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The United Nations Sustainable Development Goal 6 aims for clean water
and sanitation for all by 2030, through eight subgoals dealing with four
themes: (i) water quantity and availability, (ii) water quality, (iii) finding
sustainable solutions and (iv) policy and governance. In this opinion
paper, we assess how soils and associated land and water management
can help achieve this goal, considering soils at two scales: local soil health
and healthy landscapes. The merging of these two viewpoints shows the
interlinked importance of the two scales. Soil health reflects the capacity of
a soil to provide ecosystem services at a specific location, taking into account
local climate and soil conditions. Soil is also an important component of a
healthy and sustainable landscape, and they are connected by the water
that flows through the soil and the transported sediments. Soils are linked
to water in two ways: through plant-available water in the soil (green
water) and through water in surface bodies or available as groundwater
(blue water). In addition, water connects the soil scale and the landscape
scale by flowing through both. Nature-based solutions at both soil health
and landscape-scale can help achieve sustainable future development but
need to be embedded in good governance, social acceptance and economic
viability.

This article is part of the theme issue ‘The role of soils in delivering
Nature’s Contributions to People’.
1. Introduction
The United Nations Sustainable Development Goal (SDG) 6 (https://sdgs.un.
org/2030agenda) aims for clean water and sanitation for all by 2030 [1,2].
Considering the enormous impact of water scarcity on overall human civiliza-
tion, the World Economic Forum (WEF) has declared the water crisis as one of
the largest global threats [3]. There is currently a lack of basic water services and
access to safely managed sanitation facilities worldwide. Water scarcity cur-
rently affects more than 40% of the global population, as a lack of drinkable
water for immediate consumption, but even more so as a lack of irrigation
water for agriculture [4,5]. Additionally, nearly two-thirds of the global
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population (about 4 billion people) is currently under threat
of water scarcity for at least one month a year [6]. Extraction
of water from deep aquifers and overuse of surface water are
affecting aquifer recharge, making the use of water resources
unsustainable [7,8]. This is a particular problem in drylands,
where more than 70% of all water is used for irrigation [9],
and irrigation with saline water causes soil salinization and
lower yields [10] and, ultimately, unproductive land [11].
Water-related problems (droughts and floods) are compro-
mising livelihoods in large areas around the world, and are
being aggravated by climate change [12].

Solutions to these problems may lie in appropriate soil
management. It has been demonstrated by, e.g. Keesstra
et al. [13], Hatfield et al. [14], Smith et al. [12] and Bouma
et al. [15] that healthy soil and careful management of soils
at landscape scale can help regulate the water cycle. Available
freshwater in the landscape can be divided into green water
and blue water. Blue water refers to the water in rivers,
lakes and ponds, and groundwater available to be pumped
to the surface, while green water is the plant-available
water in the soil [16]. An estimated 74% of all freshwater
used by humans derives from the soil [17]. A healthy soil
can absorb and contain more green water than a soil in
poor condition [18]. This is because a healthy soil has a
higher infiltration rate and greater water-holding capacity,
owing to better structure and aggregate stability and greater
macro-porosity, which lowers the rainfall-runoff coefficient
and erosion risk [19]. Soils are not only important for storing
and supplying water but they also filter out pollutants [20].
Soils are part of the landscape in which they are located, so
managing the functions of soils in the landscape can improve
the ecosystem services of that landscape. This is particularly
true for water-related ecosystem services [21]. Landscape
management, which is steered by socio-economic and phys-
ical conditions of a specific site, plays an important role in
regulating the amount of water that is available at a specific
moment in time, ensuring that there is not too much (flood-
ing) or too little (drought). Understanding the soil–water
nexus provides insights into this regulation process [22].

We assessed the potential role of soils in achieving SDG6
by considering soils on two scales: local scale and landscape
scale. The small local scale covers all aspects of soil health,
which is a relatively new way of assessing soils and their
characteristics and functions. Soil health is defined as the abil-
ity of a soil to provide key regulatory, supporting and
provisioning ecosystem services, depending on the location
and inherent characteristics of the soil itself; for instance, in
optimal conditions, a sandy desert soil will provide different
ecosystem services from a Chernozem. This approach con-
siders the soil as a dynamic system in which different
aspects of the soil are in balance (or not). A well-balanced
(healthy) soil will be able to deliver the maximum amount
of ecosystem services [23], while a poorly managed unhealthy
soil can be attributed to the deficit of overall ecosystem service
supply. Locally balanced and healthy soil can also facilitate the
local spillovers and synergies among the ecosystem functions
and eventually improve the overall supportive functions of
the ecosystem components; for example, a healthy soil can
store larger volumes of water for a longer period of time
after heavy rainfall, resulting in less waterlogging problems
downstream.

The landscape-scale covers the entire landscape, where
the soil provides an important fundament of the landscape.
The structure and composition of the landscape, such as
fragmentation, connectivity, diversity, etc., determines soil–
water interactions substantially. Connectivity of surface
runoff and associated sediment transport and storage because
of more complex landscape structures (geology, geomorphol-
ogy, land use, slope length, man-made elements, etc.) affect
hydrological and geochemical processes such as rainfall-
infiltration rate, soil erosion rate, water storage capacity, sedi-
ment fate and temporal storage, and carbon sequestration
potential [24,25]. How a soil functions within the landscape
thus depends on land and water management of the soil,
plants and the landscape. Terraced landscapes reduce the
runoff connectivity [26], but field size, use of tillage, the use
of herbicides and field drainage measures also impact the
runoff potential at the landscape-scale [27].

In the following sections, we discuss the relevance of soils
and knowledge about soil functions in achieving SDG6
(Clean water and sanitation). First, soil functions are evalu-
ated in terms of their interaction with green and blue water
for soils in agricultural and natural areas. This is followed
by a discussion of soil solutions and landscape solutions
based on natural processes on the small and larger scale.
Finally, requirements for the implementation of these
nature-based solutions are considered.
2. Soils contribution to SDG6: clean water
and sanitation

The main objective of SDG6 is to ensure the availability and
sustainable management of water and sanitation for all. It is
divided into eight subgoals that can be grouped into four
sets, dealing with: (i) water quantity and availability (Sub-
goals 6.1 and 6.4), (ii) water quality (Subgoals 6.2 and 6.3),
(iii) finding sustainable solutions (Subgoals 6.5 and 6.6)
and (iv) policy and governance (Subgoals 6.A and 6.B)
(figure 1).

(a) Water quantity, location and timing: the natural
system provides ecosystem services (figure 2a,
green bar; Subgoals 6.1, 6.4)

Subgoals 6.1 (access to safe and affordable drinking water for
all) and 6.4 (substantially increase water-use efficiency and
address freshwater scarcity) relate to the amount of water
available to human populations at different points in time
and different locations. Soil plays a relevant role for both
these subgoals (figure 2). At the local scale of soil health,
they are affected by the infiltration capacity of the soil, with
associated groundwater recharge, and by land management
and biodiversity and how these affect water scarcity. At the
landscape scale, they are affected by land and water manage-
ment and effects on soil erosion and flooding.

(i) Infiltration and runoff: two pathways for rainwater
A healthy soil has a high organic matter content, which has
no specific threshold for all soils, but the optimum amount
of organic matter depends on the climate and geological
location, which will be able to sustain optimum biodiversity
[28]. Microbial activity and sufficient organic matter improve
the soil structure and increase aggregate stability, resulting in
high infiltration capacity and larger soil water storage



water quantify and
availability

fi
nd

in
g 

su
st

ai
na

bl
e

so
lu

tio
ns

w
ater quality

policy and governance

Figure 1. The eight subgoals of United Nations Sustainable Development
Goal 6: clean water and sanitation. 6.1 Access to safe and affordable drinking
water for all. 6.2 Access to sanitation and hygiene for all and end open
defecation. 6.3 Improve water quality by reducing pollution, halving untreated
wastewater and increasing recycling and safe reuse globally. 6.4 Substantially
increase water-use efficiency and address freshwater scarcity. 6.5 Implement
integrated water resources management. 6.6 Protect and restore water-related
ecosystems. 6.A Expand international cooperation and capacity-building support
to developing countries in water- and sanitation-related activities and pro-
grammes. 6.B Support and strengthen the participation of local communities
in improving water and sanitation management (adapted from https://
unstats.un.org/sdgs/report/2020/). (Online version in colour.)
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capacity [29]. Hence, organic matter and soil biodiversity
directly influence green water availability. Green water, also
called plant available water content, is retained in the soil
pores by soil colloids and is available for plant growth,
while blue surface water and groundwater are replenished
by streamflow and infiltration.

Higher water-holding capacity will enable a soil to
provide more green water, which will be available for
vegetation to use [30]. High infiltration capacity will allow
much of the rain that reaches the soil surface to infiltrate into
the soil and percolate down to recharge the groundwater. If
the infiltration capacity is low, the percentage of rainfall that
becomes runoff is high, although some water can pond on
the surface and evaporate directly [31,32]. A healthy soil
with abundant macropores owing to high soil biodiversity
and good soil structure has a rougher soil surface, which
results in longer ponding and provides more time for rain-
water to infiltrate [33]. Management practices that allow the
development of litter cover favour biocrust decomposition,
enhancing soil quality and moisture [34,35]. Good soil struc-
ture and high aggregate stability will also prevent surface
slaking on silty soils, which can prevent infiltration [36].
(ii) Downstream water and erosion problems related to poor
water management

If the soil surface is smooth owing to lack of plant cover,
resulting in surface slaking and poor micromorphology, or
if the soil lies in a landscape with long slopes and high
connectivity, most rainfall will become surface runoff.
Runoff causes: (i) loss of soil and seeds through erosion
and topsoil wash-off (e.g. [37]), (ii) landscape disruption
through gully erosion (e.g. [38]), (iii) flooding [39,40], (iv)
loss of soil nutrients and associated downstream eutrophica-
tion of downstream water bodies [41], (v) reduction in
freshwater supply [42], and finally, (vi) water scarcity [43].

Large amounts of fast-running surface runoff have the
capacity to dislodge soil particles and transport them down-
stream, where they are re-deposited. This erosion process
creates problems on-site by removing the fertile topsoil. It
also creates problems offsite as the transported soil and sedi-
ments can silt up waterways and reservoirs and block drains
and culverts, causing flooding of roads and houses. In the
transport zone, rills, gullies and rivers may be incised, break-
ing the connectivity of fields and creating channels for rapid
water flow. The water that does not infiltrate into the soil
cannot become local green water or blue water (groundwater
recharge), which may result in future water scarcity. There-
fore, too much water (flooding) at one time of the year may
result in too little water at another time of the year.
(b) Water quality: Subgoals 6.2, 6.3
Subgoals 6.2 (access to sanitation and hygiene for all and end
open defecation) and 6.3 (improve water quality by reducing
pollution, halving untreated wastewater, and increasing recy-
cling and safe reuse globally) are related to the quality of
water, for human use and in the environment in its broadest
sense (figure 1). In both instances, soil management can be
part of the solution. The ’green shift’ towards a bio-based
economy consists primarily of more intensive land manage-
ment to maximize both production of biomass and surface
water quality [44]. In agriculture at the local and landscape-
scales, pesticides and herbicides are used for crop protection
and fertilizers are used to increase crop yields. However,
these chemicals have negative effects on the environment
and on soil health, by reducing overall landscape biodiversity
and soil biodiversity. Lower microbial activity reduces the
amount of carbon in the soil, which can have negative effects
on soil structure, on infiltration and water storage capacity.
Apart from the on-site problems, the higher runoff associated
with lower infiltration is contaminated with agro-chemicals
that are sprayed on the surface and vegetation. Even though
some of these chemicals will be absorbed to the soil particles,
much will be transported in solute form as overland flow that
may affect the quality of water bodies downstream. If infiltra-
tion can be achieved, soils have the capacity to filter water,
which is an important ecosystem service that can help to
achieve Subgoal 6.3 [20]. The filtering function of soils is two-
fold: chemical filtering and soil physical filtering. Chemical
filtering is based on (bio)chemical reactions in the soil, where
exchange reactions occurring on charged surfaces can absorb
dissolved chemicals in the soil water. Soil biota, which include
bacteria, fungi and soil-dwelling animals, play an important
role in the soil processes related to nutrient cycling and con-
taminant retention. The physical filtering function of a soil
also depends on its physical characteristics, which determine
the infiltration potential, water storage capacity and residence
time of soil water [45]. In combination, chemical and physical
filtration determine the potential of a soil to remove con-
taminants from infiltrating water, which helps to protect
groundwater resources from diffuse contamination [46].
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Figure 2. Step-wise approach to achieving social and economic sustainability in provision of green and blue water by nature-based systems, with soil as an impor-
tant component. (Online version in colour.)
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(c) Finding solutions (figure 2b, blue bar)
(i) Nature-based solutions on agricultural land: Subgoal 6.5
Subgoal 6.5 (implement integrated water resources manage-
ment) requires the formulation of measures to achieve
sustainable water use. As most freshwater is used for agricul-
tural purposes, achieving sustainability in agriculture is of
critical importance in fulfilling Subgoal 6.5. Agriculture is
responsible for approximately 92% of all freshwater use by
humans [17]. Worldwide, an estimated 6685 km3 of water
are used annually for crops, and of this amount, 800–
1100 km3 per year (12–16%) are supplied by irrigation from
different sources, such as rivers, lakes, reservoirs and ground-
water [47]. To reduce the consumption of water and reduce
pollution of aquifers and surface water bodies, new solutions
based on the natural systems are needed. Nature-based
solutions are becoming more common in river and coastal
management, and are also beginning to be used in agricul-
ture [48,49]. Practices that make the soil surface rougher
and the landscape less steep are as old as agriculture itself.
Ploughing is still the most commonly used practice for rough-
ening the soil surface and inducing more infiltration [50]. The
higher roughness occurs only after recent tillage; however,
over time after tillage surface soil crust develops, which is
responsible for runoff increase [51]. However, ploughing has
negative side-effects for soil biodiversity and reduces the
amount of soil organic matter in the uppermost soil layer.
This has led to the promotion of no-tillage practices, but
when ploughing is omitted pesticides use generally increases
to remove weeds that compete for soil water with the
crop, increasing the risk to the environment and soil health.
Considering future technological developments, automated
handpicking by robots could significantly reduce the need to
use pesticides [52]; and could be an excellent example of a
nature-based solution combined with technological develop-
ment. Today, alternative options are available such as the
use of cover crops [53], straw cover [54] or a mulch of, e.g.
chipped pruned branches [55] to avoid soil erosion, increase
soil roughness and improve soil carbon content.

Step-like structures or soil or stone bunds that convert a
long slope into a terraced landscape are another way to prevent
or reduce runoff and allow water to infiltrate into the soil [56].
Such structures can also be used with good effect on irrigated
land. Drip irrigation and fertigation are generally also rec-
ommended, as these are said to be more water-use efficient
[57,58]. However, in many areas of the world, drip irrigation
is now being installed at sites where there was previously no irri-
gation system at all [59]. This will increase the amount of water
consumed by agriculture and result in groundwater depletion,
owing to over-exploitation of water resources. In addition,
when drip irrigation is installed on formerly terraced land-
scapes, the bunds or terrace structures are generally removed
to rationalize farming operations, which leads to severe ero-
sion events owing to the long slope lengths created. Thus, it
is important to keep the sustainability of the landscape in
mind during the planning of land-use and agricultural invest-
ments [60,61]. Nature-based solutions are needed to avoid
land degradation and to help achieve sustainability in the
use of natural resources and the livelihoods of farmers [24,25].

(ii) Nature-based solutions on natural land: Subgoal 6.6
Subgoal 6.6 (protect and restore water-related ecosystems)
focuses on ways to protect natural ecosystems, with particu-
lar attention to water-related problems. The main threat to
natural water bodies such as lakes, rivers, wetlands and
seas is pollution originating from agricultural, industrial
and urban activities. As soils are directly affected by agricul-
tural pollution, the following analysis focuses on this aspect.
The damage to ecosystems caused by agricultural pollution
extends beyond natural environments to the people who
rely on natural systems for their livelihoods [62]. Therefore,
restoration of these water-related ecosystems is essential.
Soils can play an important role in ecosystem restoration
measures. For example, wetland restoration can have a dual
function by reducing the risks of both downstream flooding
and the influx of sediments from upstream to downstream
areas [63]. Establishing specific plant species in a (constructed)
wetland may help to reduce the influx of nutrient-rich water
into downstream water bodies and create a richer, more biodi-
verse ecosystem [64,65]. Soil stabilization measures and
vegetation restoration measures can also be used further
upstream to reduce the connectivity of agricultural catchments
and eroded hillslopes to the stream system [66,67].

(d) Social and economic sustainability: people as part
of land and water (figure 2c, grey bar)

(i) International policy and governance: Subgoal 6.A
Sub-goal 6.A (expand international cooperation and capacity-
building support to developing countries in water- and sani-
tation-related activities and programmes) focuses on the
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international policy and governance needed to reach sustain-
able water use. In such work, it is relevant to take the timeline
of the SDGs into account. The aim is for the SDGs to be
achieved by 2030, which is a very short time for biophysical
processes. Moreover, progress to date has been slow since
the SDGs were agreed upon by the United Nations in 2015
[68], and implementation is still a long way off in the majority
of countries. Political leadership is needed to reach the
goals—or to be well on the way to reaching them by 2030.
The European Commission has recently launched the Green
Deal [69], which provides a great opportunity to address
land- and water-related SDGs, provided that shared ambi-
tions are set, together with measurable targets and
indicators to evaluate progress. These shared ambitions
then need to be translated into national plans and strategies
to implement the SDGs and to integrate them into existing
policies. A specific focus on irrigation management will be
necessary, e.g. to evaluate the impact of modern irrigation
strategies on agricultural production, but also on land- and
water-related SDGs. For each land use plan, it is important
to evaluate trade-offs that could occur when the plan is
implemented. New policy is needed to make this a standard
procedure in the evaluation of new land-use planning. Pro-
motion of regenerative or nature-inclusive agriculture is a
potential option to achieve healthy soils and healthy land-
scapes that supply clean sustainably used water resources
and help protect and restore natural areas. However, reward-
ing sustainable farmers may not be the best way to make a
true transition to healthy soils and healthy landscapes [70].
Instead, polluting farmers and other stakeholders could be
held responsible for the damage they cause to the environ-
ment and fined for unsustainable management. The
growing consensus that favours adopting more inclusive
and integrated approaches for managing and allocating
land-water resources has recently been gaining more atten-
tion in the developing countries [71]. The example of land
and soil conservation programs such as ‘Grain for Green’ in
China [72], ‘Drought Prone Area Programme’ (DPAP) and
‘Integrated Watershed Development Programme’ in India
[73], conservation agriculture (CA) programs in Sub-Saharan
Africa (SSA) and South Asia (SA) [74], has proven successful
in multiple ways and consequently had an impact on
achieving land- and water-related SDGs. More inclusive
and co-designing approaches would encourage stakeholders
involved in planning and management decisions as such
approaches have proven to be one of the key determining
elements for successful implementation of policies in many
African countries [75]. As part of nature-based solutions,
the ecosystem-based approaches are another potential
option to protect depleting water resources in the deprived
regions to keep the societies and economies functional [76].
The concept of integrated water resources management
has appeared in the policymaking process that allows the
concerned authorities and stakeholders to link different com-
ponents of the socio-ecological systems and to realize how
decisions made for one component may affect the overall
water resource consumption structure and its allied depen-
dent sectors [77]. Priority is being given to technological
innovations that promote sustainable use of water resources,
empower capacity building that helps to create a more resili-
ent irrigation system to increase water use efficiency, and
encourage recycling of wastewater and reuse of technologies,
etc. (https://unstats.un.org/sdgs/report/2017/goal-06/).
(ii) Acceptable local solutions: Subgoal 6.B
Subgoal 6.B (support and strengthen the participation of local
communities in improving water and sanitation manage-
ment) focuses on finding management options at the local
scale to achieve sub-goals 6.1–6.6 of SDG6. The solutions
suggested above in relation to different subgoals are mostly
embedded in the biosphere, and the benefits highlighted
are mainly to protect and restore the environment, with
specific attention to water. However, to implement the
SDGs, all goals need to be taken into account, including
those relating to society and the economy [48,49]. For
future development that is sustainable also from a socio-
economic point of view [55], participatory solutions that are
region-specific or even site-specific are needed. Strategies
that take the soil and its functions and ecosystem provision
into account are essential in land use planning on regional
and local scales. The first step must be to raise awareness of
the importance of this specific SDG [78] and the role soils can
play in its fulfillment. In the interdisciplinary region- or site-
specific land-use planning, ensuring soil health and landscape
health is a critical task. The trade-offs of all future land use
plans should be evaluated, to assess the on-site and off-site
effects, in particular in water-scarce areas [79]. Truly sustainable
plans must be embedded in the biosphere and should therefore
have a long-term vision [80]. It is important to enable and
encourage stakeholders to make the transition to sustainable
land and water management [81,82]. This may require the
phasing out of former unsustainable practices and promotion
of new sustainable management so that it becomes the norm
and not a niche [70,82]. Highlighting examples of good prac-
tices that have already been implemented and have proven to
be successful can be a good strategy to promote adoption.
3. Conclusion
Soils can play a key role in achieving the United Nations
SDG6, which aims for clean water and sanitation for all by
2030. SDG6 has eight subgoals, dealing with: (i) water quan-
tity and availability, (ii) water quality, (iii) finding sustainable
solutions and (iv) policy and governance. This paper assessed
the potential for achieving these subgoals at the local scale of
soil health and at the wider landscape scale. Based on this
analysis, the following management options embedded in
the functioning of the soil and the landscape were identified:

Manage soil health: improve soil characteristics and thus
enhance soil functions that provide ecosystem services,
which can help avoid water scarcity and result in more sus-
tainable agriculture and use of natural resources.

Manage healthy landscapes: reduce the connectivity of
surface water and sediment, and associated pollutants, to
avoid soil erosion (including off-site effects), surface and sub-
surface water pollution, and flooding.

It is important to apply solutions that work together with
the forces of nature (nature-based solutions) to improve the
availability of plant-available green water in the soil and
manage the amount and quality of blue water (surface
water and groundwater) throughout the year(s) to avoid
flooding and droughts. The nature-based soil management
options can be supported by technological solutions to
increase the impact. These management options must be
fostered by embedding them in policy and governance on
different scales (global, continental, national, regional,
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local), while: (i) taking into account trade-offs associated with
new management strategies; (ii) phasing out old and unsus-
tainable systems; and (iii) providing incentives for farmers
to move away from chemical-based agriculture. All solutions
will need to be sustainable from both the biophysical and
socio-economic perspectives to be socially and economically
acceptable to land users (mainly farmers).
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