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Water quality regulation is an important ecosystem service function of soil. In
this study, the mechanism by which soil regulates water quality was reviewed,
and the effects of soil management on water quality were explored. A sciento-
metrics analysis was also conducted to explore the research fields and
hotspots of water quality regulation of soil in the past 5 years. This review
found that the pollutants entering the soil can be mitigated by precipitation,
adsorption and desorption, ion exchange, redox andmetabolic decomposition.
As anoptimal substrate, soil in constructedwetlandshas perfect performance in
the adsorption and passivation of pollutants such as nitrogen, phosphorus and
heavy metals in water, and degradation of pesticides and emerging contami-
nants. Mangrove wetlands play an important role in coastal zone protection
andcoastalwaterquality restoration.However, the excessive applicationof agri-
cultural chemicals causes soil overload, which leads to the occurrence of
agricultural non-point source pollution. Under the dual pressures of climate
change and food insecurity in the future, developing environmentally friendly
and economically feasible sustainable soil management measures is crucial for
maintaining the water purification function of soil by relying on the accurate
quantification of soil function based on big data and modelling.

This article is part of the theme issue ‘The role of soils in delivering
Nature’s Contributions to People’.
1. Introduction
Water quality is closely related to human health, and the contribution of soil to
the regulation of freshwater and coastal water quality may be declining accord-
ing to the assessment report of the Intergovernmental Science-Policy Platform
on Biodiversity and Ecosystem Services [1]. Mineral particles of different sizes
and organic matter constitute the main body of the soil structure, and different
types of pores exist between soil particles or soil organic–inorganic complexes,
making the soil play an important role in conserving water sources and regulat-
ing water quality [2]. Pollutants entering the soil can be reduced or eliminated
by sedimentation, adsorption and desorption, ion exchange, oxidation–
reduction and metabolic decomposition, among other processes, to improve
water quality [3]. Forest, grassland and wetland soils can absorb and degrade
pollutants caused by atmospheric deposition and sewage leakage to prevent
these pollutants from directly entering the water body (figure 1). As a coastal
wetland system, the mangrove system plays an important role in coastal zone
protection and coastal water quality restoration [4]. Constructed wetlands
(CWs) are multifunctional water purifiers, and previous studies have indicated
that CW with soil as a substrate has a high removal efficiency for pollutants
(such as nitrogen (N), phosphorus (P), chemical oxygen demand (COD),
biochemical oxygen demand (BOD5)) in domestic sewage (figure 1).

With the rapiddevelopmentof industryandagriculture, and theaggravationof
human activities, a large number of pollutants enter the soil. When the input
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Figure 1. Schematic diagram of the role of soil in regulating water quality. (Online version in colour.)
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pollutants exceed the self-purification capacity of the soil, the
soil productivity declines, and the soil can become polluted
(figure 1). Under the action of precipitation and irrigation, on
the one hand, soil moisture can migrate longitudinally through
soil pores into groundwater. In this process, the flow of soil
moisture can remove chemical substances in the soil through
physical and chemical processes, such as dissolution and leach-
ing.Mineralweatheringelements aswell asnatural andartificial
organic compounds are transported into thewater body [5]. On
the other hand, precipitation can bring soil particles and soluble
substances intosurfacewater throughsurface runoff, thus affect-
ingwater quality [6].Globally, agriculture is considered to be the
largest sourceofnon-point source (NPS)pollution in surfaceand
groundwater systems. Approximately 3–4 million tons of P2O5

are transported from soil to water annually worldwide [7],
and 29.1–67.5 and 25–45.9%, respectively, of total N and P flow-
ing into rivers are from farmland [8]. Up to 90 types of pesticides
were detected in the water bodies of the Strymonas Basin in
Greece, and themaximumconcentrations of chlorpyrifos, fuma-
ric acid and terbutin far exceeded the maximum allowable
concentration stipulated in the European Union Drinking
Water Directive [9]. Therefore, soil management is of great sig-
nificance in water quality control.

A scientometrics analysis through Citespace 5.7.R2
(http://cluster.ischool.drexel.edu/~cchen/citespace/down-
load/) was conducted to explore the research fields and
hotspots of water quality regulation of soil in the past 5
years (electronic supplementary material). Based on the soil–
water interaction under natural and artificial management
conditions, this review describes the mechanism of soil regu-
lation of water quality, discusses the factors affecting the
function of soil in regulating water quality and explores sus-
tainable soil management for water quality improvement.
2. Mechanism of water quality regulation by soil
Soil regulates and stores water through infiltration and
percolation. Infiltration refers to the process of water entering
the soil through the pores of the topsoil, and the process of
infiltration and diffusion of water from the surface layer to the
deep layer along the pores is termed percolation. These two
processes significantly reduce surface runoff, alleviate the
collection of precipitation in the rainy season and exert a
significant impact on soil flow and groundwater recharge [10].

Forest and grassland ecosystems minimize surface runoff
and increased soil water storage through vegetation (figure 1).
For example, grassland and scrubland prevent rain splashing
effectively and reduce soil erosion by covering the grass and
litter layers near the soil surface [11]. Soil erosion caused by
land-use change has been a research hotspot in recent years
(figure 2a), and soil erosion has a significant negative
impact on water quality, such as an increase in water turbid-
ity and chemical substance concentrations [12]. The increase
in soil erosion rate caused by natural deforestation has a
significant downstream impact on freshwater and estuarine
environments through changes in hydrological processes, as
well as the direct impact of sediments on freshwater species
[13]. By combining the existing soil erosion and water quality
models, logging above 400 m upstream of Kolombangara
Island in the Solomon Islands is directly related to river
water quality [14]. Recently, the public has been paying
greater attention to the effects of forest degradation on
human health. There is a close relationship between the
decrease in forest coverage in the upstream watershed and
the high incidence rate of disease outbreaks caused by
aquatic pathogens [15]. In addition to external forces such
as vegetation and meteorological conditions, soil properties
(soil texture, bulk density, water content, cohesive force,
aggregate and organic matter content) significantly affect
the soil separation process. Wischmeier et al. [16] proposed
an evaluation index system covering five indexes: silt + very
fine sand content, sand content, organic matter content, soil
structure grade and soil permeability grade. The evaluation
index system greatly improved the prediction accuracy of
the soil erosion model. The soil property-based indexes
have certain regional characteristics, and the responses of
the indicators may vary in different regions. Bonilla & John-
son [17] found that there was no correlation between soil
erodibility and soil organic matter, although many studies
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Figure 2. Frequency and centrality of keywords in published papers during 2016–2020. (a) Water quality and soil of forest, grassland and natural wetland; (b) water
quality and soil of constructed wetland; (c) agricultural NPS pollution and (d ) WWI. SWAT, soil and water assessment tool. (Online version in colour.)
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have found significant positive correlations. The soil erodibil-
ity index was positively correlated with soil bulk density and
negatively correlated with soil organic carbon and clay con-
tent [18]. In addition, soil aggregates, as the basic unit of
soil structure, have a significant impact on soil erodibility
and can be used as an important indicator to characterize
soil erodibility [19]. Relevant studies have found that aggre-
gate content in soil, size, stability index, mean weight
diameter (MWD) and mean geometric diameter were signifi-
cantly related to soil erodibility [19]. For example, Ayoubi
et al. [18] found that the soil erodibility index was significantly
negatively correlated with MWD.

The rate of water percolation mainly depends on the size
of the non-capillary pores in the soil. Under the same con-
ditions, the larger the non-capillary porosity of the soil, the
better the permeability of the soil and the lower the surface
runoff [20]. The effect of the soil layer on water quality regu-
lation is mainly manifested in the absorption of ions by litter
and soil colloids, the decomposition of compounds and the
absorption of ions by microorganisms, physical and chemical
adsorption, and precipitation of metal elements by soil [21].
For example, only a small amount of runoff was formed on
a grassland in Miyagi Prefecture, Japan, after snow melting,
and the concentration of radioactive caesium in runoff
samples was lower than the standard limit value of drinking
water in Japan, which indicated the protective effect of natu-
ral ecosystems on water quality safety [22]. Forests have also
been found to purify wastewater from cities, industries and
agriculture through soil infiltration, and this type of system
is called a forest water reuse system. McEachran et al. [23]
found that large amounts of pharmaceuticals and personal
care products were removed from wastewater by a forest
water reuse system before reaching the groundwater and
watershed outlet.

The contribution of natural wetlands to water purification
has been widely studied, and wetland soil/sediment plays
an important role in water quality regulation because of the
long-term retention of chemical elements in soil/sediment
(figure 1) [24]. The adsorption of heavy metals by clay and
organic matter and the chelation of organic matter were
observed in the surface sediments of the Yellow River Estuary
and adjacent sea areas [25]. The fixation of heavy metals in
mangrovesmay also be related to the presence of glycoproteins
and microorganisms. Wen et al. [26] showed that the large dis-
tribution of glomalin-related soil protein (GRSP) in sediments
and suspended solids improved the fixation potential of
heavy metals and metalloid arsenic in mangrove aquatic eco-
systems, and GRSP is a glycoprotein with strong heavy metal
chelating capacity. Kayalvizhi & Kathiresan [4] also found
the potential of Bacillus marisflavi to remove heavy metals
and solubilize zinc. Denitrification is an important process in
wetland nitrogen removal [24] (figure 2b). The denitrification
rate of salt marsh was positively correlated with soil moisture,
soil organic matter and nitrate content, and negatively corre-
lated with soil pH and salinity [27–29]. Anammox also plays
an important role in N removal in estuaries and coastal wet-
lands. In general, an increase in salinity increases the activity
and abundance of anammox bacteria, but high salinity
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causes physiological stress in the short term [29]. Freeze–thaw
cycles have significant effects on the biogeochemical processes
of wetland soils in the middle and high latitudes. The freeze–
thaw process causes great damage to water-stable aggregate
components larger than 2 mm, increased water stable
aggregate (WSA) components smaller than 0.053 mm and sig-
nificantly increased the contents of ammonium and nitrate,
respiration rate and total nitrification rate [30]. Human activi-
ties that affect the water, sediment and nutrient loads of
wetlands may significantly alter wetland plant and microbial
communities. Therefore, understanding the mechanisms of
biogeochemical cycles in wetlands is of great significance for
wetland restoration and protection.
Phil.Trans.R.Soc.B
376:20200176
3. Water quality degradation owing to improper
soil management

The harmful effects of deforestation, overgrazing, tillage and
inappropriate agricultural practices on soil erosion are well
known, and the acceleration of soil erosion has been the
main threat to soil safety [31]. Compared with 2001, global
soil erosion increased by 2.5% in 2012 to 35.9 Pg [32]. It is
generally believed that soil erosion can induce soil nutrient
deficiency and land degradation, and soil erosion also leads
to many environmental problems, such as sedimentation, sil-
tation and eutrophication of water bodies or the aggravation
of floods. For example, it was found that 45.9% of the
decrease in water turbidity in the Yangtze River region was
related to the reduction of soil erosion, while 42.5% of the
increase in water turbidity may be affected by the intensifica-
tion of soil erosion [33]. Nutrients, heavy metals and
chemicals can also migrate with soil particles, eventually
leading to the eutrophication of water bodies and destruction
of fragile aquatic ecosystems.

Owing to the extensive use of chemical inputs, pollutants
enter the surface and groundwater through runoff and
leaching which is called agricultural non-point source (NPS)
pollution (figure 1) [34]. In 2018, the total input ofN, P and pes-
ticides in global agriculture was approximately 108.7, 40.6 and
4.1 Mt, ofwhich the consumption ofN andP fertilizer inChina,
India, the USA, Brazil and Pakistan accounted for more than
60%, and the consumption of pesticides in China, the USA,
Brazil, Argentina and Canada accounted for 38.5% (figure 3)
[35]. The total consumption of nitrogen and phosphorus fertili-
zers in China and India has been on the rise, but the
consumption in China has shown a downward trend in the
past 5 years, which is related to a series of measures taken by
the Chinese government, such as zero growth of chemical
fertilizer and soil testing and formula fertilization projects.
Nevertheless, the use of pesticides in China has increased
rapidly, although it has stabilized in the past 5 years (figure 3).

According to the Environmental Protection Agency, agri-
cultural NPS is the largest source of surface water pollution,
contributing two-thirds of the total pollution load. In some
European countries (including Denmark, Norway, Sweden,
The Netherlands, Finland and the UK), agriculture contrib-
utes 50–90% and 30–50% of the total N and P loads in the
water environment, respectively [36]. According to a 2017
survey, pollutants discharged from agricultural sources in
China had a great impact on the water environment, and
the N and P loads from cropland accounted for 24% of the
total [37].
The precise quantification of pollutant losses from site to
regional scale is required for NPS control approaches, and
the estimation of N and P losses has become a significant
research interest in recent years (figure 2c). Mekonnen &Hoek-
stra [38] estimated the anthropogenic N and P loads of global
freshwater at a spatial resolution of 5 × 5 arc minutes from
2002 to 2010. Based on the long-term balance of soil N, it was
found that crop planting contributed three-quarters of the
global load, and the amount of P loss from crop planting con-
tributed 38% of the total load using the erosion-runoff-leaching
fraction, which considered the soil texture, soil erosion vulner-
ability, soil P content, rainfall intensity and management
measures. The loss of farmland with different crop types is
different (table 1). In general, the nutrient loss rates in the
paddy rice planting season were higher than those in other
crops, and the loss rates from runoff and leaching in vegetable
fieldswere also obvious (table 1). Based on data from the litera-
ture on N and P loss in open field vegetable systems in China
from 1990 to 2018, it was found that the loss of N and P in
the fruit vegetable system accounted for 13.1% and 3.95% of
the fertilizer amount, while the loss rates of leaf vegetables
were 4.63% and 2.57%, and stem/root vegetables were only
1.85% and 0.07%, respectively [39]. Redundancy analysis indi-
cated that the contribution of the soil N pool to N loss was
greater than that of fertilizer input, while the contribution of
P input to P loss was greater than that of the P pool in soil [39].

As a special hydrological system, the karst system is
defined by the uneven distribution of high-permeability
dissolution channels developed in carbonate rocks and the con-
nectivity of these channels with the surface, in which nutrient
leaching is unique. A survey of P transfer from high-P agricul-
tural soil to karst aquifer in Mayo County, Ireland, revealed a
low concentration of total P in groundwater [44]. Jarvie et al.
[45] found that 90% of the annual dissolved P flux remained
on the surface of 2–3 m of the karst, which may reduce the
risk of losses caused by acute sudden storms of P. However,
subsequent P reactivation and transfer may provide a long-
term source of residual P transported through springs to
surface water [46].

As estimated, 1–6% of pesticides may be lost to the water
environment through runoff and drainage, depending on the
slope of the field, agronomic measures, the existence of under-
ground drainage ditches and the amount and time of rainfall
after application [47]. Adsorption, degradation and migration
are key processes that determine the fate of pesticides in the
environment [47]. Adsorption is the result of the interaction
between the pesticide and soil colloids, which can be reversible
or irreversible. However, water movement in soil is the main
mechanism of pesticide transfer to the surface and ground-
water [48]. The hypothesis of pesticide migration in soil
includes preferential flow, co-transportation with colloidal
substances and the combination of these two processes [49].
The physico-chemical properties of pesticides, volatilization
rate, soil texture, soil organic matter content and permeabi-
lity, root uptake, pesticide application method/dose and
climate changewere the key factors affecting pesticide leaching
[50]. In addition to clay content and other characteristics of
soil, the amount of organic C was considered to be the main
factor leading to the adsorption, degradation and migration of
pesticides [51]. The adsorption capacity of organic matter was
strong, and the increase in organic matter can lead to changes
in the soil pore structure andaffectwatermovement;meanwhile,
dissolved organic matter and pesticides compete for adsorption
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sites. The addition of organicmaterials can also affect the activity
of soil microorganisms, which may affect pesticide degradation.

Model application plays an important role in the evaluation
and prediction of NPS and is one of the research hotspots
(figure 2c). Among the models, the soil and water assessment
tool (SWAT)wasundoubtedly themostwidely used (figure 2c).
The SWAT is a large- and medium-scale watershed distributed
model with a physical mechanism developed by the USDA in
1993 [52]. This model aims to assist water resourcemanagers in
assessingwater supply andNPS in large basins [53]. The SWAT
uses a large amount of basic watershed data such as
meteorological data, soil data, topography, vegetation coverage
and land management information as inputs to directly simu-
late physical processes, including water movement, sediment
movement, plant growth processes and nutrient circulation.
However, the model parameters need to be calibrated to
improve themodel efficiencywhen simulatingNPS in different
countries or regions. For example, Abbaspour et al. [54] com-
bined calibration tools with high spatial resolution data to
calibrate the N load of rivers and the production of wheat,
corn and barley, and the final calibratedmodel and results pro-
vide information support for the European Water Framework.



Table 1. Examples of runoff and leaching loss rates of N and P loss from the cultivation of different crops.

location crop type N loss rate P loss rate reference

13 provinces in China paddy rice 8.79% (runoff ) 1.49% (runoff ) [39]

upland crops 5.32% (runoff ) 1.91% (runoff )

vegetable 6.27% (runoff ) 4.08% (runoff )

Jeollabuk-do, South Korea paddy rice 11.3–19.1% (surface runoff ) 0.5–1.7% (surface runoff ) [40]

0.2–0.8% (subsurface loss) 0.02–0.04% (subsurface loss)

Colombia, USA potato 54.7% (runoff and leaching) 0.03% (runoff and leaching) [41]

Ballantrae, New Zealand pasture 15.4% (runoff and leaching) 2.06% (runoff and leaching) [42]

Georgia, USA cotton 8.37–8.71% (runoff ) [43]

Table 2. Examples of the removal efficiency of different pollutants in constructed wetlands. FIB, faecal indicator bacteria.

location type of constructed wetland pollutant and removal rate reference

Dali, China free surface flow CW 63.7% and 64.0% of N and P [55]

Hangzhou, China free surface flow CW 45% of N, 57% of NO3
−–N and 78% of P [57]

Piracicaba, Brazil vertical subsurface flow CW 93% of P [58]

Florida, USA free surface flow CW 68% of faecal coliform, 42% of P, 35% of N and 23% of Zn [59]

Strasbourg, eastern

France

pond followed by a vertical

subsurface flow CW

100% of dissolved Cr, Co, Cu, Pb and Zn, 100% of particulate Cu, Pb and

Zn, 97% of particulate Cr and 98% of particulate Co

[60]

Catalonia, Spain free surface flow CW 73% of pesticides, 62% of contaminants of emerging concern [61]

Tucson, Arizona,

USA

vertical subsurface flow CW 98.8%, 98.2% and 95.2% of the total coliform, FIB and E. coli phage [62]

Ireland free surface flow CW 5%, 60%, 31% and 86% of Cd, Cu, Pb and Zn [63]
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As shown in figure 3, there were significant differences in
N, P and pesticide input per unit area between different
countries, indicating large discrepancies in management
levels. The technologies for agricultural NPS prevention
include source control, process interception and end purifi-
cation. Source control mainly achieves the goal of reducing
the generation and discharge of pollutants by optimizing
agricultural management, such as integrated water and ferti-
lizer management technology, which means that measures
are taken to intercept, degrade or use the migration pathways
of pollutants, thereby reducing the discharge of pollutants
into water bodies; end purification refers to the prevention
technology of pollution treatment and purification by
taking corresponding engineering measures according to
the pollution type, such as setting the CW as a buffer zone
in low-lying areas of large-scale farmlands [36].
4. Measures for water purification by soil
CWengineering developed in the 1970s is an effective measure
for purifying water quality. CWs are constructed and super-
vised ecosystems that reflect the characteristics of natural
wetlands (figure 1). Theymake full use of the physical, chemical
and biological cooperation of the substrate–microorganism–
plant complex ecosystem to achieve wastewater purification.
The removal mechanism of pollutants by CW generally
includes adsorption and sedimentation of the substrate,
degradation and passivation of microorganisms, enrichment
and degradation of aquatic plants, and degradation of biofilm
[55]. The substrate is an important factor affecting hydraulic
performance, plant growth and system blockage in CWs [56].
Wang et al. [56] used the indexes of contaminant removal
capacity, availability, likely cost, permeability and reusability
to score different substrates of CWs and found that both soil/
sediment and gravel, with advantages in cost and efficiency,
had the highest score.

The subjects related to the removal of N and P in water by
CW have a high centrality as hotspots of concern (figure 2b).
CW had a significant effect on nutrient removal (table 2).
Microbial denitrification and anaerobic ammonia oxidation
play major roles in removing N from CW soil, followed by
soil adsorption and plant absorption [64]. The P retention
capacity of CW soil was related to the content of amorphous
and weakly crystalline Fe and Al, and the content of organic
matter [65]. The properties of wastewater can affect the
removal of nutrients from CW. For example, CWs are often
used to treat saline wastewater in coastal cities. Laboratory-
scale CWs with filter layers of soil, zeolite, anthracite and
gravel had removal rates of 73%, 77% and 66% for total N,
ammonium and nitrate at 0 and 0.5% salinity, respectively,
while the rates decreased to 44%, 59% and 49%, respectively,
at 2% salinity [66].

The removal efficiency of heavy metals varies greatly
with the types of CWs, and the vertical subsurface flow CW
had a higher removal efficiency than the free surface flow
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CW (table 2). Potential removal processes for divalent cation
heavy metals include particle sedimentation, precipitation
(especially precipitation with sulfides under anaerobic con-
ditions), co-precipitation, sorption (cation exchange) and
plant uptake [67]. It was also found that metal accumulation
in vegetation was almost negligible compared with that in
the sediment [63].

Soil/sediment in the CW can remove pesticides by adsorp-
tion and microbial degradation (table 2). Pesticides have been
proven to be removed by biodegradation and photodegrada-
tion, but in some cases, hydrolysis or adsorption of organic
matter can also play a role [68]. However, the latter was less
likely because most insecticides were polar. Microbial degra-
dation of pesticides is essentially an enzymatic reaction,
which refers to the process by whichmicroorganisms use pesti-
cides as food substrates to promote their own growth while
promoting pesticide degradation.Microorganisms can promote
the degradation of pesticides through enzymatic reactions and
can also affect degradation by changing the environmental con-
ditions of pesticide degradation [69]. Vallée et al. [70] found that
the presence of plants in the CW can increase the adsorption
capacity of soil/sediment to pesticides, which was owing to
the fact that plant roots can absorb pesticides, and the presence
of plants increased the retention time of water and prolonged
the reaction time between soil/sediment and pesticides.

Recently, the removal of emerging pollutants fromwater by
soil/sediment in CW has become a hot topic. CWs with soil/
sediment substrates can effectively remove drugs, dyes, halo-
genated flame retardants and many other organic pollutants
(table 2). Hussain et al. [71] found that the removal efficiency
of sandy soil was higher than that of sandy loam because
more water could be immersed in sand, which provided
more interaction between drugs and the matrix. CW can also
effectively remove faecal indicator bacteria (FIB) and antibac-
terial resistance genes in wastewater (table 2). The removal
mechanism of FIB in CWs was that FIB was absorbed by soil
particles in the water and fixed as the soil particles settled
[72]. Root exudate/rhizosphere microorganisms may also
have adverse effects on the survival of faecal microorganisms
[73]. According to an overview by Alexandros & Akratos
[74], the removal rate of pathogens in CWs can be as high as
99%. The removal of pathogenic microorganisms in CWs was
accomplished by the combination of chemicals (such as oxi-
dation, sunlight and ultraviolet radiation, exposure of plant
biocides, adsorption of organic matter and biofilm), physical
processes (such as filtration and precipitation) and biology
(such as predation, biodegradation and antibiotics).

The long-term operation of CWs will inevitably lead to
the significant accumulation of pollutants in soil and sedi-
ment, which may be re-released in the future and bring
risks. Therefore, it is necessary to maintain and update the
wetland systems. The application of phytoremediation in
CW, the role of biodiversity in the purification of water and
the application of these models have attracted more attention
(figure 2b).

As an important alternativewater resource, wastewater can
be used in agriculture to compensate for water shortages.
Wastewater irrigation (WWI) means that the wastewater is
re-used for irrigation after being treated tomeet thewater qual-
ity requirements of the corresponding crops (figure 1). This
practice avoids the discharge of pollutants into the water
body. Moreover, because crops, microorganisms in the soil,
and the soil itself can purify wastewater, after secondary
treatments such as oxidation ponds and oxidation ditches, the
farmland carries out stronger physical, chemical and biological
purification of the treated wastewater, thereby increasing the
supply of groundwater [75]. This process is equivalent to a
higher level of wastewater purification, reducing the number
of stages and the complexity of treatment, thus reducing the
cost. WWI has been employed for over 100 years worldwide.
In Europe, the USA and China, the reuse rate of wastewater
increases by 10–29% every year, and Australia has reached a
reuse rate of 41% [76]. Israel is a leader in WWI, accounting
for more than 40% of the agricultural water flow from recycled
wastewater [77]. As shown in figure 2d, the centrality of soil
removal, heavy metals, growth and risk assessment associated
withWWIwas the highest, which indicates that in recent years
researchers have focused on the positive role of WWI in
crop production and the importance of soil in water quality
regulation, and also found the environmental risks—such as
heavy metal enrichment that WWI may bring.

The treated wastewater contained a variety of components
thatwere intercepted by the soil and purified, and the clean lea-
chate increased the recharge of groundwater. For example,
Nzediegwu et al. [78] used wastewater containing heavy
metals for irrigation, and no heavymetals were detected in lea-
chate. Some studies have shown that therewas no difference in
bacteria and pathogens in soil and vegetables between those
irrigated with clean water and or with treated wastewater,
while the clay in soil had a special stabilizing effect on the
existence of potential microbial pathogens [79]. The treated
wastewater contains growth-promoting components, thus pro-
moting the growth of crops [80]. Compared with clean water
irrigation, WWI can reduce fertilizer consumption by 45% for
wheat and 94% for Alfalfa [81]. However, Zolti’s experiment
on WWI in Kiryat gat, northern Negev, Israel, showed that
the yield of tomato and lettucewould be reduced by using trea-
ted tertiary wastewater, whichmay be related to the increase in
soil electrical conductivity [82]. Of course, the impact of WWI
on yieldwas complicated bywater quality, soil properties, crop
types, agricultural practices and environmental conditions.

Untreated or partially treated wastewater has been used
to irrigate over 20 million ha of land worldwide [81]. Without
proper management, pathogenic microorganisms and chemi-
cal pollutants (e.g. engineering nanoparticles, salts, heavy
metals and antibiotics) in wastewater may pose serious
risks to human health and the environment. Ibekwe et al.
[83] reported that treated sewage contained a certain
amount of potential pathogens, which would affect soil
health and food safety; however, the application of biochar
could mitigate the microbial pollution caused by sewage irri-
gation [50]. A study indicated that biochar application could
also reduce the contents of Cd and Zn in the pulp and peel of
tuber [78]. A review by Poustie et al. [77] found that the posi-
tive effects of wastewater nutrients on crop production may
be offset by the negative effects of high salt concentrations.
An accumulation of tetracycline, sulfamethoxazole and resist-
ance genes was found in the soil after long-term irrigation
with domestic sewage and fishpond wastewater, and the con-
tent in soil irrigated by fish pond wastewater was higher than
that irrigated by domestic sewage [84].

In view of this, formulating a reasonable WWI strategy
is necessary for water purification and safe production.
In the past 2 years (figure 2d ), researchers have focused on
the risk of WWI on human health, the development of
WWI technology (such as combining with phytoremediation)
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and the assessment of soil properties suitable for WWI. First,
wastewater should be treated to fit the quality standard.
Second, the suitability of the WWI should be evaluated. For
example, WWI was not suitable in highly permeable soils,
high groundwater levels, aquifer outcrops and centralized
drinking water sources. Studies have shown that sandy clay
loam is more resistant to soil erosion caused by WWI than
loam [85]. Moreover, suitable irrigation techniques can be
used to reduce the risks. Flood irrigation may seriously pol-
lute the entire farmland, and drip irrigation is the most
environmentally friendly method [81]. Finally, the ground-
water affected by WWI should be monitored frequently to
determine the performance of the soil as a biogeochemical
filter.
il.Trans.R.Soc.B
376:20200176
5. Conclusion
Soil has a positive impact on water quality purification
through adsorption and desorption, ion exchange, redox
and metabolic decomposition, whether in natural ecosystems
such as forests, grasslands, and natural wetlands or CWs and
farmland irrigated by wastewater. However, changes in land-
use patterns and high intensities of agricultural soil use have
a negative impact on water quality through soil erosion, dis-
solution and leaching of nutrients and other pollutants. The
development of an environmentally friendly sustainable soil
management mode for the efficient use of resources is crucial
for maintaining and improving the ecosystem service func-
tion of soil for water quality regulation.
6. Outlook
The following issues should be addressed in future research
according to this review. First, climate change has frequently
appeared as a keyword in studies on the relationship between
soil and water quality, indicating that researchers currently
focus on the impact of climate change on the service function
of soil ecosystems and the challenges that climate change will
bring to sustainable soil management in the future. A method
to improve the accuracy of climate change predictions is
suggested. Second, big data and modelling will undoubtedly
play an important role in future research and management
efforts. For example, the SWAT model was coupled with
the groundwater model (MODFLOW) to quantify the long-
term impact of the best management scheme on water quality
affected by soil erosion and nutrient leaching at high spatial
resolution [86]. In addition, the localization of model par-
ameters and the construction of regional characteristic
models should be carried out. Third, the construction of a
soil sustainable management model is necessary to ensure
the sustainable development of the economy and environ-
ment. The role of soil aggregates and biochar amendment
in water quality regulation has been investigated, providing
new ideas for sustainable soil management. A study has com-
bined the watershed model with the cost–benefit curve to
quantify the reduction effect of different best management
practices on N and P loads and the cost to be paid, and finally
determined the best scheme suitable for the basin [87]. There-
fore, coupling the environmental model with the economic
model to identify the optimal mode for specific regions is
also a future research trend.
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