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Abstract

Intermediate filaments (IFs) formed by vimentin are less understood than their cytoskeletal 

partners, microtubules and F-actin, but the unique physical properties of IFs, especially their 

resistance to large deformations, initially suggest a mechanical function. Indeed, vimentin IFs help 

regulate cell mechanics and contractility, and in crowded 3D environments they protect the 

nucleus during cell migration. Recently, a multitude of studies, often using genetic or proteomic 

screenings show that vimentin has many non-mechanical functions within and outside of cells. 

These include signaling roles in wound healing, lipogenesis, sterol processing, and various 

functions related to extracellular and cell surface vimentin. Extracellular vimentin is implicated in 

marking circulating tumor cells, promoting neural repair, and mediating the invasion of host cells 

by viruses, including SARS-CoV, or bacteria such as Listeria and Streptococcus. These findings 

underscore the fundamental role of vimentin in not only cell mechanics but also a range of 

physiological functions.

Graphical Abstract

Vimentin forms a wickerwork network that provides mechanical protection of the nucleus and 

elasticity to the cytoskeleton. New work highlights vimentin’s life outside the cell. It is secreted by 

multiple cell types and can provide positive signals for wound healing and act as a cofactor for 

pathogen infection.
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1. Introduction

Many studies of the intermediate filament (IF) system have focused on the mechanical 

properties of the networks formed by this cytoskeletal polymer. The non-cytoplasmic 

intermediate filaments, which compose structural materials such as nails and the slime 

secreted by hagfish [1] have evolved to perform specific mechanical tasks. This would 

initially suggest that the cytoplasmic IFs would as well have a predominantly mechanical 

role. Our attention in this review is focused on recent discoveries on both mechanical and 

non-mechanical roles of the protein vimentin and the filaments it forms (VIFs) in cell 

biology. Vimentin is expressed mainly in mesenchymal cells. Its basic structure is mostly in 

the form of αhelical coiled-coil dimers that assemble into 10 nm diameter filaments through 

a series of intermediate oligomers. Vimentin’s N-terminus is important for controlling 

filament assembly and both N- and C-terminal domains mediate many interactions with 

binding partners. The structure and assembly of VIFs are reviewed elsewhere [2]. Previous 

studies have shown significant contributions of vimentin to cell mechanics and contractility 
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[3–5]. However, many studies also point to non-mechanical roles for this abundant protein, 

with cellular functions ranging from lipogenesis to regulating GTPase signaling and the 

transduction of signals from transmembrane receptors [6–10]. This brief summary highlights 

three distinct aspects of recent research related to vimentin and VIFs.

We will first focus on the expanding list of proteins, nucleic acids, and other molecules that 

bind vimentin, often with a change in their ability to transmit a signal or react with their 

ligands. In some respect this section is an update of earlier reviews that pointed to the 

importance of intermediate filaments in cell signaling and other non-mechanical functions 

[10,11].

We will then emphasize recent findings on how the mechanical properties of the vimentin 

network provides a function that cannot be fulfilled by either of the other two cytoskeletal 

elements, actin filaments and microtubules. We will discuss how VIFs create a cage around 

the nucleus, increasing the cell’s ability to withstand large strains during locomotion in 

confined 3D spaces without damage to the nucleus. This effect of the perinuclear VIF 

network is not evident in studies of cells on flat surfaces but leads to large effects on motility 

and nuclear shape in 3D culture systems.

Finally, we will discuss the rapidly emerging field of extracellular vimentin. Early studies 

suggested that the reaction between anti-vimentin antibodies and antigens on the external 

surfaces of cells might be due to cytoskeletal debris released from neighboring cells, or 

perhaps local and transient rupture of the plasma membrane [12]. However, it is now clear 

that cell surface vimentin appears in the absence of detectable cell damage and is important 

for infection by bacteria or viruses or signaling from one cell type to another [13].

2. Vimentin binds to diverse cellular targets

There is already a large catalog of proteins that link VIFs to F-actin and microtubules, and 

the physical properties of composite networks formed by multiple cytoskeletal network 

systems promote mechanical responses that cannot be achieved by any single network 

system. These topics have been recently reviewed in [14,15]. Here we summarize only a few 

of the most recently reported cytoskeletal ligands for vimentin, which illustrate how broadly 

vimentin can affect cell mechanics and other functions in ways that cannot be inferred 

simply from the mechanical properties of VIFs alone.

2.1. Novel cytoskeletal and focal adhesion links

The most clearly established role of intracellular vimentin is to form a three-dimensional 

network as one of the three cytoskeletal systems. As this network system is increasingly 

studied, numerous new interacting proteins and regulators of VIFs are emerging. Here we 

summarize a few recent examples to illustrate the range of cytoskeletal structures that 

involve vimentin. In addition to the crosslinker plectin and multiple plus and minus end 

directed molecular motors [16] that link VIFs to microtubules, the protein Rudhira/Breast 

Carcinoma Amplified Sequence 3 (BCAS3) also links vimentin to microtubules and leads to 

MT stabilization, an effect that is essential for endothelial cell motility, focal adhesion 

dynamics, and angiogenesis [17]. Carmil, a protein that interacts with actin capping protein 
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and hence affects actin dynamics also binds VIFs, suggesting a novel link between these two 

filament systems [18]. Another actin regulatory protein, girdin, that links AKT signaling to 

cytoskeletal dynamics was shown to bind vimentin by mass spectrometry and 

immunoprecipitation from pancreatic cancer cells [19]. Hic-5, a focal adhesion scaffold 

protein stabilizes the VIF network by modulation of RhoGTPases, and its ablation leads to 

the disassembly of VIF [20]. Filamin A, an actin crosslinker, directs the kinase PAK1 to 

vimentin, altering its assembly into VIFs [21]. A mechanical link from VIFs to the LINC 

complex mediates transmission of forces from the cell surface to the nucleus [22]. Linkage 

of VIFs to cortical actin by the crosslinker plectin, one of the first known integrators of the 

cytoskeleton, has now been seen to be essential for the cellular restructuring required for 

mitosis [23]. These and other examples of novel ligands for vimentin are summarized in 

Figure 1.

2.2. Regulation of lipid droplet formation.

Lipid droplets in adipocytes and other cell types have long been known to be surrounded by 

a network of VIFs [24]. This network is implicated in adrenal steroidogenesis [25] and its 

disruption inhibits lipid drop formation in 3T3L1 cells [26]. Proteomic analysis shows that 

vimentin is enriched in cholesterol-containing lipid droplets compared to triglycerol-based 

lipid droplets [27], and the binding of hormone sensitive lipase, the major neutral cholesterol 

esterase, to vimentin facilities delivery of free cholesterol to mitochondria for steroid 

hormone production [28]. Vimentin can bind directly to some phospholipids [29], and the 

binding to lipid droplets is proposed to be at least in part mediated by perilipin, which binds 

directly to the hydrophobic lipid droplet and has an acidic surface-exposed domain to which 

cationic arginine-rich sites in vimentin’s N-terminus can dock [30]. A mutation in human 

vimentin that disrupts VIFs leads to decreased perilipin and lipid accumulation in 

adipocytes, and is associated with progeroid syndrome [31]. Phosphorylation of the 

oxysterol binding protein 4L (ORP4L) leads to its binding to vimentin and facilitates 

cholesterol extraction from membranes, further implicating vimentin in lipid droplet 

formation and processing [32].

2.3. Mechanisms of vimentin degradation.

The stability of vimentin depends to a great extent on its phosphorylation state, and at least 

some forms of soluble vimentin are a target for degradation. The ring finger protein 208 

(RNF208), an estrogen-inducible E3 ligase, binds to vimentin that is phosphorylated at 

Ser39 and polyubiquitinates the Lys97 residue of vimentin, leading to its degradation. 

Downregulation of RNF208 in triple negative breast cancer is associated with greater 

malignancy and with increased vimentin stability [33]. Ubiquitination by gigaxonin, an E3-

ligase targeting factor encoded by the giant axonal neuropathy (GAN) gene also leads to 

vimentin degradation, and mutations in GAN are associated with the accumulation of VIFs 

in GAN as well as other types of intermediate filaments in the nervous system [34]. VIFs are 

also subject to proteolysis by calpain during osmotic shock [35,36] and are substrates for 

some bacterial proteases [37]. VIFs are also cleaved by calpain during pyroptosis of 

inflammatory cells. The resulting disruption of the VIF network leads to fluidization of the 

cytoskeleton and softening of the cell [35].
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2.4. Notch, NOGO, and PI 3-kinase signaling

Numerous signaling pathways interact with vimentin [7,8,10]. A study of shear stress effects 

on arterial remodeling show that shear stress increases phosphorylation of vimentin at serine 

38, and this leads to binding of the Notch pathway component jagged 1 to vimentin. The 

resulting increase in Notch signaling is required for appropriate arterial remodeling [38]. 

Intracellular vimentin binds the NOGO receptor (NgR) which in mature form is trafficked to 

the plasma membrane of glioblastoma cells where it can inhibit their migration. When 

bound to vimentin in the cell interior, maturation of NgR is suppressed [39]. This finding 

may be related to the increased malignancy of glioblastomas expressing high levels of 

vimentin. Vimentin is also a ligand for mitogen-activated protein kinase kinase 4 

(MAP2K4), and this interaction is reported to modulate the effect of MAP2K4 on 

phosphoinositide-3-kinase (PI3K)/AKT signaling, resulting in changes in breast cancer cell 

proliferation and migration [40].

2.5. Polysaccharides and nucleic acids

Proteins are not the only ligands for vimentin. On the cell surface vimentin can bind 

polymers containing N-acetylglucosamine (GlcNAc) [41]. This binding has been exploited 

to create improved methods for isolating mesenchymal stem cells with surface-exposed 

vimentin by use of GlcNAc-containing polymer-coated dishes [42]. Vimentin can itself be 

post-translationally modified by ligation of GlcNAc to serine [43], and this modification 

affects the assembly of vimentin into filament networks with subsequent effects on cell 

motility and pathogen invasion (see 4.5.1) [44]. Two non-coding RNA’s have also been 

identified as ligands of vimentin. The long non-coding RNA LncRNA BC088259 is 

upregulated after sciatic nerve injury and modulates the migration of Schwann cells. This 

effect on migration has been proposed to involve binding of LncRNA BC088259 to vimentin 

[45]. A different non-coding RNA, named down-regulated in its expression by hepatitis B 

virus X (dreh) is involved in glucose transport, and exogenous downregulation of dreh in 

3T3-Li adipocytes increases glucose transport by increasing GLUT4 expression in the 

plasma membrane by a mechanism thought to involve vimentin [46]. This result supports the 

idea that vimentin is important for lipogenesis, as discussed in 2.2.

3. Perinuclear vimentin

3.1. What is a vimentin intermediate filament cage?

A robust feature of VIFs is their formation of a cage-like network that encircles the nucleus 

VIF with densely packed filaments (Figure 2) and radiates to the cell periphery [47]. This 

organization of VIFs depends on substrate stiffness. When cells are grown on soft substrates, 

the perinuclear vimentin cage is collapsed and localized closely around the nucleus. When 

cells grow on stiffer substrates, the spread area of the cell increases, and the VIF network 

extends more toward the cell periphery. These trends have been observed in multiple cell 

types, including human mesenchymal stem cells, endothelial cells, and mouse fibroblasts 

(3T3 cells) [47].

There is evidence that VIFs establish indirect physical connections to the outer nuclear 

membrane through interactions with the linker of the nucleoskeleton and cytoskeleton 
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(LINC) complex [48]. The LINC complex also connects to the nuclear lamina, a thin 

filamentous layer surrounding the nuclear periphery that is mainly composed of the type V 

IF proteins, the nuclear lamins [49,50]. While actin and microtubules also form indirect links 

to the nuclear envelope through the LINC complex, they do not form the cage-like structure 

around the nucleus, which seems to be unique to IFs. Recent high resolution studies [51] 

show that vimentin rings that form around the nucleus during initial cell spreading on a 2D 

surface do not appear to link with actin nor require tubulin. It is noteworthy that these latter 

VIF structures were originally identified as birefringent spheres with isotropic cores using 

polarized light microscopy. They form rapidly in live cells in response to substrate 

attachment and exhibit positive birefringence with respect to their circumferential axes 

which correlates with highly organized parallel arrays of VIFs, excluding both microtubules 

and [52].

Here we argue that the functional implications of the perinuclear cage are distinct from those 

of the cytoplasmic VIF network that extends into the cytoplasm, associates with focal 

adhesions, microtubules and forms links with the actin-rich cell cortex (5).

3.2. Separate roles for cytoplasmic versus perinuclear vimentin in cellular mechanics

3.2.1. VIF cytoplasmic network—There has been an emerging interest in the role of 

intermediate filaments in the mechanical properties of cells and their role in transmitting 

forces to the nuclear envelope. VIFs crosslink with actin and microtubules through plectin 

and other crosslinkers, creating the cytoskeletal links that connect the cell surface to the 

nucleus [23,53–55]. Vimentin is a major cargo for the microtubule motors kinesin and 

dynein, so motors may also be part of the bridging between VIFs and the microtubule 

network [56–59]. One of the first demonstrations of vimentin’s role in this process was done 

through the application of forces at the cell surface using micropipettes or manipulation of 

surface bound microbeads [60]. Pulling at the cell cortex distorts the cell nucleus and moves 

it in the direction of pull, indicating the direct transmission of forces through molecular 

connections between integrins, cytoskeletal filaments, and the nuclear envelope. Pulling on 

cells that lacked both microfilaments and microtubules still produced nuclear deformation, 

suggesting that the intermediate filament network alone is sufficient to transmit mechanical 

stress to the nucleus [60].

The transmission of forces through the cytoskeletal network of all three filament types 

depends on the mechanical properties of the network. Studies involving reconstituted 

cytoskeletal networks show that the mechanical properties of VIFs differ from those of actin 

and microtubules [61]. VIF networks are soft but have an extraordinary ability to stiffen 

when under strain and can withstand much larger strains without breaking as compared to 

actin and microtubules [61,62]. A number of studies have now shown that VIFs modify the 

mechanical properties of the cell itself, enhancing the cell elastic behavior [3–5,63], 

particularly under conditions of large cell strains [64,65] and in regions close to the 

perinuclear VIF network [66].

In the simplest physical picture, we can model the cytoskeleton as a spring with a spring 

constant k that is proportional to its stiffness. When a force F is applied to the boundary of 

the cell, it displaces the cell boundary a distance x to produce an equal and opposite force F, 
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F = -kx, that is transmitted to the nucleus through the spring. For a soft cell, the nucleus feels 

little force as k is small whereas the larger k in a stiffer cell makes the nucleus feel a greater 

force. This simple picture suggests that the increased cell stiffness due to VIF facilitation of 

the transmission of forces applied at the cell boundary to the nucleus, allowing the nucleus 

to better ‘feel’ external forces. This also implies that it takes little force to displace the 

nucleus in a soft cell lacking VIF as compared to a stiffer cell that possesses a VIF network. 

A dramatic illustration of this point is the much easier isolation of nuclei from vimentin 

deficient cells with a micromanipulator as compared to their wild type counterparts that 

require depolymerization of F-actin for successful nucleus isolation [67].

The cell, of course, has means of generating its own forces. Vimentin is not the engine that 

drives the cell. That is the role of the contractile machinery of the cell, whose main 

components are the acto-myosin complex. However, there exist bidirectional interactions 

between the two networks. For instance, contractile actomyosin arcs mediate subcellular 

localization of the VIF network to the perinuclear region [68], and there is now significant 

evidence that VIFs assist in the transmission of the contractile actomyosin forces to the 

nucleus. When a cell adheres to a flat 2D substrate, the nucleus becomes more compressed 

over time as the cell spreading area increases [69,70]. One model for this behavior is that 

contractile forces generated by apical stress fibers push down on the nucleus, compressing it 

[70–72]. Several studies have now shown that disruption or deletion of the VIF network 

results in changes to nuclear shape [22,73], even when the F-actin network remains 

unchanged [74]. In the absence of VIF, the nucleus rounds up and is no longer compressed 

[69,74]. Using nuclear shape as a read-out for the forces applied to the nuclear surface, these 

studies indicate that VIFs facilitate nuclear deformation and assist the actomyosin network 

in pushing down on the nucleus. The exact mechanism by which VIFs apply forces to the 

nuclear envelope remains unclear, but it seems to require the LINC complex [22]. Another 

possibility is through vimentin’s crosslinks with actomyosin filaments where cutting these 

links by removing VIFs would decrease the force felt by the nucleus.

3.2.2. Vimentin perinuclear cage—New evidence shows that in addition to 

transmitting forces to the nucleus, VIFs can also resist the transfer of forces and reduce 

nuclear deformations. A clear demonstration of this was done using micropipette aspiration 

to directly apply pulling forces on adherent fibroblasts [75]. Cells transfected with siRNA to 

decrease vimentin expression had increased nuclear deformation from pulling forces. These 

results were reproduced using SW13 adrenal carcinoma clones that do not express vimentin. 

Interestingly, neither actin nor microtubules were required to resist local pulling forces, 

whereas lamin A was. The effects of vimentin did not require mechanical linkages to the 

nucleus, as was shown by altering the LINC complex protein KASH4. These results suggest 

that the VIF perinuclear cage confers stiffness to the nucleus.

Consistent with this picture are 3D confining cell motility experiments in wild type and 

vimentin-null mEFs [66,74]. We found that loss of vimentin increased cell motility through 

small pores, suggesting that the VIF network impedes confined motility. Cells lacking 

vimentin exhibited higher nuclear deformations after migrating through pores of 3 um 

diameter, which is a much smaller size than the effective diameter of an unstressed mEF 

nucleus (~10 um). Loss of vimentin also increased the rates of nuclear damage associated 
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with confined motility, manifesting itself through enhanced nuclear blebs, nuclear envelope 

rupture, and DNA damage repair. These results reveal that the perinuclear VIF cage may 

have a distinct role in increasing the effective stiffness of the nuclear envelope.

Further studies are helping to paint a more complete picture of VIFs in 3D cell motility 

amongst varied cell lines. Recent studies indicate that VIFs also decrease confined cell 

motility in amoeboid cancer cells [76]. In dendritic cells vimentin is seen to enhance 3D 

movement [76] and provide mechanical resilience to protect the nucleus [77]. More studies 

are needed to determine how VIF network assembly and its interactions with the other 

cytoskeletal components help to establish different modes of confined cell motility.

Does vimentin facilitate or resist force transmission to the nucleus? We have laid out 

evidence for both cases. One plausible explanation that incorporates both effects is that the 

cytoplasmic VIF network and the perinuclear VIF cage might have separate roles in 

maintaining nuclear shape. The main mechanical function of the cytoplasmic VIFs might be 

to increase cytoskeletal stiffness and to assist with the transmission of forces to the nucleus. 

This is consistent with the decreased 3D motility rates of cells with VIFs [66,74,76]. On the 

other hand, cells containing a perinuclear VIF cage seems to serve as a protective structure 

that increases the effective stiffness of the nuclear envelope, as seen by reduced nuclear 

deformability in cells expressing vimentin [74,77]. In this way, VIFs not only enhance the 

cell stiffness but also the effective stiffness of the nuclear envelope. The cytoplasmic VIFs 

assist in transmitting forces to the nucleus, and the perinuclear cage resists them. How cells 

might regulate perinuclear versus cytoplasmic VIF assembly is unclear but could be in part 

established through connections with microtubules. Microtubules are required for moving 

VIFs away from the perinuclear region to the cell surface. When cells are treated with 

nocodazole which drives depolymerization of microtubules, VIFs retract to the nuclear 

surface with very few VIFs in the peripheral regions [56].

4. Vimentin appears on the surface of cells and is secreted by multiple 

cell types.

The presence of extracellular vimentin has been documented for at least 35 years, but a 

functional role for the surface exposure and the mechanisms by which vimentin is released 

from the cell interior are only recently beginning to be identified (Table 1). One early study 

of antibodies generated against surface-exposed antigens in malignant monocytes showed 

that these antibodies were specific to vimentin [12]. Since that time extracellular or cell 

surface vimentin has been documented in a wide array of settings in which it appears to play 

a role in both normal physiology and pathologic states, with a particular emphasis on 

circulating cancer cells and on infection by bacteria and viruses.

4.1. Sources of extracellular vimentin.

Extracellular vimentin can be generated by multiple mechanisms in addition to simple 

release of vimentin from necrotic cells or disrupted cell membranes, and autoantibodies to 

circulating, covalently modified vimentin are commonly found in inflammatory diseases 

[78]. Figure 3 shows the distinct patterns of intracellular and extracellular vimentin in 
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cultured fibroblasts, a cell type that increases exposure of cell surface vimentin during 

senescence [79]. Neutrophils [80] and T lymphocytes [81] undergoing apoptosis release 

vimentin to their extracellular surface, where in the case of thymocytes, it recruits 

extracellular phospholipase II and is thought to promote production of arachidonic acid. 

Activated platelets and platelet-released micro-particles also expose vimentin on their 

surface, where vimentin binds vitronectin, which stabilizes plasminogen activator inhibitor I 

in its active form, suggesting a role for surface vimentin in fibrinolysis [82]. Macrophages 

are simulated by the cytokine TNF-alpha to secrete vimentin into the medium in a process 

that can be blocked by inhibition of protein kinase C [83]. Oxidized low-density lipoproteins 

can also stimulate macrophages to secrete vimentin, and extracellular vimentin can induce 

macrophages to release inflammatory cytokines. These effects might be related to the 

finding of increased serum levels of vimentin in patients with atherosclerotic coronary artery 

disease and in an Apo-E null mouse model of atherosclerosis, suggesting that serum 

vimentin might be a useful biomarker [84].

Endothelial cells also secrete vimentin, and a subset of endothelial cells express it on their 

surface. Here it can interact with von Willebrand factor to form strings that mediate platelet 

adhesion in the vascular lumen and contribute to stroke pathology [85]. Extracellular 

vimentin can also bind P-selectin and lower the adhesivity of neutrophils to platelets and the 

endothelium [86]. A remarkable aspect of the vimentin secreted by endothelial cells is that it 

is a target of the PAL-E antibody, which has been used to detect blood capillaries and small 

veins [87]. Under non-reducing conditions, the antigen recognized by the PAL-E antibody 

has an apparent molecular weight of 120 kDa, or twice the size of vimentin, which drops to 

55 kDa in reducing conditions, suggesting that this form of extracellular vimentin is 

composed of disulfide bonded dimers. The highly localized expression of this surface 

epitope suggests that vascular surface vimentin might be enriched at sites where circulating 

cells adhere most to the vessel surfaces [87].

Secretion by both macrophages and endothelial cells requires post-translational modification 

of vimentin, and antibodies specific to cell surface vimentin can be generated [88,89]. An 

important finding is that cell surface vimentin appears to be mainly in the form of oligomers 

with 4 – 12 monomers, but is not filamentous, a difference that is likely to relate to the much 

higher affinity of the oligomers to lipid bilayers compared with VIFs [90]. Other 

mechanisms by which extracellular vimentin can be generated are illustrated in some of the 

examples listed below and summarized in Table 1. The functional aspects of extracellular 

vimentin, which have been identified, are illustrated in Figure 4.

4.2. Wound repair, regeneration, and senescence

One of the clearest beneficial effects of extracellular vimentin is seen in the mechanism by 

which mesenchymal cells at the edge of a wound in an ex vivo mock cataract surgery model 

transition to a myofibroblast phenotype. Following injury, vimentin is released into the 

extracellular space, where it binds to mesenchymal leader cells located at the wound edge 

and thereby supports the contractile cell phenotype that enables wound closure. In 

profibrotic environments, extracellular vimentin might contribute to deleteriously high 

conversion or maintenance of myofibroblasts [91]. Astrocytes, activated by injury, can 
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produce extracellular vimentin in the form of exosomes that are delivered to neurons, which 

then can bind this protein on their surface even though they do not express it endogenously. 

Extracellular vimentin binds to neuronal insulin-like growth factor 1 receptor to promote 

axonal growth in vitro and improves recovering after spinal cord injury in mice [92,93]. Cell 

surface bound vimentin can promote entry of Clostridium botulinum C3 transferase (C3bot) 

and thereby might mediate the axonotrophic effects of C3bot after spinal cord injury [94]. 

Citrullinated vimentin has also been proposed as a marker for astrocyte activation [95]. 

Senescent human fibroblasts secrete a modified vimentin that is post-translationally 

modified on cysteine 328 by the oxidative adduct malondialdehyde (MDA) and MDA-

modified vimentin plasma levels increase in a murine model of accelerated aging. This 

finding raises the possibility that innate immunity might recognize senescent cells by the 

presence of membrane-bound MDA-vimentin [79]. Extracellular vimentin can also have 

anti-inflammatory effects, as suggested by a study showing that extracellular vimentin 

blocked secretion of pro-inflammatory cytokines by dendritic cells through modulation of 

their response to lipopolysaccharide [96].

4.3. Vimentin on the surface of cancer cells

Several cancer cell types are associated with extracellular vimentin, and this finding has led 

to efforts to target it as a potential therapy. For example, normal human T lymphocytes 

express surface vimentin only after activation, but malignant Sezary lymphocytes express it 

constitutively [97]. Glioblastoma multiforme stem cells express surface vimentin, which 

promotes spheroid formation in vitro. Treatment of these cells with an anti-vimentin 

antibody leads to internalization of surface vimentin, lowered cell viability due to apoptosis, 

and diminished tumor growth in a mouse model [88,98]. Gastric cancer cells also express 

cell surface vimentin, and a magnetic bead isolation assay identified circulating tumor cells 

(CTCs) in peripheral blood of the majority of gastric cancer patients, with high vimentin 

positive CTCs correlating with poor prognosis [89]. Surface vimentin positive CTCs also 

have potential as predictors of relapse in postremission neuroblastoma [99]. Three different 

human prostate cell lines express vimentin that can be detected by monoclonal antibodies 

recognizing the coil one rod domain and the C-terminus of vimentin [100]. Anti-cell surface 

vimentin antibodies have also been used to detect stem-like hepatocellular carcinoma cells 

with enhanced metastatic potential [101]. Magnetic particles containing anti-vimentin 

antibodies have been used to isolate circulating cancer cells from the blood of mice with 

tumors generated by the human lung cancer cell line A549 [102] and macrophage-like CTCs 

from the blood of patients with gastrointestinal stromal tumors [103].

4.4. CD44 signaling

Soluble CD44, a hyaluronan (HA) ligand that is overexpressed during inflammation and in 

some cancers also binds vimentin at the surface of endothelial cells. The vimentin binding 

site on CD44 overlaps with its HA binding domain and targets the N-terminus of vimentin 

[104]. This interaction of CD44 and vimentin might relate to the finding that both CD44 and 

vimentin are increased on the surface of some cancer cell lines such as those from the 

prostate [100] and oral squamous cell carcinoma [105]. The interactions among CD44, HA, 

and vimentin might affect how circulating cancer cells or other cell types interact with the 

endothelium.
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4.5. Intracellular and extracellular vimentin are involved in pathogen infection

Vimentin is increasingly found to affect invasion of cells by pathogens. Both bacteria and 

viruses bind cell surface vimentin. In some cases, this binding facilitates infection of the host 

cell by the pathogen, and in other cases binding to vimentin appears to compete with or 

otherwise inhibit binding of the pathogen to the receptor that enables its entry into the host 

cell. An enabling role of vimentin is consistent with numerous reports that vimentin null 

mice are relatively resistant to some forms of infection [106–109], but a direct relation is not 

clear since both extracellular and cytoskeletal vimentin are important elements in the innate 

immune response. A recent study showed that disassembly of the vimentin cytoskeleton is 

an essential part of the mechanism by which cells extrude DNA-containing neutrophil 

extracellular traps (NETs) [110] as defense against bacterial infection. This process requires 

the activity of protein arginine deiminase to convert arginine to citrulline on both histones 

and vimentin to disassemble chromatin and VIFs, suggesting that vimentin might also be 

released by this mechanism. Extracellular exposure of citrullinated autoantigens including 

vimentin is associated with NET formation in rheumatoid arthritis [111,112]. Whether 

extracellular vimentin can serve a protective role against pathogens is not yet clear, but there 

are numerous compelling examples of vimentin enhancing the infectivity of both bacteria 

and viruses and several demonstrations that antibodies or other ligands for vimentin can 

block infection.

4.5.1. Bacterial infection—Cytoskeletal VIFs are often remodeled during bacterial 

infection [37], and in some cases surface vimentin is a docking site for specific bacterial 

surface proteins. Many of these results are discussed in a recent review [113]. Here we cite a 

few more recent results showing the importance of vimentin for surface binding and 

intracellular invasion by bacteria.

VIFs are important for infection by Chlamydia trachomatis, and vimentin is a substrate for 

chlamydial protease-like activity factor [37]. VIF remodeling by Chlamydia requires 

vimentin glycosylation [44]. Cell surface vimentin is important for several bacterial 

infections, such as Listeria monocytogenes [114,115] and meningitic Escherichia coli 
[107,116]. Vimentin-dependent infection of human microvascular endothelial cells by 

Listeria monocytogenes increases as substrate stiffness increases [114]. The surface 

adhesion factor BspC of Streptococcus agalactiae, which causes meningitis, enables the 

bacterium to enter cerebral microvascular endothelial cells by binding their surface 

vimentin, as well as cytoskeletal vimentin. BspC is both necessary and sufficient to infect 

the microvascular endothelium and to induce neutrophil chemokine expression, and vim −/− 

mice are protected from infection by wild type bacteria [106]. Infection of monocytes by 

Mycobacterium tuberculosis also leads to increased expression of cell surface vimentin 

which is recognized by NKp46 located on the surface of natural killer cells [117].

4.5.2. Viral infection—Both extracellular vimentin and intracellular VIFs have been 

identified as important mediators of multiple stages of virial infection, from initial cell 

invasion to intracellular viral replication and release. Cell surface vimentin is important for 

infection of cells by the coronaviruses SARS-CoV [118–120] and porcine reproductive and 

respiratory syndrome (PRRS) virus [121–124] and by enterovirus [125–127] which shares 
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some common targets with coronavirus. One study found that annexin 2 binds vimentin, and 

only when both proteins are present can PRRS virus infect its host cell [121]. Surface 

vimentin is also involved in infection by Dengue virus [128,129] (which can be clinically 

similar to covid-19 [130]) and Japanese encephalitis virus [131]. The H9N2 subtype avian 

influenza virus binds vimentin during infection of Madin-Darby canine kidney (MDCK) 

cells. Incubation of these cells with an antibody against vimentin or downregulating 

vimentin expression with siRNA lowered the infection rate, whereas upregulating vimentin 

expression increased infectivity of MDCK cells [132]. Japanese encephalitis virus (JEV) 

also requires vimentin for infection of porcine kidney cells. Treatment with an anti-vimentin 

antibody blocked infection of these cells by the virus [131]. The Chandipura virus, which 

causes encephalitic complications in humans, colocalizes with vimentin on the surface of 

murine Neuro-2a cells, and its infection of these cells can be decreased either by prior 

incubation of the virus with purified vimentin or of the host cell with anti-vimentin 

antibodies [133].

With SARS-CoV, vimentin binds the viral spike protein and enhances its delivery to the 

receptor angiotensin-converting enzyme 2 [120]. SARS-CoV also upregulates cytoplasmic 

vimentin by the TGF-β pathway to promote a fibrotic response in lung cells [118], and other 

reports show that intracellular VIFs can also be important for viral infection and replication. 

Enterovirus requires reorganization of the VIF cytoskeleton for efficient replication and 

export [126]. The foot-and-mouth disease virus (FMDV) also requires the VIF network for 

optimal replication, and this requirement has been traced to the binding of the FMDV 

nonstructural protein 3A to vimentin [134].Cell surface vimentin is not necessarily a viral 

receptor or even an augmenting factor for viral entry. Studies of human papillomavirus 

(HPV) infection showed that HPV16 pseudovirions bound cell surface vimentin and that 

pretreatment of the virus with soluble vimentin lessened its ability to infect a host cell. In 

this setting vimentin did not act as a receptor but bound the viral proteins to dampen the 

initial steps of HPV16 infection [135].

4.6. Countermeasures to cancer and infection

An exciting aspect of work related to extracellular vimentin is the identification of soluble 

ligands with the potential to improve identification or removal of cancer cells, and to prevent 

vimentin-dependent routes of infection, especially with relation to coronaviruses. A number 

of approaches have used antibodies to extracellular vimentin in conjunction with antibodies 

to other cell surface markers to detect and isolate circulating cancer cells [89,102,103,136]. 

Both monoclonal anti-vimentin and a vimentin-specific DNA aptamer are being used to 

isolate circulating cancer cells or block the effect of vimentin [137]. Similar approaches are 

being applied to infection by SARS-CoV [120] SARS2-CoV [138] and other viruses [131]. 

Citrullinated vimentin in combination with other antigens has been tested in possible 

vaccines to stimulate CD4-mediated anti-tumor activity and showed some efficacy in a 

mouse model [139].
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5. Conclusion.

The striking viscoelastic properties of VIF networks in vitro suggest cellular functions based 

on resistance to mechanical stress and regulation of cell shape. Indeed VIFs are essential for 

protection of the nucleus from potentially damaging forces and forms much of the 

cytoskeleton. However, many studies point to important non-mechanical functions. 

Vimentin, either in the form of small oligomers or VIFs, binds numerous proteins and 

nucleic acids, and functions to integrate with other cytoskeletal systems, regulate lipid 

metabolism and perform numerous other intracellular functions. In addition, the rapidly 

growing study of extracellular vimentin, especially in the regulated disassembly of VIF and 

the secretion of modified vimentin, reveals many new functions for the protein, from 

mediating pathogen invasion to promoting wound healing. Clearly there is much more to be 

learned about this abundant but understudied protein.
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Figure 1: 
Examples of newly reported ligands and targets of vimentin.

Patteson et al. Page 22

Bioessays. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Intermediate filament networks and the cell nucleus. The greater localization of VIFs 

juxtaposed to the nucleus is indicative of a distinct cage. Immunofluorescence image of a 

HUH7 cell marked for vimentin (green), actin (red), and DNA (blue). Scale bar is 15 μm.
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Figure 3: 
Immunofluorescence images of (a) intracellular and (b) extracellular vimentin in mouse 

embryo fibroblasts. The cell on the left was treated with triton to permeabilize the cell 

membrane and the cell on the right was not. Vimentin is shown in green; DNA in blue. Scale 

bar is 50 μm.
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Figure 4: 
Examples of extracellular vimentin functions. Viruses are bound by specific surface proteins 

to vimentin to facilitate their delivery to the viral receptor that mediate entry. Bacterial 

virulence factors or adhesions bind vimentin directly to enable their entry into the host. Cell 

surface vimentin binds soluble CD44 and enhances its initiation of intracellular signals. 

Vimentin on the surface of activated monocytes binds the natural killer cell surface protein 

NKp46 to initiate cell killing. Extracellular vimentin binds IGFR to enhance neuronal repair.
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Table 1.

Sources of extracellular vimentin

Cell type Modification Function Reference

Neutrophil Citrullinated Released during apoptosis or NET formation
Source of serum citrullinated vimentin commonly 
found in rheumatoid arthritis

[80,110]

T-lymphocyte Released on apoptosis Binds phospholipase II to promote arachidonic acid [81]

Monocyte/
macrophage

Phosphorylated Secreted after simulation by TNF-alpha or oxidized 
LDL

[83,95]

Astrocyte Citrullinated; Packaged in 
exosome

Delivery to neuron to promote wound healing [92–95]

Platelet Altered fibrinolysis; Binding to von Willebrand 
factor

[82,85]

Endothelial cells Disulfide-dimerized Increased platelet binding; decreased neutrophil 
binding. Ligand for CD44 and several pathogens

[13,85,87,104,116,118]

Senescent 
fibroblast

Malondialdehyde-ligated Increased clearance by immune system [79]

Cancer cells Sometimes proteolyzed Target for isolating circulating tumor cells, 
designing vaccines and enhanced chemotherapy

[21,33,94,97,100,103,136,140,141]
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