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Ongoing environmental changes are affecting physical, chemical and
biological soil components. Evidence of impacts of soil changes on pollinators’
and seed dispersers’ behaviour, fitness and density is scarce, but growing.
Here, we reviewed information on such impacts and on a number of mechan-
isms that may explain its propagation, taking into account the full range of
resources required by the large and diverse number of species of these two
important functional groups.We show that while there is substantial evidence
on the effects of soil nitrogen enrichment and changes in soil water content on
the quality and quantity of floral and fruit resources, little is known on the
effects of changes of other soil properties (e.g. soil pH, soil structure, other
nutrients). Also, the few studies showing correlations between soil changes
and pollinator and seed disperser foraging behaviour or fitness do not clearly
identify the mechanisms that explain such correlation. Finally, most studies
(including those with nitrogen and water) are local and limited to a small
number of species, and it remains unclear how variable such effects are
across time and geographical regions, and the strength of interactive effects
between soil properties. Increasing research on this topic, taking into consider-
ation how impacts propagate through species interaction networks, will
provide essential information to predict impacts of ongoing environmental
changes and help guide conservation plans that aim to minimize impacts on
ecosystem functioning.

This article is part of the theme issue ‘The role of soils in delivering
Nature’s Contributions to People’.
1. Introduction
Pollination and seed dispersal are essential ecosystem functions upon which the
reproduction of most plants depends [1,2] both being performed by a vast
group of animals including a diverse set of invertebrates and vertebrates (figure 1).
These functions make an important contribution to humankind, increasing pro-
duction and quality of the vast majority of crops [3,4] and maintaining the
populations of many plants [2] essential for several ecosystem services. Human
activities have changed immensely chemical [5,6], physical [7,8] and biological
[9] properties of the soil affecting plants at the species [10,11] and community
level [12]. Yet, compared to other global changes (e.g. biological invasions, pol-
lution, climate and land use changes [13,14]), little is known about how impacts
of such changes in soil properties propagate through trophic levels and even
less about the direct impacts on pollinators and seed dispersers [15,16]. In
addition, the scarce existing information shows that impacts of soil changes
vary in strength and direction depending on the species of the consumer evalu-
ated. For example, some flower visitor species increase their visitation rates with
nitrogen enrichment, while other species have their visitation rates maintained
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Figure 1. Diversity of feeding resources used by pollinators, during larval or adult stages, that can be affected by soil properties. Dashed lines represent resources
used during larval stages. References used for the construction of this figure are listed in the electronic supplementary material.
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or even reduced [17,18]. Similarly, some vertebrate dispersers
benefit from soil nutrient enrichment, while ant dispersers
seem more frequent on infertile soils [16,19]. Diet preferences
may partly explain such variability in species responses
[20,21], which effects scale up to shape communities (e.g.
increased dominance [18], reduced density and richness [21–
23] and changes in overall interaction network patterns [24]).
Understanding the mechanisms that mediate the propagation
of soil changes to pollinators and seed dispersers is essential
to improve our ability to predict impacts of ongoing environ-
mental changes and define adequate conservation plans.
Here, we explore potential mechanisms mediating impacts on
pollinators and seed dispersers by summarizing the existing
information on the impacts of changes of several soil properties
on the great diversity of dietary (figure 1) and nesting resources
of these important functional groups and how such changes
can explain the reported effects on them (figure 2).
2. Effects mediated by changes on abundance
and diversity of floral and fruit resources

Soil abiotic and biotic characteristics are important regulators
of plant physiology and affect the spatial abundance and diver-
sity of flowers and fruits [25–28].While the effects of increasing
water availability on flower and fruit production tend to be
generally positive, most plant species are better adapted to
soils with low levels of nutrients, with nitrogen enrichment
leading to local losses of plant diversity and promoting the
expansion of invasive plants [25,26]. Similarly, soil phosphor-
ous enrichment, which facilitates nitrogen uptake by plants
[6], can lead to losses of plant richness [29]. Even in regions
where plant richness is recovering (e.g. northwest Europe),
increases of species are dominated by nitrophilous plants, ben-
efitting only those pollinators that are able to make use of such
species [21]. Other important macronutrients (phosphorus,
potassium, calcium) may also affect flower availability, but
are still poorly studied. On the other hand, whereas fertile
soils have a higher percentage of fleshy-fruit species, infertile
soils are more likely to have a community of plants that
develop elaiosomes and arils (important rewards formany dis-
persers, including ants, birds and mammals [16,30,31]).
Indeed, soils rich in potassium, calcium and phosphorus, are
associated with vertebrate-attracting fleshy fruits, while in
the nutrient-poor soil, seed dispersal communities may have
a greater proportion of ants [19].

Effects of changes in soil microbiota on individual flower
production can also vary among species. A reduction in the
activity of soil microbiota may hence induce accentuated
changes in plant community composition [32], the flower



nutrients
pH 
soil structure/texture
soil humidity
soil temperature
soil microorganisms

adult resources (flower/fruit):
assemblage composition (community level)
production and phenology (individual level)
quality (AA, sugar, secondary compounds)

colour
odour/flavour

size/shape/weight

larval/juvenile resources:
nesting and oviposition substrate

prey abundance
leaf/stem quality

Figure 2. Pathways through which changes in soil properties (chemical, physical and biotic) may affect pollinators and seed dispersers. Blue dashed arrows represent
effects on nesting and dietary resources used mostly by immature stages, orange solid arrows represent effects on dietary resources collected by adult individuals
and orange thin dashed line represents direct consumption of soil by adults.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200171

3

abundance of some species being positively affected by mycor-
rhizal fungi colonization ([33,34]), while others exhibit a
negative or null response [33].

Phenology can also be affected by soil changes (e.g. nutri-
ents [35], soil microclimate [36–38]), affecting the abundance
of flowers and fruits through time, potentially creating tem-
poral mismatches between plants and their pollinators and
seed dispersers [39,40]. Some species have their flowering
periods anticipated by increased nitrogen availability [41,42],
while in others, flowering may be delayed or shortened
[43,44]. Drought may delay the flowering period of certain
plant species (e.g. [36–38]).

The changes in plant distribution, flower production
and phenology described above may affect the availability of
dietary resources with adequate nutritional content for pollina-
tors and seed dispersers. Moreover, even when flower resource
availability and assemblage composition are not affected, soil-
driven changes in plant morphology, physiology and chemistry
can have strong impacts on their consumers [45]. Below we
describe inmore detail effects of soil changes on such properties.
3. Effects mediated by changes on fruit and
flower morphology

Alteration of soil nutrient levels [15,46], pH [47] and humidity
[36,48] may change flower and fruit morphology. For example,
under water restriction, certain plant species produce smaller
flowers [36,48], while under lower soil pH, some species pro-
duce smaller inflorescences [47]. Nutrient increases have been
related both to increases [46,49] and decreases [50] in fruit
and flower size (e.g. corolla length, petal width), and soil
changes may also affect flower and fruit colour [51,52]. Such
changes can affect attractiveness to pollinators [53,54] and
seed dispersers [16], or access of pollinators to floral resources
[36,48]. Other morphological changes caused by soil changes
(e.g. nutrient level, mycorrhizal fungi) may involve pollen
sculpture [55] and size [33,56], which can affect pollen adher-
ence to pollinator body and their performance as pollinators
[57,58].
4. Effects mediated by changes on nutritional
value of resources

Similar to other guilds of primary consumers, to satiate the
dietary needs of pollinators and dispersers, the nutritional
composition of plant resources consumed must match, at
least partially, the requirements of those animals, which can
greatly vary across species [21,59–62]. Nutrient enrichment
may affect nectar [49,63,64] and pollen [56] production per
flower, negative effects on nectar volume being more likely
when nitrogen input is high [49,50]. Nectar and pollen quality
[65–67] (i.e. amino acid (AA) content, sugar or secondary com-
pounds levels) may also be affected by nutrient enrichment.
For example, increasing nitrogen availability can increase
nectar AAs and sugar content, some AAs being more affected
than others [42,64,68–71], with climate mediating the strength
of such effects [42]. Indeed, Gardener & Gillman [68] showed
that glutamine and proline, key AAs in pollinator nectar selec-
tion, exhibit a large and significant increase under fertilizer
treatment. Soil fertility (especially nitrogen and phosphorus)
and irrigationmayalso affect theproductionof essential oils con-
sumed by multiple flower visitor species [72–74]. For example,
soil phosphorous increased the yield of essential oil in Achillea
millefolium L. [75]. Yet, it is unclear if similar effects can be
detected in non-volatile (fatty) floral oils, and if such effects
dependonsoil nutrients andwater levels. Changes onmycorrhi-
zal fungi root colonization can also affect the quality of nectar,
affecting sugar content [33,34,76], flavonoids and other
secondary compounds (e.g. [77–80]) found in floral resources.

Fruit qualitymayalso be affected bysoil nutrient enrichment
[30,31]. An increase in potassium level may lead to more nutri-
tious fruits [46], rich in sugars and AAs [30,81], and overall
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benefits for fleshy-fruited plants [19,82]. Increases in secondary
compounds caused by nitrogen enrichment can be toxic when
ingested [83,84], which many dispersers can counter by ingest-
ing clay [83]. Soil ingestion may also help to compensate for
fruit deficits in nitrogen and calcium [85,86]. In addition, soils
with low nutrient levels tend to have plants with drier
and harder fruits [30,31] and elaiosomes and arils are more
common [19]. The production of edible fruits can also be limited
by soil water stress, reducing fruit fleshiness and energetic
content available to animals [87,88].

While many species of these two groups of animals have a
generalized diet, resource quality changes mentioned above
can have a strong influence on the foraging behaviour and fit-
ness of pollinators [89,90] and seed dispersers [19,68,90–92],
and potentially lead to local losses of diversity [93]. However,
these effects may greatly vary among species. Low levels of
nitrogen enrichment may be beneficial to some pollinator
species (e.g. by reducing parasite loads [94,95]), but repel
pollinators and negatively affect their physiology at high con-
centrations [96]. Finally, plants growing in heavy-metal-rich
soils can accumulate metals into their nectar, shortening fora-
ging time of pollinators and nectar robbers, leading to an
overall positive effect on fitness of some plant species (e.g.
[97]), possibly owing to increased cross-pollination.
5. Effects mediated by changes on floral and
fruit scent

While vastly understudied, there is evidence that soil property
changes can affect secondary compounds related to floral
volatile compounds. Nitrogen enrichment can increase a phe-
nylpropanoid floral volatile (eugenol) that attracts pollinators
[17], while the number of floral volatiles and total fragrance
emission can decrease with mycorrhizal fungi colonization
rate [76]. Earthworm-mediated changes in soil properties can
also affect the production of defence-related phytohormone jas-
monic acid and of phenolic compounds [98]. Reduced soil
humidity is also thought to limit the emission of olfactory
cues used bydispersers to find seeds [59]. Given the importance
of floral and fruit scent for detecting the presence of resources
[60–62,84], any change in chemical composition of olfactory
cues can affect pollinator and seed disperser foraging activity.
Indeed, previous studies have suggested nitrogen-induced
changes in floral volatiles increase pollinator visitation rates
[17] and overall plant–pollinator communication [99].
6. Effects mediated by changes on dietary non-
floral and non-fruit resources

Recognizing the diversity of resources used by consumers is
essential to understand the mechanisms by which soil changes
can affect them. While tight coevolutionary processes have
resulted in highly specialized relationships between animals
and plants [100], many pollinators feed on multiple species
across multiple families [101,102], some including a variety of
non-floral resources, especially during immature life stages
(figure 1). Among seed dispersers, there is also variation in
specialization levels, some being almost exclusive frugivorous
species [1], while others include multiple alternative resources
(figure 1). For pollinators that feed on leaves, decayingmaterial,
soil fungi and plant roots during immature stages (e.g.
Lepidoptera and Syrphidae [103–107]), changes in leaf biomass,
nutritious content and chemical clues caused by increased
nutrient level or other soil changes affect the behaviour (e.g. ovi-
position, consumptionpatterns) andphysiologyof those insects
[107–110]. Some species of pollinators also act as predators
during larval stages, hence, depending on the populations of
their prey. Such prey are frequently herbivores (e.g. aphids
[110]) and, consequentlyare highlysusceptible toplant chemical
properties which are affected by soil properties [111]. Moreover,
for pollinators highly specialized in their oviposition locations
(e.g. on nitrophobous plant species [21,112]), any change in
plant community compositionwill changeoviposition opportu-
nities. However, little is known on how changes in soil chemical
and physical conditions affect larval stages of pollinators and
seed dispersers and their role in ecosystem functioning.
7. Effects mediated by changes on nesting
resources

Several pollinators and seed dispersers have a central place
foraging pattern around a nesting location (e.g. bees, ants
and vertebrates). For species constructing nests aboveground,
nesting requirements are related to habitat structural com-
plexity [28,113], which can be affected by soil properties
(e.g. [114,115]). For those directly using soil as nesting sub-
strate (e.g. the vast majority of non-parasitic bees [116,117]
and several ant species) and for those that use soil to con-
struct their cells above ground (e.g. Megachillidae [118]),
the impacts of altered soil properties can be profound [119].

Although ground-nesting species can adapt to distinct soil
types [120–122], some studies suggest soil texture is important.
For example, many bee species tend to prefer sandy soils
[122,123], deserts and dunes hosting a large diversity of bees,
while clay or silt soils are less favourable. Slope [124] and soil
compaction [125] also influence choice of nesting sites. While
some bee communities prefer flat areas with little compaction
[126], others require steep and sloping ground [127], or com-
pacted soil in irregular surfaces [123,125]. Soil temperature
and humidity can affect oviposition and the availability
of nesting area for pollinators and seed dispersers (e.g. [128–
131]). Central place foragers tend to minimize the difference
between nest microclimate and optimal environmental fora-
ging conditions [132], and exposed bare ground [126,127],
litter cover [133], or direct sunlight and warmth [125] are docu-
mented to be preferred by some species.

Anthropogenic activities (e.g. agriculture, pasture or
mining) can constrain nest availability [130,134] owing to
intense soil disturbance and changes in the physical character-
istics of soils and habitat structure [134]. Agricultural soils
are known nesting sites of pollinators (wild bees) and seed
dispersers (ants, birds) and, despite the limited knowledge,
agricultural practices such as tillage or pesticide use may
directly harm nest sites. Anecdotal evidence suggests that til-
lage can directly impact bee survival and delay emergence
time [125,135]. For example, for squash bees, Peponapis pruinose,
it has been reported that tilling can halve offspring survival
owing to direct destruction of nests which, if males and females
are at different depths, may also affect sex ratios [136]. However,
tillage may also have positive effects on soil properties for
ground-nesting by creating open bare ground, loosening com-
pacted soils or changing the predator community [137].
In addition, in agricultural land, ground-nesting pollinators
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and seed dispersers can also be exposed to pesticides that
accumulate in the soil (e.g. [138]). Substantial knowledge gaps
remain around the toxicity and effects of neonicotinoids to
arthropods, including ground-nesting bees. Further research
on pollinator and seed disperser soil preferences is needed,
and citizen science approaches integrating large-scale nesting
occurrences documented by volunteers [139] with soil texture
maps is a promising avenue to advance in this regard.
 .org/journal/rstb
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8. Effects of pollinators and seed dispersers on
soil properties

Pollinators and seed dispersers are important in soil formation
and maintenance. Soil nesting species impact soil character-
istics owing to their excavation activities promoting vertical
and horizontal mobilization of soil [116,140,141]. For example,
a single bee species (Nomia meander) canmove around 95 t yr−1

in the Touchet Valley of southeastern Washington [142]. Such
activity may affect soil physical, chemical and hydrological
profiles [141], as demonstrated in soils surrounding ants’
nests [143]. This can be particularly relevant in arid and
semi-arid ecosystems, where soil changes promoted by ants
can generate islands of fertility [144]. Moreover, the ramified
nests of communal nesters (i.e. bees nesting in aggregations)
create an extensive network of tunnels that contribute to soil
aeration. In addition, bees are known to bring in external
soil into nests to complement its construction, contributing
to soil mixing [121]. Overall, like earthworms, bees and ants
contribute largely to soil aeration and rejuvenation.
9. Pathways for future research
Ongoing environmental changes are affecting soil in all its
components. Evidence of impacts of soil changes onpollinators’
and seed dispersers’ behaviour, fitness and density is
growing. While we have reviewed a number of mechanisms
that may explain how such impacts propagate to these
important groups of ecosystem service providers, most studies
focus onlyon a subset of the pathways (e.g. effect of soil changes
on resources, effects of resource changes on consumers). More
experimental studies testing the full chain of effects from soil
changes to both resources and consumers are needed. More-
over, it is likely that there is plenty of geographical variation
in such impacts. Indeed, Zhong et al. [145] found differences
in effects of nitrogen enrichment on soil respiration across
biomes, with stronger negative effects in forests than in deserts.
Global studies comparing strength and type of effects across cli-
mates and biomes are essential to better understand temporal
and spatial variations of such effects.Moreover,muchof the evi-
dence on potential mechanisms presented here comes from a
limited number of studies, and substantial knowledge gaps
exist on the effects ofmost soil characteristics. Also,most studies
focus on changes in nitrogen and water content, with more
limited evidence on the effects of soil structure, pH, biota and
other soil nutrients and pollutants. Experimental manipulation
of other soil variables would help to disentangle interactive
effects between multiple soil characteristics. Finally, multi-
disciplinary studies involving different guilds would help
understand the indirect impacts of soil changes on pollinators
and seed dispersers. For example, as pollinators have a strong
influence on fruit abundance and quality, it is likely that any
impact of soil changes on pollinators propagate to frugivores,
affecting seed dispersal.
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