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Soil and soil biodiversity play critical roles in Nature’s Contributions to People
(NCP) # 10, defined as Nature’s ability to regulate direct detrimental effects on
humans, and on human-important plants and animals, through the control or
regulation of particular organisms considered to be harmful. We provide an
overview of pathogens in soil, focusing on human and crop pathogens, and
discuss general strategies, and examples, of how soils’ extraordinarily diverse
microbial communities regulate soil-borne pathogens. We review the ecologi-
cal principles underpinning the regulation of soil pathogens, as well as
relationships between pathogen suppression and soil health. Mechanisms
and specific examples are presented of how soil and soil biota are involved
in regulating pathogens of humans and plants. We evaluate how specific agri-
cultural management practices can either promote or interfere with soil’s
ability to regulate pathogens. Finally, we conclude with how integrating soil,
plant, animal and human health through a ‘One Health’ framework could
lead to more integrated, efficient and multifunctional strategies for regulating
detrimental organisms and processes.

This article is part of the theme issue ‘The role of soils in delivering
Nature’s Contributions to People’.
1. Introduction
(a) Overview
Soil’s vast biodiversity is crucial in regulating the impacts of pathogens and
pests on microorganisms, plants and animals, including humans [1,2]. The
complexity of soils’ diverse communities and micro-environments provide a
myriad of mechanisms, and potential solutions, for regulating detrimental
organisms. Many of these biological processes are indirect, not visible, involve
the actions of complex consortia of organisms, and are intimately linked to their
physical environment and its management. Nonetheless, over the past few
decades, the growing availability of new tools, both molecular and imaging,
has expanded our ability to investigate and elucidate these complex soil
phenomena.

The Intergovernmental Science-Policy Platform on Biodiversity and Ecosys-
tem Services (IPBES) introduced the framework of Nature’s Contributions to
People (NCP) defined as ‘all the positive contributions, losses or detriments,
that people obtain from nature’ to capture both beneficial and harmful effects
of nature on people’s quality of life [3–5]. NCP include both positive and nega-
tive contributions of all of living nature (e.g. diversity of organisms, ecosystems
and processes) to people’s quality of life [6]. Here, we specifically explore how
soil contributes to NCP #10, defined as nature’s ability to regulate direct
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detrimental effects on humans, and on human-important
plants and animals, through the control or stimulation of par-
ticular organisms considered to be harmful [6].

Though NCP #10 encompasses the regulation of a variety
of categories of detrimental organisms, including pests, pre-
dators, competitors, parasites and other potentially harmful
organisms, we focus specifically on microbial pathogens,
with an emphasis on humans and crops. Considering both
biological and abiotic processes and properties, we first
review the ecological principles underpinning regulation of
pathogens, as well as relationships between pathogen sup-
pression and soil health. We provide specific examples of
ways in which soil can control the potential for pathogens
to infect humans and crops. Agricultural management prac-
tices used to control pathogens are discussed with respect
to how they may promote or interfere with soils’ ability to
regulate detrimental organisms. Though our focus here is
on agroecosystems, many concepts and examples are relevant
to less disturbed ecosystems.

(b) How soil biota regulates detrimental organisms and
processes

Soil hosts arguably the most diverse biological communities
on Earth [7,8]. Soil’s heterogeneity, created by complex
arrangements of minerals and organic matter of different
structure and composition, organized into aggregates of
different sizes, provides a vast variety of ecological niches
[1]. Many of soil’s inhabitants are either directly or indirectly
involved in regulating organisms that may have detrimental
effects on humans. At the same time, soil is also a reservoir
of a variety of bacterial, fungal and viral pathogens capable
of causing diseases in plants, animals or humans [9–15].

Pathogens are common members of soil communities
who may be transient inhabitants, consistently present for
parts of their life cycle, or permanent fixtures within the com-
munity [16]. Whether or not potential pathogens have
negative impacts on humans and other biota depends on if
they successfully colonize and establish themselves in soil
(if they are not resident species) and come in contact with a
susceptible host. Some pathogens require transfer via vectors
or carriers who live in the soil. Other important factors
include whether pathogen populations reach high enough
levels to cause infections (inoculum potential) and whether
they are metabolically capable of causing infection [17–19].

The survival of any organism in soil, pathogenic or not,
depends on its interactions with other members of their bio-
logical communities (biotic factors). In soil, a diversity of
interspecific interactions—mutualism, antagonism (including
parasitism and predation), competition and commensalism—
determine the presence and impacts of soil organisms,
including those who become pathogenic. Some relationships
are indirect, with pathogen invasion, establishment and sur-
vival depending on relatively general changes in soil
communities, such as an increased population density or bio-
mass. For example, diffuse competition with a broad swathe
of the microbial community could regulate pathogens in soils
by limiting their access to resources [20,21]. However, in other
cases, more direct antagonistic or competitive interactions can
prove critical. Kinkel et al. [22], for example, present a coevo-
lutionary framework for investigating and managing soil
communities capable of suppressing plant diseases. Drawing
on the importance of antagonistic coevolutionary
relationships in disease suppression, they demonstrate the
importance of direct interactions between pathogens and
non-pathogenic indigenous soil microbes for promoting and
sustaining disease suppression in soils [22].

The remarkable diversity of soil microbial communities is
crucial in deterring pathogen establishment and growth. Soil
communities with greater diversity may be more likely to
include antagonists or competitors that are particularly effec-
tive at suppressing invasive pathogens (i.e. the ‘sampling
effect’) [23–25]. They may also contain more competitors or
antagonists that act in concert to suppress pathogens (i.e.
niche complementarity). Strong relationships between diver-
sity and invasibility are observed in many ecological
systems [25]; for example, non-native plants are more likely
to invade grasslands as native plant diversity is lost [26].
Similarly, reduction of bacterial or fungal diversity in soil,
demonstrated experimentally, increases vulnerability to inva-
sion by pathogens [20,27].

Another consequence of high levels of biodiversity is
greater ecological resilience; that is, ‘the capacity of a
system to absorb disturbance and reorganize while under-
going change so as to still retain essentially the same
function, structure, identity, and feedbacks’ [28,29]. Soil
microbiomes have a high degree of functional redundancy
whereby multiple actors play similar roles in the soil ecosys-
tem [30]. The resilience of complex biological systems is
defined not just by the number of different species that
respond to a specific disturbance, but more importantly by
response diversity, i.e. the range of responses to the disturb-
ance [31,32]. Diverse soil communities also have the
capacity to bounce back more quickly from perturbations
(such as invasion of a pathogen) and not bounce as far in sub-
sequent exposures [33]. However, repeated disturbances that
reduce the diversity of soil microbial communities, as is
common in large-scale, intensive agricultural management,
can reduce the response diversity, and, therefore, reduce the
resistance and resilience of agroecosystems, creating opportu-
nities for invasion by non-native organisms [32,34].
Fortunately, targeted management practices that increase
soil microbial diversity and biomass can strengthen direct
and indirect antagonistic interactions and consequently help
regulate deleterious organisms.

Changes in soil abiotic factors are interdependent and
exert substantial impacts on soil function and biodiversity
[35]. For example, disturbing soil aggregates, key components
of soil structure, homogenize the soil environment, expose
protected organic matter to degradation, reduce niche com-
plexity and lead to biodiversity losses [36]. Intensive
agricultural practices, land-use changes and global climate
change are recognized as major threats that modify the soil
environment and reduce soil biodiversity [7,37]. Even so,
none of these factors can be considered in isolation to test
their effects on biodiversity as they interact and influence
one another. Better understanding of mechanisms underlying
management practices that focus on soil environment can
facilitate the conservation of soil biomass and biodiversity
[7,38].

(c) Relationship between the concept of soil health and
the regulation of detrimental organisms

The concept of soil health has reemerged over the last few
decades and grown in importance in sustainable agriculture
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Figure 1. Pathogen ability to survive and grow in soil is typically inversely
proportional to its specialization for a specific plant or animal (human) host.
Long-term presence is necessary for pathogen–antagonist interactions that
generate specific suppression; by contrast, pathogen presence is not required
for antagonist–antagonist interactions that contribute to general suppression
[41]. Permanent members of microbial communities are, therefore, likely con-
trolled by specific suppression, while short-term survivors are likely regulated
by general suppression. (Online version in colour.)
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and climate resilience [39]. Healthy soils are broadly defined
as those being ‘capable of supporting the production of food
and fiber, to a level and with a quality sufficient to meet
human requirements, together with continued delivery of
other ecosystem services that are essential for maintenance
of the quality of life for humans and the conservation of bio-
diversity’ [40]. Much of the emphasis in soil health
assessments has been placed on soil organic carbon, nutrient
cycling, soil structure and water relations, and general
microbial activities. Most existing conceptual frameworks or
tools for soil health do not directly consider suppression of
detrimental organisms to plants and humans [41], despite
the fact that suppressiveness is often an additional benefit
of practices targeting other soil health indicators.

Two decades ago, van Bruggen & Semenov [42] proposed
considering incidences of plant and animal disease as symp-
toms of an ecosystem in poor health. They argued that the
ability of the biological community to suppress or reduce
populations of pathogens (e.g. ‘disease suppression’) is an
important indicator of a stable and healthy soil ecosystem.
Several years later, Janvier et al. [43] proposed including sup-
pressiveness as an indicator of soil health. More recently,
Lehmann et al. [44] proposed a ‘new generation’ of soil
health indicators and recommended the inclusion of biologi-
cal assessments of ability of soil to suppress disease. Thus, an
emerging consensus is disease suppressiveness is an integral
component of soil health. A challenge is the difficulty in
assessing disease potential in soils and thus in identifying
appropriate and feasible indicators, as well as methodologies
for measuring them [11,43,45].
2. Role of soil and soil biota in regulation of
human and animal pathogens

(a) Pathogens of humans and other animals in soil
Soil is a reservoir for a variety of microorganisms—including
bacteria, fungi, protozoa and viruses—that can be pathogenic
to humans and animals. Human and animal pathogens in
soil can be categorized into four broad groups that reflect
their degree of residency in soil: permanent, periodic, transi-
ent and incidental [46]. Permanent pathogens are soil
inhabitants which spend their entire life cycle in soil and
sometimes become infectious for humans and animals.
Examples include organisms like Clostridium botulinum or
Clostridium tetani that produce neurotoxins when contami-
nated food is ingested or through contaminated wounds,
respectively. Many zoonotic pathogens also either live in
soil or their vectors live or spend part of their life cycle in
soil [15]. Periodic pathogens are soil organisms which require
the soil environment to complete part of their life cycle. For
example, Bacillus anthracis, the causative agent for anthrax
in humans or livestock, is often found in soils and can survive
for long periods as endospores [47]. Transient organisms are
those which naturally occur in soil, often due to their hosts
being in contact with soil, but do not require soil to complete
their life cycle. For example, the protozoan parasite Giardia
lamblia can be introduced into soil via urine and faeces of
rodents but does not need soil to survive. Finally, incidental
pathogens may be introduced to soil via anthropogenic
sources, human and animal activities, or other pathways
but only survive in soils for relatively short periods. For
example, pathogens enter soil via application of improperly
treated raw manure, contaminated irrigation water or via
runoff, especially when croplands are in close proximity to
livestock grazing areas or feedlots [48–51]. Examples include
enteric pathogens (e.g. Salmonella enterica subsp. enterica and
shiga toxin-producing Escherichia coli (STEC)) who are intro-
duced into soil via raw or untreated manure or sewage
[52,53]. Pathogen residency in soil is important as it deter-
mines the potential mechanisms for suppression (figure 1).
The impacts of soil microbial pathogens on vertebrates have
been reviewed extensively elsewhere [54,55].

(b) How soils regulate the establishment and
suppression of human/animal pathogens

The soil environment and its indigenous communities
strongly influence whether or not a pathogen can colonize
and establish itself in soil, as well as whether it ultimately
can infect a potential host [41,56,57]. Mechanisms can include
diffuse competitive and antagonistic interactions between the
pathogen and the entire microbial community, akin to ‘gen-
eral suppression’ in the plant pathogen literature (see
below). For example, larger and more diverse microbial com-
munities, such as those associated with organically managed
soils, may be more effective than communities under conven-
tional management at suppressing pathogenic E. coli [58].
Similar trends have also been observed with Salmonella:
soils with higher microbial diversity were more effective at
decreasing Salmonella abundance and survival time [14]. Con-
versely, pathogen survival often increases dramatically when
inoculated into soils that have been sterilized [59,60]. Intro-
duced human enteric bacteria had lower rates of survival in
microbially diverse soils [61], supporting the concept that
invasion may be transient and limited [62]. Finally, it is
important to note that soil microbes constitute only a part
of the biological community in soils: arthropods, protists
and other taxa can also play key roles in soil suppressiveness
[58,63]. For example, dung beetles have been shown to reduce
pathogenic E. coli on fresh produce farms by ingesting faeces
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contaminated with pathogenic E. coli and burying them,
thereby further exposing the pathogens to competitors and
antagonists within the soil microbial community [58].

Soil physical properties are also important in regulating
establishment and survival of pathogens in soil. First, soil tex-
ture (i.e. the relative proportions of sand, silt and clay
particles) helps determine the persistence and establishment
of many pathogens, e.g. fine-textured clay soil may be more
conducive to survival of pathogens [46,64]. Second, pH has
also shown to be important for pathogen survival; for
example, Listeria monocytogenes survived best at soil pH
values greater than 7 [60]. Third, soil moisture can also deter-
mine the ability of a pathogen to persist and survive in soil.
For example, one study found that pathogenic E. coli popu-
lations often peak following rainfall events [65] and another
reported that rainfall and soil moisture were key factors influ-
encing pathogenic E. coli survival [66]. Conversely, microbial
growth decreases when soil becomes drier, as dry soils can
impede microbial mobility, limit nutrient availability and
slow nutrient diffusion through membranes [46]. Fourth,
organic matter content, which often varies according to soil
types and inputs, can also govern the survival of pathogens
in soil. One study showed that Salmonella sp. survived
longer in soils with higher organic matter content [51]; how-
ever, others show the opposite trend with higher organic
matter supporting greater biologically induced suppression
[67,68]. And fifth, concentrations of macro and micronutri-
ents in soil influence pathogen survival; for example, the
pool of exchangeable soil cations best explained survival of
L. monocytogenes in different soils [60]. Critically, many factors
listed above are strongly associated; for example, increasing
organic matter in soils also improves moisture and nutrient
retention, which can make the environment more conducive
for pathogen proliferation.

Many human and animal pathogens are closely inter-
related. Soil can play a role as an intermediary reservoir
(e.g. pathogens from soil-applied animal manure infecting
humans) or represent an integral part of pathogen life
cycles [15]. Approximately 75% of new and emerging infec-
tious diseases of humans are thought to originate from
animals [69] and such diseases are defined as zoonotic dis-
eases or zoonoses [70]. Some viruses find hosts in both
humans and soil animals; for example, rodents living in soil
burrows can be vectors for hantavirus [71]. How we
manage agricultural soil can influence the prevalence of zoo-
notic diseases such as those caused by enteropathogenic
bacteria such as Salmonella or pathogenic E. coli [72,73].
Potential sources and routes of faecal contamination of soil
and produce include contaminated irrigation water, manure
applications, proximity to livestock, wildlife or domesticated
animal intrusion [48]. Moreover, husbandry and manage-
ment practices (e.g. diet, health status, age, location) may
affect the shedding of food-borne pathogens and increase
persistence and risk of faecal contamination when animal
manure is applied [48,74]. Manure application may also con-
tribute to the propagation and dissemination of antibiotic
residues, antibiotic-resistant bacteria and antibiotic-resistant
resistance genes in the soil–water system and pose a public
health issue [75]. The One Health approach to zoonotic dis-
ease transmission investigation involves multidisciplinary
teams of biologists, ecologists, epidemiologists and phys-
icians [76]. Growing evidence suggests that the prevention
of livestock-associated zoonoses must start with developing
animal health management routines and welfare pro-
grammes (such as vaccinations, prebiotic and probiotic feed
additives) at the farm level and this will lead to improve over-
all animal and ecosystem health [77].

(c) Soil health and human health
The capacity of soil biota to regulate organisms detrimental to
human health can extend even beyond the soil itself and into
the human body. First, the rich biodiversity of soils has been
the source of most of the antibiotics and other antimicrobial
agents currently used for human and animal health [16,78].
Waksman discovered streptomycin produced by soil actino-
mycetes using bacterial isolation techniques still employed
by pharmaceutical industries today [79,80]. As antibiotic resist-
ance rises among human pathogens, interest has renewed in
identifying microorganisms that are capable of producing anti-
microbial compounds in soil, building on our increasing
understanding of soil community ecology and emergence of
powerful new technologies (e.g. omics) [80,81].

Second, the relationship between human and soil micro-
biomes is a topic of rapidly growing interest for reasons of
human health and nutrition [82,83]. Soils and humans have
shared a long and intimate relationship [82,84]. Yet,
humans have increasingly moved from rural to urban set-
tings, leaving behind many opportunities for exposure to
the soil microbiome. Recent evidence suggests that declines
in human immunity and health may result from this discon-
nection from the natural environment. The ‘biodiversity
hypothesis’ states that ‘contact with natural environments
enriches the human microbiome, promotes immune balance
and protects from allergy and inflammatory disorders’ [85].
For example, early childhood exposure to environmental
microorganisms appears to be associated with development
of the body’s immune system and certain positive health
benefits [83,86]. Emerging research is suggesting that gut
microbial diversities of healthy adults from rural commu-
nities throughout the world (e.g. Papua New Guinea,
Malawi, Tanzania and Amazon) are higher than in urban
populations in Italy and the USA [83]; however, soil’s specific
role in promoting these differences is yet to be isolated from
contributions associated with diet and genetics.

Exploring relationships between the microbiomes of ani-
mals and surrounding soil is a new and evolving area of
research. The composition of gut microbiomes of foraging
baboons was better explained by the baboons’ environment
than by genetic factors, and in particular dependent on the
soil’s geologic history and exchangeable sodium [87]. Compar-
able research on human–soil relations is rare, speculative or
does not yet exist but is underway with the expansion and
ease of sequencing microbiomes in humans and of different
environments [88,89]. A deeper understanding of the complex
interrelationships and feedback between soil and humans will
not only help reduce risks of soil-borne and food-borne disease
but may also improve the general health of humans.
3. Role of soil and soil biota in regulation of
plant pathogens

(a) Pathogens of plants in soil
Plants face different challenges than do animals from the per-
spective of soil-borne diseases. Humans and most terrestrial
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animals are primarily in contact with the soil’s surface and
exposed to small amounts via ingestion, inhalation and
dermal contact. Plants, on the other hand, are literally
rooted in soils. To access the diffusely distributed nutrients
and water in soil, their roots are in intimate contact with
soil throughout their lifespans. A draw-back is that the
plant has no ‘down time’ nor can it escape from the soil,
and thus strategies are needed to deal with continuous
assaults from soil pathogens. A benefit of this intimacy, how-
ever, is there is time (including evolutionary time) for the
plant to develop collaborations with rhizosphere organisms
to regulate impact of pathogens.

What are termed ‘disease suppressive soils’—soils whose
indigenous microorganisms reduce establishment, persist-
ence or impacts of pathogen—are excellent examples of
soil’s potential to regulate detrimental organisms [41].
Research differentiates between general and specific suppres-
sion of pathogens, yet recognizes there is a continuum from
general to specific, ‘with the former underlying and poten-
tially give rise to the latter over time’ [41,90] (figure 1).

For a disease to emerge in a crop requires a susceptible
host plant, a pathogen that is virulent and an environment
conducive to infection. Both abiotic and biotic processes in
soil regulate the potential for and severity of a pathogen’s
impact on plants [43]. Soil-borne plant pathogens are taxono-
mically quite diverse and include bacteria, archaea, fungi,
viruses and protozoa [41,57,91]. A number of classification
schemes have been employed for plant pathogens, ranging
from plan nutritional habit, plant physiology, parasitism to
ecological perspectives (see Vega et al. [92] for an overview).
Here, we focus on soil–pathogen rather than host–pathogen
interaction, and, therefore, pathogen soil residency is a pri-
mary consideration (figure 1). Whether pathogens are (i) part
of the soil microbial community, (ii) survive in soil for an
extended period, or (iii) are transient entities that can only
briefly exist outside of a suitable plant host determines the
dynamics of their interaction with soil communities and abio-
tic factors and, therefore, determines the mechanisms by which
soils may suppress them [41]. More extensive overviews of
relationships between the plant rhizosphere, pathogens and
beneficial organisms can be found elsewhere [93].
(b) Mechanisms of suppressiveness of plant pathogens
What is termed ‘general suppressiveness’ results from the
activities of consortia or communities of microorganisms,
via competition for resources or antagonistic activities, and
is often effective against a variety of plant diseases
[23,57,94,95]. Antagonistic interactions are influenced by the
nutrient and energy supply available for growth in soil of
both the pathogen and to its host [42]. Properties of general
suppression are (i) not transferable from a suppressive soil
to another soil, (ii) can be reduced or removed by sterilization
of soil, (iii) often enhanced by inputs of organic amendments
and tied to increases in abundance and activity/diversity of
the microbial community [90,96]. Stimulation of indigenous
microbial communities is thought to deplete limiting
resources for pathogen growth and infection; suppression of
Phytophthora root rot is an example [97]. Sometimes the
impact is linked to major subgroups of the community.
Specific amendments, like debris of wild rocket or rice
bran, can enrich Streptomycetes spp. and help suppress the
pathogen Fusarium oxysporum and potato scab diseases
[98,99]. Secondary metabolites, both volatile and soluble, pro-
duced by many bacterial species in response to interspecies
interactions and competition is also considered to play a
role in general suppression [100].

Specific suppressiveness results from individual taxa of
microorganisms and, unlike for general suppression, the
benefit is often transferable from one soil to another (e.g.
via inoculating with suppressive soil). Antibiosis is involved
in specific suppression of take-all disease of cereals and often
emerges after long periods of monocropping [57]. The
specific suppression of the disease take-all, caused by Gaeu-
mannomyces graminis, has been directly linked to antibiotic
production by fluorescent Pseudomonas spp. [101,102]. An
example of a parasitic antagonistic interaction is the suppres-
sion of the nematode Heterodera schachtii via the fungi
Dactylella oviparasitica and F. oxysporum infecting nematode
cysts and eggs [103]. Many plant growth-promoting rhizo-
bacteria (PGPR) release antimicrobial or antifungal
compounds that deter plant pathogens [23,57]. For example,
fluorescent pseudomonads produce the antibiotic 2,4-DAPG
which has been extensively studied as a protectant against
soil-borne diseases [104,105].

Far from the view of plants as passive factories that trans-
form sunlight into organic molecules, it is now recognized that
plants actively respond to a complex assortment of physical
and chemical environmental cues and precisely regulate their
immediate soil environment. Recent advances in omics and
visualization techniques have revealed complex and dynamic
(i.e. responsive) relationships between plants and their rhizo-
sphere microbial communities, and that plants recruit
specific taxa and functional groups to help them uptake nutri-
ents, promote growth, increase stress tolerance and avoid or
fight off disease [106]. Responses include the recruitment of
beneficial rhizosphere microbes [107]. When the plant cell
membrane perceives a stressor, it releases a ‘cry for help’
[108] transmitted by downstream signalling networks which
trigger an immune response [109] in the plant. For example,
kinases are produced leading to accumulation of plant hor-
mones like abscisic acid, salicylic acid (SA), jasmonic acid
(JA) and ethylene. They stimulate changes in the plant root’s
exudates which target and recruit selective groups of microbes
to colonize its rhizosphere. These recruitments essentially
create a ‘suppressive soil memory’ [107,110] which protects
successive plants of the same type growing in the same
location from infection by those pathogens.

Elucidating who, and what mechanisms, are involved in
the consortia of microbes conferring general soil suppressive-
ness is increasingly possible through coupling culture-
dependent and culture-independent methods. In studies of
soils suppressive of Rhizoctonia solani, Mendes et al. [95]
could link higher relative abundance of key bacterial
groups like Proteobacteria, Firmicutes and Actinobacteria,
and genes coding for non-ribosomal peptide synthetases, to
pathogen suppression. Similarly, in a study of soils that sup-
press Ralstonia solanacearum, specific rhizosphere taxa
associated with whether or not plants developed disease
symptoms included members of Pseudomonas and Bacillus,
along with high abundance of genes encoding antimicrobial
compounds [111]. This growing knowledge provides the
foundation to design strategies to better select for beneficial
native organisms, identify viable microbial inoculants or
engineer plant rhizosphere microbiomes to reduce disease
incidence in plants.
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Abiotic properties of soil also play many roles in regulat-
ing plant disease, both directly and through their interactions
with soil biota. Higher available nitrogen can increase disease
susceptibility by favouring pathogen growth [112]; for
example, increasing colonization by Pseudomonas syringae on
winter wheat [113] and higher soil moisture content can
increase impacts of pathogenic Ra. solanacearum on ginger
[114]. These interactions are reviewed in greater detail else-
where [115–117].
4. Effect of agricultural management practices
on role of soil and soil biota in regulating
detrimental organisms and biological
processes

We have long known that environmental conditions, and
consequently how we manipulate the environment to
manage soil, profoundly affect soil biota and soil health
[118]. Traditional and indigenous farming typically include
practices of using organic inputs and diversified rotations,
at least in part to reduce crop losses from detrimental organ-
isms [119,120]. Many of these same practices are used today
in organic farming, in some cases being re-integrated into
conventional farming systems to both sustain and increase
resiliency of agroecosystems.

There are co-benefits and trade-offs associated with many
management practices. Some implemented with the goal of
improving fertility or soil structure also impact, either
negatively or positively, soil’s ability to regulate detrimental
organisms [23]. Figure 2 depicts the major components of
agricultural systems (boxes) and how biological processes
mediate their interactions (arrows). Also shown are the
impacts of different management practices on the biological
underpinnings of the agroecosystem [2]. Whether intentional
or not, farm managers choose practices that work with (or
against) the ecological principles underpinning soil suppres-
siveness discussed earlier. Below, we briefly consider how
selected management practices affect the ability of soil to
regulate detrimental organisms and processes. More detailed
reviews of this topic can be found in the following
[11,118,121].

(a) Organic amendments
Soil organic amendments are among the most frequently
used practices to reduce deleterious impacts of soil patho-
gens. Amendments include composts made from a variety
of sources—animal manure, food waste, green wastes—and
non-composted materials such as green waste, biodigestates,
biochar and biosolids from sewage treatment plants
[122,123]. Organic amendments can have positive or negative
effects on soil’s ability to regulate detrimental organisms
resulting from the introduction of nutrients or toxins, and
beneficial organisms or pathogens.

Of all soil amendments, compost has received the most
attention because it is widely available and less associated
with negative impacts (e.g. risk of adding food-borne patho-
gens) than, for example, untreated animal manures. Compost
increases soil micro- and macronutrients, alters physical
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properties like soil structure and increases microbial biomass,
activity and diversity [43,96,124]. Mechanisms of disease sup-
pression include competition among microbial populations,
antagonism via antibiosis, hyperparasitism involving direct
attacks on pathogens and systemic-induced resistance (SAR)
of the plant [96]. The provision of a variety of carbon and
nutrient inputs also modifies the interactions and equilibrium
among members of the soil community and may help the
plant in recruiting beneficial organisms [125,126].

Nonetheless, improperly processed composts, as well as
untreated animal manures, can introduce pathogens to soil.
For example, greater concentrations of Salmonella spp. were
detected in soils amended with poultry-based organic
amendments than synthetic fertilizer [51,127]. Factors deter-
mining the efficacy of compost inputs are type of manure,
method of application, type of soil, storage, composting pro-
tocols, nutrient ratios, microbial diversity of the amended
soils, as well as geographical and environmental factors
[124]. Concerns that animal-based composts may contribute
to soil pathogens in leafy greens and other vegetables have
led to changes in compost processing and application to
minimize pathogen risks [128]. Compost prepared following
established guidelines [129,130] greatly reduces the potential
for introducing pathogens.

Recent meta-analyses showed soil-borne fungal plant
pathogen suppression in more than half of studies that
used traditional organic amendments; however, in 20% of
cases disease incidence increased [131,132]. Specific inputs
can be designed based on understanding of soil microbial
interactions. For example, adding biopolymers such as
chitin and chitosan can stimulate the prevalence and activity
of taxa that specifically break down cell walls of pathogenic
fungi [133,134]. Organic inputs can also be combined with
flooding of soils in anaerobic soil disinfestation (ASD) to
select for anaerobic communities that generate pathogen-sup-
pressing fermentation products [41].

Recently, biochar has received increasing attention for its
potential benefits for soil health, water relations and disease
suppression [135,136]. Biochar amendments have been
shown to be effective in suppressing a wide range of patho-
gens including bacteria, fungi, virus and nematodes
[136,137]. Some of the mechanisms involved may be similar
to those of compost as discussed above; however, biochar’s
strong sorptive properties may also play a role. Biochar sorp-
tion and inactivation of pathogen-derived toxins and
enzymes are potential mechanisms in disease suppression
[138,139]. Broad generalizations about the efficacy of biochar
in regulating deleterious organisms are difficult to make at
this time however, given how dependent results are on bio-
char feedstock, synthesis conditions, application rate, as
well as soil and crop properties [136,140].
(b) Cover crops
Cover crops are typically included in rotations to improve soil
parameters such as aggregation, water infiltration and water-
holding capacity, and provide nitrogen if legumes are used.
However, general suppressive activity can also result from
using cover crops due to their stimulation of microbial bio-
mass, diversity and activity [11,141]. Incorporated grasses
(sorghum, millet, oats, rye), brassicas (rapeseed, mustard),
legumes (alfalfa) and vines (kudzu) [142,143] as cover crops
have been shown to decrease specific plant pathogen
populations. Mixtures of cover crops, especially increasing
plant functional group richness [144], may increase the resist-
ance to pathogens in the following crop [144]; however, single
cover crop species can also be effective [145]. There are
instances, however, where cover crops increase enteric patho-
gen survival [146] so choosing the right cover crops is vitally
important [147].

(c) Diversifying crop rotations
Recognition of host–pathogen cycles have influenced devel-
opment of diversified cropping systems because they
reduce the build up of soil-borne plant pathogens that results
when a crop is grown continuously [148,149]. A recent meta-
analysis showed crop diversification can boost soil biodiver-
sity and fertility while also regulating disease incidence
[150]. Rotations regulate pathogen populations by disrupting
the host–pathogen cycles [43,151]; altering the soil’s physico-
chemical traits, or biological communities [152] that make the
environment less conducive to pathogen development or sur-
vival (general suppression); or through direct inhibition of
pathogens via production of toxic chemicals or stimulating
specific antagonists (specific suppression) [148]. The specific
choice of crops in rotation is important to ensure planted
crops are not compatible with pathogens selected for by the
previous crop. Examples of successful rotations include red
clover mitigating tuber disease in a potato [149] and using
brassicas to combat Verticillium dahliae infestation in straw-
berry production [153]. The integration of animal and
cropping systems is another strategy. For example, to
reduce parasitic loads in cattle, grazing management using
pasture diversification or rotation are recognized approaches
to improve livestock husbandry [154,155].

(d) Tillage
Reducing tillage of soils decreases erosion and loss of soil
organic matter; however, its impacts on detrimental soil
organisms are more complex and sometimes contradictory.
Reduced or conservation tillage which leaves crop residues
on the soil surface, or partially buried in soil, can create a
competitive environment which facilitates competition and
antagonistic interactions between microbes. This can result
in disease suppression [156] and lead to niche differentiation
and increased microbial diversity deeper in the soil profile
[157]. In other cases, however, retention of crop residues
can facilitate survival of pathogens by protecting them from
microbial attack [158]. Some pathogens, even in the absence
of their host plants, can survive as saprophytes or as spores
until the host returns [159,160]. Conventional deep tillage
may translocate the pathogens deeper into soil where the
environment is less conducive to survival [161]. Other studies
found no impact of tillage management on E. coli and Salmo-
nella numbers [162,163].

(e) Use of antibiotics and agrichemicals
Numerous agrichemicals including herbicides, insecticides
and fungicides are routinely used in intensive, large-scale
agricultural management, often with negative consequences
for soil communities, particularly fungi and soil fauna
[164–166]. Pesticides use has increased over the past decades
[167]. Of what is applied to soil, only a small portion of the
pesticide reaches the target organism [168] and the remainder
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stays in the soil where it may be biodegraded but may also
expose soil communities [165]. Seed dressing with insecti-
cides and fungicides can reduce activities of earthworms,
mycorrhizal fungi and other microbial populations and pro-
cesses [169]. Many processes governing nutrient cycling,
e.g. nitrification, are sensitive to pesticides and other organic
chemicals [164]. The available concentrations and bioavail-
ability of pesticide on soil microbes depend on soil
properties as well, but a common impact is the disruption
of specific soil functions and reduced diversity [164,170].
Although the impacts of agrichemicals on soil communities
have been well documented, there is little direct information
about how these chemicals impact the soil’s ability to regulate
pathogens. However, in aquatic ecosystems, the use of herbi-
cides and fungicides was associated with increases in
populations of pathogens by reducing densities of protozoan
predators and by altering competition with indigenous
microbes [171], highlighting need for performing similar
studies in soil.

Similarly, antibiotics have been widely used in the suppres-
sion or management of diseases in livestock [172] and some
crops [173,174]. However, overuse of such antibiotics has
increased potential threats to the soil microbial community
and also elevated antibiotic resistance in the soil environment
[175,176]. Impacts of high concentrations of antibiotics can, but
not always, cause changes in enzyme activity and carbon use,
reduction in microbial biomass and shifts in the community
composition [175]. Low, sublethal concentrations of antibiotics
are problematic because they exert a selective pressure for anti-
biotic resistance in microbial populations [177] and may
promote persistence of certain human and other animal patho-
gens in soil [178,179]. Although much effort has gone into
reducing antibiotic use in livestock production worldwide,
the spread and dissemination of antimicrobial resistant bac-
teria and genes are still a global health concern [180,181].
Efforts to improve antimicrobial stewardship worldwide
need to continue and expand to reduce impacts on human
and environmental health [182].
5. Conclusion
There is broad consensus on the perilous state of the environ-
ment. In December 2020, the United Nations Secretary-
General António Guterres called out humanity’s suicidal
‘war on nature’ during his State of the Planet address at
Columbia University [183]. The issues facing us are complex,
multifaceted and profoundly interconnected, and will require
similarly interdisciplinary, integrated approaches to solve.

Soil is an important part of the solution. With respect to
impacts of deleterious organisms and processes, soil has tre-
mendous capacity both to host human, animal and plant
pathogens and also to suppress establishment and survival
of these pathogens. Understanding the complex interactions
and ecological phenomena that govern suppressiveness in a
particular place and time will provide a foundation for new
tools and indicators to predict potential outbreaks and
develop preventative solutions [41,184]. Better knowledge
of which tools to use, and when to stay out of the way of
soil’s native ability to regulate detrimental organisms, will
come from ecological insights gained from studies of soil bio-
diversity [185].

Health is a concept that bridges across and links the micro-
biomes of humans, animals, plants, and soil and other living
members of ecosystems [45,186]. Soil health has proven to be
a powerful conceptual framework that helps integrate across
multiple functions, processes and solutions at play [39,40] and
could increasingly play a role in how we think about regulating
deleterious organisms in soil. When one considers, however, the
vast set of interactions among pathogens, vectors, hosts, antag-
onists, abiotic environment and other players [187–191], it is
evident our perspective needs to be broader than soil to trans-
cend the silos of specific disciplines and taxa. By focusing on
the connections among human, other animal, plant, micro-
biome and environmental health, the evolving concept of One
Health [45,186,192,193] brings together disciplinary areas that
rarely interact, with the goal of transdisciplinary research and
new solutions. For example, finding commonalities across
plants and animals with regard to taxa and mechanisms
involved in regulating detrimental organisms [193] could not
only cross-fertilize approaches and conceptual models, but
also identify root causes and find cross-cutting solutions
[194,195]. A One Health perspective on soils’ role in pathogen
suppression will bring new ideas and synergism, and catalyse
solution-based research, to help achieve the goals of NCP [6]
and particularly of NCP #10, the regulation of detrimental
effects on humans, human-important plants and animals.
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