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Abstract

Background: Copy number variation (CNVs) is a key factor in breast cancer development. This study determined
prognostic molecular characteristics to predict breast cancer through performing a comprehensive analysis of copy
number and gene expression data.

Methods: Breast cancer expression profiles, CNV and complete information from The Cancer Genome Atlas (TCGA)
dataset were collected. Gene Expression Omnibus (GEO) chip data sets (GSE20685 and GSE31448) containing breast
cancer samples were used as external validation sets. Univariate survival COX analysis, multivariate survival COX
analysis, least absolute shrinkage and selection operator (LASSO), Chi square, Kaplan-Meier (KM) survival curve and
receiver operating characteristic (ROC) analysis were applied to build a gene signature model and assess its
performance.

Results: A total of 649 CNV related-differentially expressed gene obtained from TCGA-breast cancer dataset were
related to several cancer pathways and functions. A prognostic gene sets with 9 genes were developed to stratify
patients into high-risk and low-risk groups, and its prognostic performance was verified in two independent patient
cohorts (n =327, 246). The result uncovered that 9-gene signature could independently predict breast cancer
prognosis. Lower mutation of PIK3CA and higher mutation of TP53 and CDH1 were found in samples with high-risk
score compared with samples with low-risk score. Patients in the high-risk group showed higher immune score,
malignant clinical features than those in the low-risk group. The 9-gene signature developed in this study achieved
a higher AUC.

Conclusion: The current research established a 5-CNV gene signature to evaluate prognosis of breast cancer
patients, which may innovate clinical application of prognostic assessment.
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Introduction
Copy number variations (CNVs), which are DNA frag-
ments with varied copy number from 1kb to several Mb
in the human genome, include DNA fragment deletions,
insertions, duplications, and compound multipoint vari-
ants [1]. CNVs are often present in various types of tu-
mors, and are currently considered as a key factor in
genetic variation of tumors [2-5]. CNVs at multiple sites
in the genome can cause heterogeneity of the genome
and molecular phenotype, leading to the occurrence and
development of complex diseases including cancers [2,
6, 7]. Ding et al. reported the diversity of genomes of pa-
tients with primary breast cancer that are manifested as
frequent gene rearrangements and copy number changes
[8]. Shlien et al. used gene chips to compare 770 normal
genomes, and found that 49 oncogenes were surrounded
by CNV [9]. Stolz et al. demonstrated that about 50% of
lung cancer patients show cell cycle-checkpoint kinase 2
gene (CHEK?2) inactivation [10].

According to data released by the American Cancer
Society in 2018, breast cancer is the most common ma-
lignancy among women worldwide and the second
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leading cause of cancer-related death to women with
high [11]. In recent decades, the incidence of breast can-
cer in China is increasing and is showing a younger
trend, noticeably, breast cancer has become a malignant
tumor with the highest incidence among Chinese
women [12, 13]. The causes of breast cancer are highly
complex [14]. In recent decades, great progress has been
made in the diagnosis, surgery, chemotherapy and mo-
lecular therapy of breast cancer, but the prognosis of
breast cancer is still unsatisfactory due to its high het-
erogeneity and complexity. Therefore, the biological mo-
lecular mechanism of breast cancer development should
be further studied and explored.

In this study, we examined the correlation between
CNV-associated gene expression profiles and clinical
outcomes in 1069 breast cancer patients recorded in the
Cancer Genome Atlas (TCGA). CNV-associated genes
were used to develop a prognostic model for the predic-
tion of overall survival (OS) of breast cancer patients.
The results of this study may provide a strategy targeting
autophagy for predicting and monitoring the prognosis
of breast cancer patients.
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Material and methods

Microarray data profile

The study design is shown in Fig. 1. Gene expression
profile and CNV dataset TCGA [15] with complete
follow-up information were obtained on June 30, 2020,
1069 tumor samples with integral clinical information
were obtained and randomly classified into the training
cohort (n=534), the testing cohort (n=536). The two
groups were similar in age distribution, sex, follow-up
time, and proportion of death. After clustering the gene
expression profiles of the two data sets, the number of
samples of dichotomy was similar.

The GSE20685 [16] and GSE31448 [17] chip data sets
with survival time of 327 and 246 samples were down-
loaded from Gene Expression Omnibus (GEO) (http://
www.ncbi.nlm.nih.gov/geo/) on June 30, 2020. The clin-
ical information of the three data groups is shown in
Table 1.

Identification tumor-specific CNV and differentially
expressed genes (DEGs)
The chromosome segments in the CNV segment file
were matched to genes using bedTools [18], and only
the mean value of CNV cells with absolute value greater
than 0.2 were kept for further analysis. The difference of
CNV identification between tumor samples and normal
samples was determined by chi-square test (FDR < 0.05).

The DEGs between tumor and normal samples were
calculated using the Limma package [19], and the
threshold filter was FDR < 0.01 and |log2FC| > 1.

After drawing the Wayne map of the differentially
expressed CNV and the DEGs, 649 common genes were
found.

Functional enrichment

Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) were used to analyzed correlation
biological functions and pathways of DEG using Web-
GestaltR (v0.4.2) [20] in R package.

Identification of prognostic CNV-related genes

Univariate Cox regression, least absolute shrinkage and
selection operator (LASSO) regression and multivariate
Cox regression analyses were employed to explore the
performance of CNV-related genes in predicting OS of
breast cancer. Genes were determined as potential prog-
nostic genes when p value was < 0.05 in Univariate Cox
regression analysis. LASSO-penalized and multivariate
analysis were next performed for further screening. Haz-
ard ratios (HRs) and regression coefficient were calcu-
lated for each gene, and 9 CNV-related genes were
ultimately included.
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Table 1 Sample clinical information for three data sets

Clinical Features TCGA-BRCA GSE20685 GSE31448
Event
0 921 244 167
1 148 83 79
T Stage
T1 279 101
T2 617 188
T3 132 26
T4 38 12
X 3 0
N Stage
NO 502 137
N1 357 87
N2 120 63
N3 73 40
NX 17 0
M Stage
MO 884 319
M1 22 8
MX 163 0
Stage
| 181
Il 606
Il 240
\% 20
X 22
ER Status
Negative 235
Positive 786
Unknown 48
PR Status
Negative 335
Positive 683
Unknown 51
Her2 Status
Negative 549
Positive 159
Unknown 361
Age
<60 598 282
> 60 471 45
Subtype
Basal 187 72
Her2 77 22
LumA 552 85
LumB 202 42
Normal 39 25
Unknown 12 0
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Construction of prognostic gene signature

The risk-score model for prognosis prediction of breast
cancer patients was the combination of each optimal
prognostic CNV-related gene expression level multiply-
ing relative regression coefficient weight calculated from
the multivariate model according to the following
formula:

RiskScore = Z iCoefficient(mRNAI)
x Expression(mRNAI)

All patients in the training cohort were classified into
low- and high-risk groups according to the median of
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risk scores. The Kaplan—Meier survival curves of both
groups were plotted, and the receiver operating charac-
teristic (ROC) curve for OS prediction was used to as-
sess the specificity and sensitivity of the model.

Validation of gene signature

Risk score of the patients in TCGA testing cohort, entire
TCGA cohort, GSE20685 and GSE31448 dataset were
calculated, and patients were assigned into the high-risk
and low-risk group with the cut-off value calculated
from the training cohort. The Kaplan—-Meier survival
curves of both groups were plotted, and the ROC curve
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for OS prediction was used to assess the specificity and
sensitivity of the model.

Analysis of clinical feature, mutation gene and immune
score

Analysis of RiskScore in clinical feature including T, N, M,
Stage, Age were analyzed. Mutation annotation format
(MAF) files were processed and visualized by R package
maftools [21]. StromalScore, ImmuneScore and ESTIMA
TEScore were analyzed using ESTIMATE [22] in package.

Comparison with published models

By referring to the literature, we selected three prognos-
tic risk models (10-gene signature (Huang) [23], 4-gene
signature (Qi) [24], 19-gene signature (Su) [25] and 6-
gene signature (Wang) [26]) for comparison with our 9-
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gene model, and evaluated them by KM curve, receiver
operating characteristic (ROC) curve.

Results

Genes with CNV and expression differences were
screened

Bedtools was used to detect CNV genes related to breast
cancer progression, here we screened 5696 significant
differential CNV gene between breast cancer sample and
normal sample. Under the condition of FDR <0.01 and
|log2FC| > 1, 920 up-regulation genes and 1333 down-
regulation genes were obtained between breast cancer
sample and normal sample (Fig. 2A) using Limma pack-
age. Venn diagram analysis showed that there were 649
genes with CNV and expression differences (Fig. 2B).
KEGG and GO analyses conducted to explore the poten-
tial mechanism of these DEGs revealed that DEGs were
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mainly enriched in positive regulation of cell motility in
biological process, cell-cell junction in cellular compo-
nent and lipid binding in molecular function (Fig. 2C-E).
Moreover, KEGG analysis demonstrated that those genes
mainly were involved in PPAR signaling pathway, pros-
tate cancer, Rapl signaling pathway, PI3K-Akt signaling
pathway and other pathways in cancer (Fig. 2F).

Establishment of CNV related genes prognostic model
Base on TCGA training dataset, above 649 genes were sub-
jected to univariate Cox survival analysis, and screened 39
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DEG. A prognostic signature was developed to predict breast
cancer patients’ overall survival. Based on the expression pro-
file of the TCGA training dataset, LASSO Cox regression
and multivariate Cox regression analyses were performed
(Fig. 3A, B). A prognostic model was constructed based on
ANO6, CELSR3, CLDN7, EPB4114B, FAM166B, GPLD1,
LEF1, PPARG and SUSD3. The risk score of breast cancer
prognosis was determined with the following formula: Risk-
Score = 0.629*ANO6 + 0.147*CELSR3 + 0.381*CLDN7+ 0.27
3*EPB4114B-0.357*FAM166B -0.843*GPLD1-0.202*LEF1—
0.202*PPARG -0.127*SUSD3. KM survival analysis showed
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that apart from CLDN7 and GPLD], other genes could ac- and the heatmap of 9 genes, see Fig. 3C. Time-
curately divide samples into higher and lower-risk group  dependent ROC analysis demonstrated that AUC for
(Figure S1). 1-, 3-, 5-year survival was 0.63, 0.73, 0.8, respectively

The median level of the risk score was used to clas- (Fig. 3D). KM survival analysis showed that the sur-
sify the breast cancer patients in TCGA training data-  vival rate of the patients in the low-risk group was
set into low- and high-risk groups. For the risk score significantly higher than that in the high-risk group
and survival status calculated by the prognostic model (p <0.0001) (Fig. 3E).
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Validation of the risk score in TCGA test set and all TCGA
dataset

In order to verify the robustness of the model, the same
coefficient to the training set was used, and the model was
applied to the TCGA validation dataset and entire dataset.
The risk score of each sample was determined according
to the expression level of the sample, and the RiskScore
distribution and sample survival status was drew (Fig. 4A,
D). Time-dependent ROC analysis demonstrated that
AUC for 1-, 3-, 5-year survival was 0.7, 0.63, 0.58, respect-
ively in TCGA test dataset, and 0.66, 0.69 and 0.71 re-
spectively in all TCGA dataset (Fig. 4B, E). KM survival
analysis showed that the survival rate of the patients in the
low-risk group was significantly higher than that in the
high-risk group in both TCGA test dataset (p = 0.015) and
all TCGA dataset (p < 0.0001) (Fig. 4C, F).
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Validation of the risk score in GSE20685 and GSE31448
To determine cross-platform applicability, we applied
the model to the GSE20685 and GSE31448 datasets with
the same coefficients as the training set to calculate the
risk score of each sample according to the expression of
the model gene, and drew the RiskScore distribution
(Fig. 5A, D). Time-dependent ROC analysis demon-
strated that AUC for 1-, 3-, 5-year survival was 0.78,
0.61 and 0.61, respectively in GSE20685 dataset, and
0.71, 0.61 and 0.61 in GSE31448 dataset (Fig. 5B, E). KM
survival analysis showed that the survival rate of the
patients in the low-risk group was significantly higher
than that in the high-risk group in both GSE20685
dataset (p=0.011) and GSE31448dataset (p =0.0031)
(Fig. 5C, F).
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Comparison of clinical characteristics between high and
low risk groups

In the TCGA dataset, the distribution of clinical features
in the high- and low- risk subgroups were compared.
Results showed that there were more samples with a
high-risk clinical features in high-risk group, such as T2,
T3, and T4, higher degree of differentiation of N1 and
N2 and N3, Stage II, III and IV (Fig. 6).

Comparison of molecular mutation and immune score
between high- and low-risk groups

In the TCGA dataset, we compared the distribution of
mutation frequencies across high- and low-risk groups,
and found that TP53 mutation frequencies were higher,
and CDH1 and PIK3CA mutation frequencies were
lower in the high-risk group (Fig. 7A-B).

To examine the relationship of immune scores be-
tween high- and low-risk groups of the TCGA dataset,
GSE20685 and GSE31448 datasets, the R software pack-
age ESTIMATE was used to assess StromalScore, Immu-
neScore, ESTIMATEScore. The results showed that the
three immune scores were higher in the low-risk group
than those in the high-risk group (Fig. 7C-E).

Analysis of clinical characteristics in RiskScore

RiskScore analysis in clinical features showed that 9-
gene signature could significantly distinguish high- and
low-risk groups by age, T Stage, N Stage, MO Stage,
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Stage, ER status, PR status and HER2 status in TCGA
dataset (Fig. 8), but M1 Stage and Her2 positive could
not effectively distinguish high and low risk groups. This
further indicated that our model still had a strong pre-
dictive ability in different clinical signs.

By comparing the distribution of RiskScore between
groups of clinical features, we found that there were sig-
nificant differences between groups of T Stage, Stage, ER
status, PR status, HER2 status and molecular subtypes
(p <0.05) (Fig. 9).

Independence of RiskScore

To assess whether the model was an independent pre-
dictor of breast cancer, univariate and multivariate ana-
lyses were performed on clinical factors and RiskScore.
The results showed that showed independent prognostic
power of Age, T Stage, Stage and RiskScore (Fig. 10A,
B). We used clinical features Age, Stage, and RiskScore
together to build a nomogram model using TCGA data-
set. The results demonstrated that the RiskScore feature
had the greatest influence on the survival prediction, in-
dicating that the risk model based on the 9 genes can
better predict patients’ prognosis (Fig. 10C). In addition,
we also visualized the prediction performance of the
nomogram data for 1-, 3- and 5-year survival (Fig. 10D),
and the data proved that the nomogram had a strong
prediction performance.
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Advances of the model Discussion

By consulting the literature, we further selected four
prognostic-related risk models (a 10-gene signature
(Huang), a 4-gene signature (Qi), a 19-gene signature
(Su) and a 6-gene signature (Wang)) for comparison
with our 9-gene model. In order to promote the com-
parability of the models, we calculated the risk scores of
each BRCA sample in TCGA using the same method
based on the corresponding genes in the four models,
and divided the samples into the high-risk group and the
low-risk group. The ROC curves of the four models
showed that except for the 1-, 3-, and 5-year AUC of the
19-gene signature (Su) model, which are close to our
model, the AUC of other three model were all lower
than our model (Fig. 11A-D). KM curves indicated that
the BRCA prognosis in the high- and low-risk group
samples were different (log rank p < 0.05) (Fig. 11E-H).

A total of 5696 CNV-related genes and 2253 DEGs were
acquired from TCGA-BRCA dataset. After the intersec-
tion, 649 CNV-associated DEGs were determined and
subjected to univariate survival analysis, multivariate
COX analysis and LASSO regression analysis to con-
struct a prognostic model. Finally, 9 CNV-related prog-
nostic genes (ANO6, CELSR3, CLDN7, EPB41L4B,
FAMI166B, GPLD1, LEF1, PPARG and SUSD3) model
was developed. After a comprehensive analysis of the
clinical information, we found that these 9 genes were
associated with multiple clinical features of breast
cancer.

After reviewing the existing literature, in addition to
tumor-associated mutations, researchers have also fo-
cused on other variant subtypes such as copy number
variation [27]. Several pathological CNVs, such as CNV
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J

of BRCA1, MTUS1 and hTERT, have been identified in
the initiation and progression of breast cancer subtypes,
suggesting a specific contribution of CNVs to breast
cancer [6, 28]. The CNV signature has the potential to
be an effective biomarker for differentiating different tu-
mors. However, considering that CNVs are widely dis-
tributed in tumor genomes, traditional experimental
methods based on gene microarrays and real-time PCR
to identify specific CNV patterns for specific tumor sub-
types are often inefficient and time-consuming. In this
aspect, tumor-specific CNVs could be used as a new tool
to identify specific breast cancer-associated CNVs based
on whole-genome sequencing data. Thus, copy number

correlation studies may open a new direction to breast
cancer treatment and prognosis. Several copy number-
related prognostic indicators have been proposed. The
CNV map of the MammaPrint™ gene or Oncotype DX®
gene could predict the prognosis of patients with breast
cancer [29, 30]. This study identified prognostic genes
associated with CNV based on the whole genome se-
quence of breast cancer from the TCGA dataset, which
may be provided new diagnostic indicators.

By reviewing the existing literature, we found that
these 9 genes were more or less associated with tumor
development. ANO6 has a higher expression in gliomas,
and inhibition ANOG6 suppresses the proliferation and



Hu et al. Journal of Ovarian Research (2021) 14:103

Page 12 of 14

A
Names pvalue Hazard Ratio(95% ClI)
Age —— <1e-5 1.94(1.4,2.68) Ce i
T Stage —— 0.003 1.75(1.21,2.53) - “
N Stage — <1e-5 2.24(1.56,3.21)
M Stage —a—— <1e-5 4.92(2.94,8.25)
Stage —— <1e-5 2.71(1.94,3.8) ©
ER Status—s— 0.071 0.71(0.49,1.03) o]
PR Status —s— 0.092 0.75(0.53,1.05) o
Her2 Status +—=—— 0.082 1.55(0.94,2.55) ©
TNBC — 0.095 1.54(0.93,2.54) 09 |
RiskType —— <1e-5 2.97(2.09,4.22) E ©
0.500.711.01:412.0 HR 8
B a
Names pvalue Hazard Ratio(95% ClI) gg—
Age — <1e-5 2.83(1.72,4.65) =
T Stage — 0.023 2.24(1.12,4.5)
N Stage — 0.839 107(057,201) N RiskScore ROC
M Stage —a— 0.102 225(085,595) o Basal, AUC=0.72 95%CI(0.61-0.83)
Stage ——a——  0.033 2.31(1.07,4.98) Her2, AUC=0.71 95%Clﬁ .56-0.86
ER Status = 0.937 0.95(0.27,3.32) LumA, AUC_O 73 95%CI(0.64-0.8
PR Status —— = 0.586 0.8(0.35,1.82) o | h%’pmal /ijﬁco(? 829%02 0(5‘{359-185 )
Her2 Status — 0.747 1.12(0.56,2.21) © | | | : 1
TNBC ——s——— 0.262 1.99(0.6,6.58) 0.0 02 0 4 0 6 08 10
RiskTypel I e e B 0.003 2.27(1.32,3.92) ' ' False positive'rate ' ’
0.250.350.50.711.01.41 2.0 6.58
HR E S I
B 10 20 30 40 50 60 70 80 90 100 2<] ?\%/
Points : : : : : : : : : : go_ /
ZE
60 S
> E=AN
Age gy ok
w09 09 097 098 0.99
Stage H+v == Predicted 365 Dy survival
1+11 E‘_, nv|x||v|v|’
RiskS cf%§ I'/
iskScore . . : .
-4 -35-3 -25-2 -15-1 -050 05 1 15 2 25 3 35 58:].//
© 2 I
Total Points 8o
010 "20 30 40 50 60 70 80 90 100 110 120 130
b 080 085 090 095
Predicted 1095 Dy survival
_ . oo, T T
1-Year survival 09 0.8 £ <] %/?
3-Year survival X %/
09 08 07 05 03 25
o 4
5-Year survival §
0.9 0.8 0.7 05 03 0.1 = o 0.600.650.700.750.800.850.900.95
= Predicted 1825 Dy survival
Fig. 10 Independence of RiskScore. a: Univariate Cox survival analysis of clinical characteristics and RiskScore. b: Multivariate Cox survival analysis
of clinical characteristics and RiskScore. ¢: Nomogram constructed by RiskScore and Clinical characteristics. d: Corrected plot of survival rates
in nomogram

invasion of gliomas cells [31]. The significance of ANOG6
has also been found in bleeding disorders [32] and bone
dysplasia [33]. CELSR3 mRNA expression is upregulated
in hepatocellular carcinoma and indicates poor progno-
sis [34, 35]. Claudin-7 (CLDN7) is aberrantly expressed
in some types of cancers including gastric cancer [36],
human clear cell renal cell carcinoma [37] and colorectal
cancer [38]. EPB41L4B is upregulated in prostate adeno-
carcinoma [39]. Knockout and suppression therapies de-
signed for LEF1 have been shown to be effective in
reducing tumor growth, migration, and invasion of CLL,

CRC, glioblastoma multiforme (GBM), and renal cell
carcinoma (RCC) [40]. PPARG promotes the differenti-
ation of bladder epithelial cells and regulates the expres-
sion of mitochondrial genes [41]. A study has shown
that a lack of SUSD3 expression in breast cancer tissues
may be an important predictor of non-response to aro-
matase inhibitors [42]. However, FAM166B and GPLD1
have not been thoroughly studied in tumors.

Somatic mutation analysis of samples from the high-
and low-risk groups indicated that differences in mu-
tated genes may account for the genetic differences in
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breast cancer patients. The mutation of TP53 and TTN
was higher, and PIK3R1 was lower in the high-risk
group than in the low-risk group. Interestingly, these
three genes have been shown to have some tumor sup-
pressive effects in previous studies [43-45].

The advance of this study lies in the discovery that
copy number variation is associated with the mechanism
of breast cancer, which opens a new direction for breast
cancer treatment. Also, we identified hub genes closely
associated with breast cancer survival. Most of these
genes have been shown to affect tumor progression and
have the potential to be used in targeted therapies. How-
ever, most of the genes have not been well studied in re-
lation to breast cancer.

This study found that copy number variants are asso-
ciated with breast cancer and screened hub genes on
copy number variants, which may become new targets
for breast cancer treatment.
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