jaccard index values (x-axis) on ChestX-Ray14 test dataset for multi-class 
segmentation. 

Table 6 
Comparison of the proposed CXAU-Net model with other multi-class segmentation models.  

Methods/Metrics CXR image dataset DSC Jaccard Index 

U-Net [3] JSRT dataset  0.983 0.966 
Pix2pix MTdG [10] JSRT dataset  0.992 0.984 
Inverted Net [37] JSRT dataset  0.941 0.89 
Adv. ATTN [38] JSRT dataset  0.983 – 
MDU-Net [13] Constructed own CXR image dataset  0.913 0.838 
Proposed CXRAU-Net COVID-19, Chest X-ray 14 dataset  0.993 0.98  

Table 7 
Comparison of the proposed CXAU-Net model with other segmentation models applied COVID-19 dataset.  

Study No. of COVID-19 images Method applied Accuracy 

Ioannis et al. [39]  224 VGG-19  0.9348 
Wang and Wong [40]  53 COVID-Net  0.924 
Sethy and Behera [41]  25 ResNet50+SVM  0.9538 
Hemdan et al. [42]  25 COVIDX-Net  0.90 
Proposed Study  840 CXRAU-Net  0.9515  
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Fig. 9. Visual patch-based segmentation results, columns left to right are (a) input images, (b) ground truths and (c)–(g) are results by proposed CXRAU-Net model, U-Net, Link-Net, FPN, and FCN 
models respectively. Output patches obtained indicate the medical condition of cardiomegaly by yellow mask, GGOs with red, consolidation with green and infiltrate with sky blue masks. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4.2.2. Patch-based multi-class segmentation 
Like, image-based approach, all models are individually trained on patches of the COVID-19 dataset. All the models are trained for 

500 epochs with a batch size of 5 and optimized with Adam optimizer using a learning rate of 0.0001. The patch data is also separately 
labelled by the expert radiologist. The masks are then generated from labelled patch data and utilized during the training of these 
models. Then, experimental results of all trained models are obtained on patches of unseen Chest X-ray 14 test dataset. The segmented 
regions with abnormalities for all the models on randomly selected 8 patches of the test set are shown in Fig. 9. The predicted regions in 
patch data are obtained using a threshold value of 0.3 on pixels of the patches of the test set. Table 8 summarizes statistical information 
about all the above-mentioned models in terms of evaluation metrics. And a bar graph of these results is shown in Fig. 10. 

As illustrated in Table 8 and Fig. 9 the proposed CXRAU-Net model achieves superior multi-class segmentation results on patches of 
the test set in comparison to four state-of-the-art segmentation models. But in comparison to image-based approach prediction results 
of these nonoverlapped patches are fewer and affected by less differentiated abnormalities i.e., GGOs and consolidation, and global and 
local features of other dense classes like infiltrates. It is also affected by misclassified areas like mid axillary, midclavicular, and axilla 
inside patches with conditions like GGOs, consolidation, cardiomegaly. Moreover, another comparison is shown in Table 9 between 
the proposed CXRAU-Net model and patch-based segmentation models in the literature which are trained and tested on images of 
different modalities and different datasets. The best Jaccard index value of 0.95 is obtained by the proposed model in comparison to 
other models. However, the accuracy obtained is somehow less than [44]. But accuracy is not the best measure for segmentation 
models, especially for class imbalanced datasets. The results illustrate that the proposed model is capable of extracting high-resolution 
global and edge features and thus has high confidence in localizing and segmenting small regions of infiltrates abnormality, which is a 
more challenging task due to large visual variations. While other models like U-Net have drawbacks of over-detection due to repeated 
transfer of low-resolution information in feature maps with skip connections and show greater uncertainty in learning edge infor
mation, which results in poor network decision at the boundaries during cardiomegaly and consolidation segmentation. The Link-Net 

Table 8 
Summary of evaluation metrics of the proposed CXAU-Net model with different segmentation models for patch-based approach.  

Methods/Metrics Accuracy DSC Jaccard Index 

U-Net model [8]  0.8705  0.9224  0.54 
Link-Net model [34]  0.8907  0.9355  0.59 
FPN model [35]  0.8567  0.9076  0.50 
FCN model [36]  0.8573  0.9139  0.56 
Proposed CXRAU-Net model  0.9217  0.98537  0.973  

0
0.5

1
1.5

Accuracy DSC Jaccard
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FCN model
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Fig. 10. Comparison of all models to a range of accuracy, DSC, and Jaccard index values (x-axis) on patches of ChestX-Ray14 test dataset for multi- 
class segmentation. 

Table 9 
Comparison of the proposed CXAU-Net model with other multi-class patch-based segmentation models.  

Methods/Metrics Accuracy Jaccard Index 

Multi-scale U-Net [43]  0.867 0.755 
2.5D CNN model without Graph Cut (GC) strategy [44]  0.785 – 
2.5D CNN model (with GC) [44]  0.954 – 
pOSAL model [45]  0.9115 – 
Proposed CXRAU-Net  0.9217 0.953  
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model shows unfocused and inappropriate segmentation results due to a lack in utilizing parameters of the network and up sampling 
capabilities, despite using VGG16 as the backbone. The FPN model also utilized VGG16 as the backbone but is unable to extract 
high-level global features and optimize the network for accurate segmentation of ROIs. The FCN model demonstrates blurred and 
wrong segmentation results due to uneven overlapping of the decoder output. 

4.3. Image-based binary-class segmentation with hybrid loss function 

To authenticate the performance of the proposed model, it is also trained and tested for binary-class segmentation tasks i.e., 

Fig. 11. Visual segmentation results, columns left to right are input image, ground truth mask, and predicted masks of lung fields by the proposed 
CXRAU-Net model. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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segmentation of lung fields. This model is trained using NLM-China and MC CXR datasets due to the easy availability of the seg
mentation masks of left and right lung fields. The model is trained for 100 epochs with a batch size of 5 and optimized with Adam 
optimizer using a learning rate of 0.0001. After that, the trained model is validated using the JSRT dataset. The segmentation results of 
5 randomly selected input images with actual mask and predicted mask is shown in Fig. 11. The left and right lung fields are segmented 
after using an empirically found threshold value of 0.1 on pixels of the test images. Where areas with yellow colour are regions of lung 
fields and areas with purple are background. The effectiveness of this model due to the hybrid loss function is depicted by loss and 
accuracy curves as a function of epochs in Fig. 12. Where, the average value of training and testing loss are 0.0087 and 0.0108 
respectively, and the average value of accuracy are 0.9967 and 0.9961 respectively. 

A summary of the segmentation results of the proposed model with different segmentation models that also utilized the JSRT 
dataset is presented in Table 10 in terms of DSC and Jaccard index values. The proposed model achieves the highest DSC score of 0.998 
and a Jaccard index value of 0.989. 

All the experimental results clearly illustrate that the proposed CXRAU-Net model yields better results than other segmentation 
models for both image-based and patch-based approaches as well as for multi-class and binary-class segmentation. 

4.4. Effect of different hyperparameters 

Motivated by the work of Novikov et al. [37], this section evaluates the performance of the proposed CXRAU-Net model on different 

Fig. 12. The loss and accuracy curves of the proposed CXRAU-Net model for training and testing sessions as a function of epochs.  

Table 10 
Comparison of evaluation metrics of the proposed CXAU-Net model with different segmentation models that 
utilized the JSRT dataset.  

Methods/Metrics DSC Jaccard Index 

Inverted U-Net [35] 0.974  0.950 
ASM Tuned [46] –  0.927 
Hybrid Voting [46] –  0.949 
Generic Segmentation algorithm [47] –  0.951 
Atlas method [25] 0.975  0.969 
Proposed CXRAU-Net 0.998  0.989  

Table 11 
Effect of different activation function on loss ad DSC score of the proposed CXRAU-Net model.  

Activation function Training set Testing set  

Loss DSC Loss DSC 

ReLU  0.0892  0.9510  0.1340  0.9932 
ELU  0.2562  0.8707  0.2078  0.8853 
Leaky ReLU  0.2752  0.8630  0.2393  0.8637 
PReLU  0.2642  0.8666  0.2683  0.8686 
SELU  0.2412  0.8750  0.2076  0.8806  
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hyperparameters. Hyperparameters shape the DL models and have a vast impact on their performance. So, experiments are conducted 
by training the proposed model with different activation functions, different loss functions, and considering different metrics described 
in Section 2.E. The model is trained on CXR dataset images for 500 epochs and using a hybrid loss function. 

Table 11 and Fig. 13 (a) and 13 (b) depicts the effect of different activation functions such as Rectified Linear Unit (ReLU), 
Exponential Linear Unit (ELU), Leaky ReLU, Parametric ReLU (PReLU), and Scaled Exponential Linear Unit (SELU) on loss and DSC 
score of training and testing dataset respectively. The results clearly show that the model outperforms with ReLU activation function. 
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ELU Leaky ReLU PReLU SELU ReLU
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Fig. 13. (a) Performance comparison of different activation function on loss and DSC score values for the training dataset (b) Performance com
parison of different activation function on loss and DSC score values for testing dataset. 

Table 12 
Effect of different loss function on loss ad DSC score of the proposed CXRAU-Net model.  

Loss functions Training set Testing set  

Loss DSC Loss DSC 

Hybrid loss  0.0892  0.9510  0.1340  0.9407 
Dice loss  2.7278  0.8586  2.4995  0.8581 
Tversky loss  2.8798  0.8305  2.5568  0.8241 
CE loss  0.1084  0.8827  0.0998  0.8912  
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Table 12 and Fig. 14 show the effect of different loss functions on the CXRAU-Net model for training and testing datasets in terms of 
metrics, loss, and DSC score. 

The results obtained indicate that the proposed hybrid loss function shows minimum loss and maximum DSC score for training 
datasets and minimum loss for CE loss and maximum DSC score for hybrid loss function on testing datasets. It is important to 
differentiate that a metric evaluates the model after the learning process while loss functions train the model. Considering this, the 
model is also evaluated on different loss metric functions. 

Table 13 results show that Log cosh dice loss metrics have a lower value for the proposed CXRAU-Net model. 

5. Conclusion 

This paper proposed CXRAU-Net model for automatic multi-class image segmentation of COVID-19 infections by detecting con
ditions of GGOs, consolidation, cardiomegaly, and infiltrates from the COVID-19 CXR image dataset. The model is introduced with 
modification by applying spatial and channel attention, dilated convolution in attention U-Net along with the proposed hybrid loss 
function. This model along with four other state-of-the-art segmentation models are trained and tested on full-scale and patches of 
images of different CXR datasets. For generalization of the proposed model, it also performs binary-class image segmentation i.e., 
segmentation of left and right lung fields on NLM-China, MC, and JSRT datasets. Moreover, the model is exploited on different 
hyperparameters using different activation, loss functions, and different metrics. Overall results show that by extracting high- 
resolution global, edge, and multiscale features and including pixel and geometrical information in hybrid loss function the pro
posed CXRAU-Net model generates better results in comparison to different state-of-the-art models for both multi-class and binary- 
class segmentation task and both image-based and patch-based approaches. 
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Fig. 14. Performance comparison of different loss function on loss and DSC score values for training and testing datasets.  

Table 13 
Comparison of results of different loss metrics for the proposed CXRAU-Net model.  

Metrics Training set loss Testing set loss 

Weighted CE loss 2.3635 2.1204 
Focal loss 0.0534 0.0414 
Log cosh dice loss 0.0093 0.0097 
Dice loss 0.1350 0.1336 
Tversky loss 0.1137 0.1135  
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