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Soils play a key role in meeting the UN Sustainable Development Goals
(SDGs). In this study, we review the contribution of soils to the regulation
of air quality, which is one of ‘Nature’s Contributions to People’ identified
by the Intergovernmental-Policy Platform on Biodiversity and Ecosystem
Services (IPBES). This is particularly relevant for SDG3 (health and well-
being) and 11 (sustainable cities and well-being) but also impacts other
SDGs. Soils can act as both a source and a sink of air pollutants (and their
precursors). In addition, soils support plant growth which plays a major
role in regulating air quality. The scale of the soil impacts on air quality
range from global (e.g. greenhouse gas fluxes, stratospheric ozone depletion)
to local (e.g. odours, particulates, pathogen transport). Harmful emissions
from soil can be increased or decreased by anthropogenic activity, while cli-
mate change is likely to modify future emissions patterns, both directly and
in response to human mitigation and adaption actions. Although soils are
not the only source of these pollutants, it is worthwhile managing them to
reduce erosion and nutrient losses to maintain soil health so we may con-
tinue to benefit from the contributions to good quality of life they provide.

This article is part of the theme issue ‘The role of soils in delivering
Nature’s Contributions to People’.
1. Introduction
Human society relies on the wise use of natural resources. In 2015, the UN
adopted the Sustainable Development Goals (SDGs), to provide a guideline
for all governments on what should be implemented to achieve sustainability
for nature and people. Soil has a key role to play in reaching these goals as it
contributes to people’s well-being through what has been formalized as ‘ecosys-
tem services’ [1], and more recently broadened to the term ‘Nature’s
Contributions to People’ or NCP [2]. In this paper, we will look specifically at
soil and its role with respect to the NCP ‘regulation of air quality’. This NCP
is defined by the Intergovernmental Platform on Biodiversity and Ecosystem
Services (IPBES) as ‘the regulation (by impediment or facilitation) by ecosys-
tems, of CO2/O2 balance, O3, sulphur oxide, nitrogen oxides (NO and NO2,
collectively NOx), volatile organic compounds (VOC), particulates, aerosols,
allergens. It concerns the filtration, fixation, degradation or storage of pollutants
that directly affect human health or infrastructure’. Air quality regulation is
essential for achieving SDG2 (zero hunger), SDG3 (good health and well-
being), SDG11 (sustainable cities and communities), SDG13 (climate action)
(see [3]) and SDG15 (life on land) [4]).

Soil interacts with air in both positive and negative ways for people’s well-
being (figure 1). It is critical for plant growth, which supports life on Earth
through photosynthesis, and vegetation is increasingly used to improve air
quality in urban and agricultural areas (e.g. [5]). Soil can also be a sink for air-
borne pollutants and has a direct regulatory function on gaseous atmospheric
constituents through soil microbes responsible for nutrient cycling and releas-
ing gases. However, soil can negatively affect air quality through being a
source of particulates and gaseous pollutants. Good air quality is fundamental
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Figure 1. Contribution of soil to air quality regulation. Examples of well-being topics are extracted from the OECD better life index (http://www.oecdbetterlifeindex.
org/). In this paper, we explore the relationships between soil and air quality and discuss them in relation to the SDGs. (Online version in colour.)
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for human health but is negatively affected by particulate air
pollution. Human health effects are mediated by the size,
mineralogy and composition (both chemical and biological)
of the dust particles. Atmospheric dust also influences the
global climate through effects on radiative balance and
cloud formation.

Sand and dust storms are perhaps the most obvious way
in which soil directly impacts air quality, with dust emissions
arising either from natural phenomena or from land manage-
ment activities. Dust emissions can also be experienced at a
generally smaller scale on agricultural lands, and other activi-
ties such as construction or quarrying can also facilitate the
release of dust.
2. How soils affect air quality
(a) Direct source of pollutants or precursors to

pollutants
(i) Particulates
Soil particles, commonly referred to as dust, arise from the
entrainment of soil particles into the air. This may occur
through the direct entrainment by wind of small soil particles
(less than 20 µm) that undergo long-range transport. Larger
particles can be entrained through fragmentation of larger
soil aggregates via saltation [6,7]. Direct emission of soil par-
ticles to air can arise from anthropogenic activities such as
mining, quarrying and agriculture. Dust emissions are also
indirectly influenced by anthropogenic activities and changes
in soil structure, and hence the erodibility of the soils (e.g.
[8,9]). Gaseous emissions from soil may also lead to particu-
late formation (see the next section).

The composition of the soil particles depends on mineral-
ogy and land-use activities, with land use influencing both
chemical contaminant and biotic contaminant load on the
soil. The size and composition of dust particles influence
both the biological (see §3a,b) and climate responses (see §3d).
Dust storms can transport soilborne minerals and patho-
gens long distances (figure 2). Most dust comes from
natural sources, with the majority coming from the Northern
Hemisphere ‘Dust Belt’, that extends from the west coast of
North Africa and the Middle East to central and South
Asia. The relative contribution of these dust sources influ-
enced by human action is highly uncertain (10–50%) [11]
but likely to be around 25% [12]. Anthropogenic sources
are dominated by agricultural activities, particularly around
ephemeral water bodies [13]. Unsustainable agricultural
and grazing activities and deforestation are the greatest
causes, especially in southern Sahel, along the Mediterranean
coast, North America and Argentina. Other climatic par-
ameters influencing wind erosion and generation of dust
include wind speed, wind direction, precipitation, evapor-
ation and air temperature [12,14].

Trends in dust storms are variable across the globe, but
simulations suggest global annual dust emissions have
increased by 25–50% over the last century due to a combi-
nation of land use and climate changes [12,15]. Recent
trends have shown that dust storm frequency has decreased
in some areas (Iran, China, Mauritania), which was attributed
to increases in precipitation [16].
(ii) Gases
There are several gas fluxes from soils resulting from
microbial, chemical and physical processes. These include
carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O),
NOx and ammonia (NH3). Soils can also produce smaller
amounts of volatile organic compounds (VOCs), hydrogen
sulfide (H2S) and sulfur dioxide (SO2). While these have
little influence on air quality at a global scale, they can
impact air quality locally. CO2, CH4 and N2O are problematic
due to their role as greenhouse gases, although N2O is also a
major stratospheric ozone depleter [17]. By contrast, NH3 and
NOx can lead to the formation of fine particulate matter,
which is a risk to human health, as well as spreading nitrogen
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Figure 2. Global transport of dust and selected airborne diseases. Adapted from Gonzalez-Martin et al. [10] and NASA (https://eoimages.gsfc.nasa.gov/images/
imagerecords/86000/86075/sedac_gis_2010_2012_lrg.jpg). (Online version in colour.)
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to environments where it could be damaging [18]. NOx and
CH4 can also act as precursors to the production of tropo-
spheric ozone [19], which can lead to respiratory problems
and plant damage.

Ammonia and NOx. Bouwman et al. [20] estimated a global
ammonia emissions inventory for 1990 of 54 Tg N yr–1. About
17% is from the application of synthetic fertilizers and almost
40% from the excreta of domestic animals, although some of
this will be from manure management systems rather than
from soils. For near-surface tropospheric NOx, soils are
responsible for about 12% (5.5 Tg yr–1) of total emissions [19].

Globally, the fraction of urea-N lost as NH3 from applied
urea on agricultural land ranges from 0.9 to 64.0%, with a
mean of 18% [21].

Microbial processes in the soil can produce N2O and NO.
Nitrification converts NH þ

4 to nitrate (NO �
3 ), reducing the

potential for further NH3 losses; however, N2O and NO are
produced as by-products. In addition, nitrate is more
mobile than ammonium in the soil and presents a greater
risk for water contamination. Nitrate is also the precursor
to denitrification, a sequence of microbial reactions that can
eventually convert nitrate to unreactive N2. However, the
environmentally undesirable gases N2O and NO are pro-
duced as steps in this process and can be lost from the soil
before denitrification is complete. The addition of nitrate fer-
tilizers also increases denitrification. The rate and extent of
these microbial processes are influenced by soil properties
(e.g. pH, texture and soil organic carbon) and climate con-
ditions (e.g. temperature and rainfall patterns), but can also
be influenced by land-use change or intensification that
results in soil degradation (e.g. soil organic matter loss, com-
paction, erosion, soil sealing, etc.)

Volatile organic carbons and odorous gases (SO2 and H2S).
Soil organisms can produce a wide variety of VOCs, particu-
larly under anaerobic conditions. The production of VOCs
can have ecological significance, e.g. signalling for synchro-
nous activities such as sporulation in fungi [22], and can be
detectable at local levels, e.g. boreal forests [23]. Emissions
from plants (see §4b) and anthropogenic sources rather
than direct emissions from soil are generally considered to
be a greater concern for air quality itself.

The odorous gases hydrogen sulfide (H2S) and sulfur
dioxide (SO2) can be produced in some soils. High concen-
trations of H2S can be fatal to humans and animals and at
lower concentrations, it has an unpleasant odour. Globally,
soils1 account for less than 15% of the total H2S source [24].
Soils are not usually considered a major source of SO2. How-
ever, Macdonald et al. [25] estimated up to 3 Tg yr–1 S could
be emitted from oxidation of sulfide-containing acid sulfate
soils. This would make soils a source of SO2 of a similar
magnitude to the 8 Tg yr–1 produced by volcanoes [26].
(b) Direct sink for air pollutants
Gases and particulates may be removed from the atmosphere
by wet (via precipitation) or dry deposition and consequently
interact with either plants or soil. Pollutants that enter the soil
can be subject to physical (e.g. adsorption, leaching), biological
(e.g. plant uptake, nitrification) or chemical (e.g. oxidation/
reduction) processes. These can result in the deposited
material being bound to the soil, taken up by plants,
re-emitted to the atmosphere or transported to waterways.
The incorporation of nutrients from atmospheric deposition
can be a source of nutrients, but it can also have negative
impacts such as acidification of soils, eutrophication and
other ecological effects [27].

Globally, it has been estimated that around 43 Tg nitrogen
[28] and 220 Tg sulfur [29] are deposited annually to terres-
trial ecosystems. The average wet S deposition rates range
from 19 kg S ha–1 yr–1 in Asia down to 2 kg S ha–1 yr–1 in
Oceania [29]. Holland et al. [28] found that global N depo-
sition rates followed the pattern: Northern Hemisphere
temperate regions > tropical regions > Southern Hemisphere
temperate regions.
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(c) Support for plant growth
Soils perform a critical function influencing air quality by
supporting the growth of plants, which in turn produce
oxygen (O2). The process of producing oxygen (photosyn-
thesis) removes CO2 from the atmosphere and sequesters
carbon, assisting in climate regulation.

Beyond this fundamental role, there is perhaps limited rec-
ognition of the role soil plays in influencing air quality through
supporting plant growth—despite the increasing recognition
and use of plants to improve air quality in both rural and
urban environments (e.g. [5] and references therein).

Vegetation can directly improve air quality through inter-
cepting atmospheric particles and absorbing gaseous
pollutants. The extent to which this occurs depends both on
the individual species (including features such as leaf surface
texture, size and configuration, and tree size) and on the
planting configuration used. Various tree configurations can
alter wind profiles or create local inversions to trap pollutants
so that the localized removal of pollutants is enhanced and/
or the exposure of people to pollutants is reduced (e.g. ped-
estrians alongside roadways) ([5] and references therein).
However, trees can also contribute to air pollution through
the emission of VOCs and pollen release.

In rural environments, plants are primarily used to reduce
the potentially erosive effects of wind and dispersion of gases
(e.g. around livestock pens, [30]) when planted as shelterbelts
upwind of a field or facility, and when planted downwind to
intercept and/or filter emitted particles and gases or to
increase dispersion of emitted contaminants to minimize
downwind effects [30,31].

In urban environments, multiple benefits in addition to
air quality benefits are recognized as arising from urban
vegetation. These are discussed in more detail in §3c.
3. Impacts of soil-induced air quality changes
Soils can affect air quality in many ways. The impacts of these
changes can have positive or negative consequences for
humans and other life forms. In this section, we discuss
these impacts in relation to the UN SDGs [1].

(a) Impacts on human health (SDG3)
The inhalation of particulate matter can negatively affect
human health. Soils contribute to the atmospheric particulate
load both directly as dust and indirectly via the reaction of
gaseous compounds (e.g. VOCs, ammonia, NOx) (§2).
Further, in the presence of NOx, VOCs can react in the atmos-
phere to form ozone, a noxious gas that can have acute and
chronic impacts on human respiratory and cardiovascular
system and can also cause damage to plants.

Particle size influences health effects, with the commonly
described size fraction of PM10 (particles with a diameter of
less than 10 µm) entering the lungs, and PM2.5 particles (par-
ticles with a diameter of less than 2.5 µm) able to penetrate
deep lung tissue. Particles larger than 10 µm are generally
trapped in the mucous membranes of the nose and throat
and can be ingested, still resulting in exposure to adsorbed
contaminants. Soil-derived particulates are generally larger
than PM2.5.

The composition of particles also influences health
responses. For example, diseases such as mesothelioma and
silicosis are influenced by the mineralogical composition of
the soil particles, with fibrous minerals such as naturally
occurring asbestos and erionite giving rise to mesothelioma
[32] and silica crystals giving rise to silicosis [33]. Soil par-
ticles may contain contaminants such as metals or organic
compounds. Exposure via inhalation is typically lower than
direct ingestion of contaminated soil but where contami-
nation is widespread and wind erosion occurs, inhalation
exposure may be greater.

Dust storms present an extreme example of the range of
health effects arising from dust exposure and have been
well documented in several countries, including developed
countries [33,34]. Rublee et al. [35], for example, found that
North American dust storms are associated with increases
in the same day and lagged demand for critical care services
at nearby hospitals. Respiratory ailments are among the most
widely noted consequences of dust exposure, but other
effects on human health range from cardiovascular ailments,
conjunctivitis, dermatological disorders, and even injury and
death related to transport accidents from dust [34,36]

Health effects may also arise from biotic material carried
on soil particles such as bacteria, pollen spores, fungi and
viruses. For example, endotoxins or lipopolysaccharides, the
major components of the outer membrane of Gram-negative
bacteria, are commonly used as indicators of the inflammatory
potential of particulates [37]. Microbes causing infectious dis-
eases such as influenza A, pulmonary coccidioidomycosis,
bacterial pneumonia and meningococcal meningitis may also
be present. More recently, PM2.5 particles and NO2 have
been suggested as important factors triggering the spread and
lethality of COVID-19 [38].
(b) Zero hunger (SDG2)
SDG2 refers to food security, improved nutrition and the pro-
motion of sustainable agriculture. Air pollution and food
production are both interlinked: while agriculture contributes
to air pollution via ammonia and other nitrogen compounds
(see §2a(ii)) or increased wind erosion through tillage, air pol-
lution can also negatively impact on food production and
food security [39]. The impacts are either direct, affecting
plant growth through the obstruction of photosynthesis and
animal health, or indirect, affecting the effectiveness of agri-
cultural inputs and thus crop yields. For instance, when soil
microbes digest the ammonia in the atmosphere, they can
make the soil more acidic, which can then reduce soil
microbial community diversity [40]. Particles with heavy
metals that are deposited onto topsoil through sedimentation,
impact or interception can also affect plant growth and seed
germination, ultimately reducing crop outputs [41,42]. How-
ever, this effect is minor compared with reduced productivity
associated with the loss of the soil resource through wind
erosion [36].

Airborne dust particles can also act as a vector for the
transport of plant and animal pathogens (figure 2), which
can then affect food production. Species within the genus
Puccinia are responsible for much of the worldwide economic
loss due to crop damage [43]; though it is known to spread
aerially, it has not been identified in dust samples. A
number of other plant and animal pathogens have been
detected in dust (e.g. [10]).

By promoting soil conservation management practices to
improve air quality, farmers can boost not only clean air but
also soil health.



Table 1. Measures to control wind erosion in cropland, rangelands and
natural ecosystems (from [12]).

cropland
rangeland and natural
ecosystems

reduce area and periods with

little or no soil cover (e.g.

adjustment of time of

planting, reduced tillage)

manage vegetation in rangelands

(e.g. reduce burning, avoid

overgrazing, over-exploitation)

increase soil resistance to wind

erosion (e.g. input of

organic residue)

protect vegetation in natural

steppe and desert areas (e.g.

retain diverse vegetation cover)

reduce wind speed within and

between fields

fix sand dunes (e.g. planting

dead fences, grass, shrubs)

reduce soil movement (e.g.

hedgerows, tree planting,

tillage practices)
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(c) Sustainable cities (SDG11)
Urban vegetation is recognized to provide a plethora of
benefits in addition to improving air quality, including ambi-
ent cooling and microclimate regulation (which can result in
additional air quality gains through reducing local energy
consumption and related emissions), storm water attenu-
ation, improved mental and physical health, enhanced
biodiversity, and climate change mitigation and adaptation
(e.g. [44,45]). The extent to which these benefits are realized
depends on the distribution and amount of green space
across the urban area, as well as the individual species
planted. Tools such as i-Tree, developed by the USDA, exist
to support planning, management and advocacy for urban
forests (e.g. [46,47]). Potentially negative impacts on air qual-
ity effects arising from biogenic VOC and pollen emissions
can also be managed through judicious selection of species
planted (e.g. [48]).

(d) Climate action (SDG13)
A detailed discussion of the soil impacts on climate change
are covered in Lal et al. [3]. However, in the context of soil
impacts on air quality, it is worth commenting that global
dust emissions are estimated to be the largest source of tropo-
spheric aerosols and can have profound impacts on Earth’s
biosphere. Specifically, these particles impact climate by scat-
tering and absorbing radiation (with clay particles being the
most significant [6]), serve as nuclei for cloud formation
and influence optical cloud properties [49]. Further climate
effects arise from deposition of dust aerosols in the ocean,
which provides limiting micronutrients such as iron influen-
cing productivity and carbon sequestration of ocean
ecosystems and affecting atmospheric concentrations of
greenhouse gases [6].

(e) Life on land and in water (SDG14 and 15)
Particulate and gaseous soil emissions (as well as other natu-
ral and anthropogenic emissions) can impact life on land and
water both directly and indirectly. Some of these are dis-
cussed above in relation to food security and impacts on
agricultural crops and animal health, and these same impacts
are relevant to non-agricultural systems. Differing sensi-
tivities to emissions that result in acidification, nutrient
addition or pollutants can directly alter soil biodiversity
and biomass/activity of soil organisms (e.g. [40,50,51]).
Changes to aboveground plant communities resulting from
emissions also have an indirect effect on soil biota through
the feedback between the two [52]. These alterations to biodi-
versity and function then impact a host of other ecosystem
processes and services (e.g. [53,54]). Effects on ocean ecosys-
tems (as described in the preceding section) can, for instance,
arise from the deposition of dust delivering limiting micronu-
trients that affect productivity.
4. Managing soils to improve air quality
The effectiveness of actions taken to manage soil to improve
air quality depends on the nature and significance of the
impact, and the efficacy of those actions. Specifically, manage-
ment approaches to mitigation will have more impact on air
quality in regions where the contribution of soil to the atmos-
pheric load of a given contaminant is high. However, many of
these management options have significant co-benefits, such
as maintaining soil health or improving human well-being.

(a) Erosion management
Strategies to control erosion in agricultural systems have lar-
gely been aimed at reducing soil exposure to wind, reducing
wind speed or reducing soil movement [12] (table 1). The
basic recommendation to reduce soil exposure to wind is by
protecting the soil with live or dead vegetation and by limit-
ing the time when the soil is bare. Vegetative barriers can act
through filtration and/or interception of airborne particles
and gases but also provide a root structure to keep the soil
in place. Wind barriers can disrupt the erosive flow of wind
over unprotected surfaces by slowing the airflow pattern
over the land surface and reducing wind speed by 50–80%
[12,31]. Other ways to stabilize soil movement involve
conditioning the soil with water to control dust. Water man-
agement and water harvesting techniques can mitigate the
suspension of soil particles in the air while helping other
co-benefits such as reduced soil evaporation and soil moist-
ure for better productivity [55].

Natural erosion in rangelands (natural grasslands or
shrublands grazed by domestic livestock) vary as a function
of climate, topography, vegetation composition and soil prop-
erties [56]. Preventive measures in rangelands, therefore,
focus on limiting anthropogenic land degradation by avoid-
ing overgrazing, burning or over-utilization in semi-arid
and arid regions [49].

In natural ecosystems, protection measures also aim to
reduce disturbance by retaining vegetation, reducing fire
risk and minimizing disturbance of natural vegetation patchi-
ness that could lead to desertification [57] (table 1).

(b) Fertilizer management
Almost half the nitrogen received by the world’s crops comes
from synthetics fertilizers [58], but excessive N fertilizer use
also results in reactive N entering the environment in harmful
forms. This includes the gases NH3, NOx and N2O, and the
water contaminant NO �

3 [59]. Fertilizer N inputs, therefore,
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need to be carefully managed to reduce N losses to the
environment by matching N inputs to plant growth.

The form of the N fertilizer applied also affects the sus-
ceptibility to gaseous losses. Ammonium- and urea- (which
hydrolyses to ammonium) based fertilizers are susceptible
to NH3 losses. Urea-based fertilizers tend to have the highest
volatilization losses due to the increase in pH following urea
hydrolysis [60]. By contrast, while nitrate-based fertilizers do
not produce NH3 (unless also containing ammonium), the
nitrate is susceptible to leaching and denitrification to pro-
duce NOx and N2O.

Slow-release fertilizers avoid having large amounts of
surplus N in the soil at any time. They can reduce NH3

losses by 40–78% compared with their conventional counter-
parts [61]. Organic fertilizers are similar to slow-release
fertilizers in that time is required for the organic N to be
mineralized to a plant-available form.

Another strategy is the use of urease inhibitors and nitri-
fication inhibitors that slow the rates of urea hydrolysis and
nitrification, respectively [61]. Slower urea hydrolysis reduces
the amount of NH3 losses, while slower nitrification reduces
the rate of leaching losses as well as N2O and NOx emissions.
However, nitrification inhibitors can produce higher rates of
ammonia emissions, particularly in soils with high pH and
low cation exchange capacity [21,62]. One solution is to use
both urease and nitrification inhibitors, which can reduce
both NH3 and N2O [61].

The method of fertilizer application can also affect the
gaseous losses. Subsurface application can decrease the loss
of NH3. Yan et al. [63] found that on average, in upland
crops and rice paddies in Asia, 23.5% of fertilizer N was
lost as NH3 for top-dressed application but only 11.5% for
incorporation of urea. Irrigating shortly after fertilizer appli-
cation can also facilitate the transport of nitrogen down the
soil profile where it is less vulnerable to gaseous loss. An
average reduction in ammonia losses of 35% using irrigation
compared with rain-fed or minimal irrigation was found by
Pan et al. [21].

Other soil amendments that can reduce NH3 losses
include compounds with a high ammonium-binding capacity
(e.g. zeolite) or acidifying effect (e.g. humic or fulvic acid)
[64,65].

The retention of crop residues on the soil surface is a
common anti-erosion practice. However, a potential draw-
back is that it may prevent applied fertilizer from reaching
the mineral soil, leading to increased NH3 losses [66].
(c) Urban environments
Dust emissions from soils in urban environments are primar-
ily restricted to localized activities such as construction,
including land development and are often tightly managed
as part of regulatory environmental management require-
ments. Thus, the main influence of soil on air quality in
urban environments arises from their role in supporting
plant growth, particularly tree growth. But underpinning
any plant growth is soil. Urban soils are often poor quality,
with low carbon and nutrient contents, compacted, and poss-
ibly contain contaminants. Poor soil quality is considered to
be among the most significant limiting factors for optimal
tree survival and growth in urban environments (e.g. [67]).
As such, improving soil quality can be of considerable
value to enhance plant growth. Several approaches can be
used, although the addition of organic material, e.g. composts,
mulches, is the most widespread and can be an ongoing strat-
egy (e.g. [68]). During land development, other strategies such
as retaining topsoil for use in vegetated areas and minimizing
compaction of these soils will be helpful.
(d) Soil-based technology
Biofiltration (removing gaseous contaminants through a bed
containing soil) is a comparatively cheap method for remov-
ing odorous or toxic gases from polluted gas streams [69].
Examples of gases that may be removed using soil filters
include hydrogen sulfide (H2S), ammonia (NH3) and hydro-
carbons such as methane (CH4), carbon monoxide (CO) and
ethylene (C2H2). The optimum performance of a biofilter
requires that the bed be sufficiently porous to enable gas
flow and that the soil moisture content and pH also be main-
tained at a sufficient level to sustain microbial activity [70,71].
The inoculation of soil with specific microbial species and/or
conditioning soil with prior exposure to contaminant gases
has also been shown to increase removal rates [72,73].

In addition to microbial processes, some chemical and
physical processes in soils can remove pollutants. For
example, iron-rich soils can be used to chemically remove
H2S from the gas stream by the formation of iron sulfide
[74,75].

Soils also play an important role in the reduction of pol-
lution from landfills. Soil and clay are common materials
used to cover landfills to reduce both the emission of gaseous
pollutants from the waste and the infiltration of water into the
landfill [76,77]. Soils from landfills can have large and highly
active methanotroph (methane-oxidizing microbes) popu-
lations, which can eliminate 10–100% of the CH4 from the
landfill gas [77,79].
(e) Adapting to climate change
Climate change is likely to alter the contribution of soils to air
quality not only through changes in temperature and rainfall
patterns but also through changes in management practices
to mitigate climate change impacts. However, it is difficult
to gauge the level of change, with atmospheric dust also
exerting an influence on climate through creating a dust–
climate feedback from changes in the radiative balance due
to atmospheric dust, and the sensitivity of the global dust
cycle to climate with the potential to shape the climate of
the major dust source regions such as Northern Africa and
the Sahel [80]. Future dust activity and gaseous emissions
are likely to depend on two main factors: land use in the
source region and climate. For dust, both the climate in the
dust region and the large-scale circulation that affects long-
distance dust transport are important. Handmer et al. [81]
noted low confidence in projecting future dust storm
changes, due to difficulties in projecting future land use.
However, dust storm activity is likely to increase where
already dry regions will be prone to increased drought
[12,82,83]. Climate change effects may not only increase
dust emissions, but also reactivate areas prone to wind ero-
sion [12]. Increased demand for water resources may also
contribute to further desiccation of ephemeral water bodies
and increased risks of dust storms. Reverse effects are also
possible, with areas with increased precipitation projected
in eastern Africa and east Asia.
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NH3 emission and deposition are highly climate sensitive
[84]. Future warming could potentially increase NH3 losses
from agriculture. Shen et al. [85] predicted that under an
intensely warming scenario, NH3 losses from agriculture in
the USA could increase by 80% by 2100, but this could be
mitigated by changing management practices.
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5. Conclusion and outlook
Soils are an integral part of Earth’s ecosystem and interact
with the atmosphere both directly and by supporting the
growth of plants. Plant photosynthesis is a major source of
O2 required by most animal life. Soils also play an important
role in the cycling of nitrogen, sulfur and carbon between the
biosphere and the atmosphere.

Soil dust emissions, from largely natural sources, are esti-
mated to be the largest source of tropospheric aerosols,
giving rise to multiple impacts such as influencing the
global radiative balance and cloud formation. However,
human intervention to mitigate these emissions is challen-
ging, given the vast areas from which the bulk of these
emissions arise.

While agricultural soils are a source of food and income
for people, they need to be carefully managed to avoid harm-
ful emissions of dust, NH3 and greenhouse gases to the
atmosphere, given these can lead to problems with human
and animal health, and environmental degradation.

Soils (and the microbes and plants they support) can,
however, be used to improve air quality at a local scale.
Examples of this include the use of urban trees to reduce
air pollution in cities and soil-based biofilters that can
remove contaminants from pollution sources.

Climate change is likely to change the interactions
between soil and air quality in a complex manner. Soil pro-
cesses will be directly affected by changes in temperature
and rainfall patterns, but also by changes in plant growth
and management practices.

Careful management of soils is essential to ensure we con-
tinue to receive the many benefits they provide us.
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