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One contribution of 17 to a theme issue The Soil serves as both a ‘source’ and ‘sink’ for contaminants. As a source,
contaminants are derived from both ‘geogenic’ and ‘anthropogenic’ origins.
to People’. Typically, while some of the inorganic contaminants including potentially
toxic elements are derived from geogenic origin (e.g. arsenic and selenium)
through weathering of parent materials, the majority of organic (e.g. pesticides
and microplastics) as well as inorganic (e.g. lead, cadmium) contaminants are
derived from anthropogenic origin. As a sink, soil plays a critical role in the
transformation of these contaminants and their subsequent transfer to environ-
Keywords: mental compartments, including groundwater (e.g. pesticides), surface water
soil and the sustainable development goals, (phosphate and nitrate), ocean (e.g. microplastics) and atmosphere (e.g. nitrous
oxide emission). A complex transformation process of contaminants in soil
involving adsorption, precipitation, redox reactions and biodegradation control
the mobility, bioavailability and environmental toxicity of these contaminants.
Soil also plays a major role in the decontamination of contaminants, and the
‘cleaning’ action of soil is controlled primarily by the physico-chemical inter-
Author for correspondence: actions of contaminants with various soil components, and the biochemical
transformations facilitated by soil microorganisms. In this article, we examine
the geogenic and anthropogenic sources of contaminants reaching the soil,
and discuss the role of soil in the sequestration and decontamination of contami-
nants in relation to various physico-chemical and microbial transformation
reactions of contaminants with various soil components. Finally, we propose
future actions that would help to maintain the role of soils in protecting the
environment from contaminants and delivering sustainable development goals.

This article is part of the theme issue ‘The role of soils in delivering
Nature’s Contributions to People’.
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1. Introduction

Being the most important component of the Earth’s critical zone, soil provides
numerous services to ecosystems and humans. Starting from agricultural pro-
duction, plant growth to animal and human habitation, soil is at the core of
supporting biodiversity on planet Earth, sequestering carbon (C) and nitrogen
(N) to mitigate climate change, and protecting the environmental quality by
controlling the disposition, fate and decontamination of toxic substances. Soil
is not only considered as a source of nutrients and C for plant growth and
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microbial functions, but also as a sink for the removal of
contaminants from agricultural, industrial and mining
activities.

The disposition of contaminants in soil can be of geogenic
and anthropogenic sources. Some of the soil contaminants
such as potentially toxic elements (PTEs) are derived directly
from the weathering of parent materials. Anthropogenically,
soil is seen as a site for waste disposal with the aim of
achieving the ‘cleaning’ of these contaminants [1]. In
addition, numerous industrial contaminants inclusion and
agricultural practices themselves add a number of contami-
nants into the soil primarily via fertilizer, pesticide and
sludge applications. Soil is the main source of contaminants
reaching other environmental compartments, including
groundwater, surface water, ocean and atmosphere. For
example, soil serves as the source and/or sink for pesticide
contamination of groundwater [2,3], nitrate and phosphate
contamination of surface water [4], microplastics contami-
nation of the ocean [5] and greenhouse gas emission to the
atmosphere [6].

Soil constituents such as soil minerals and organic matter
play vital roles for contaminant mobilization, retention and
remediation as well. Soil physico-chemical properties such as
pH, surface area (contributed by soil minerals), particle
charges (conferred by soil minerals and organic matter), soil
moisture and oxidation-reduction potential (under aerobic/
anaerobic conditions) influence the fate of contaminants
within soil, and their further movement into the groundwater
[7,8]. Soil minerals and organic matter retain contaminants
(organic and inorganic) on their surfaces due to the surface
charge, often as a function of soil pH. Contaminants are
retained by soil particles through various mechanisms such
as electrostatic attraction, complexation, ligand exchange, ion
exchange and precipitation reactions. In this way, soil minerals
and organic matter can remove contaminants from soil water,
bringing contaminants from the solution to the solid phase.
Soil with high clay content thus can act as a physical barrier
for contaminant movement, and prevent diffuse contami-
nation at adjacent sites [9]. Additionally, soil aerobic and
anaerobic conditions determine the transport, transformation
and bioavailability of contaminants as a function of the
redox potential. The change in soil redox potential alters con-
taminants’ speciation including that of arsenic (As), chromium
(Cr), selenium (Se) and vanadium (V), and transforms their
toxicity levels to biological receptors [10,11].

Soil microorganisms (e.g. fungi, bacteria and actinomy-
cetes) also play an important role in affecting the fate,
transport and removal of soil contaminants. While some
soil inhabiting microorganisms can be pathogenic, there are
beneficial microorganisms that can decontaminate soil by
biosorption, transformation and degradation of contaminants
[8]. Selected microorganisms can use organic contaminant
compounds as their primary energy (C) source, and result
in the degradation of those compounds to CO, and water.
Additionally, microorganisms secrete various organic acids
and enzymes that can convert toxic contaminants into less
toxic forms through biotransformation processes (e.g. methyl-
ation of mercury (Hg), lindane degradation by Streptomyces
sp.) [12-14]. However, microbial degradation of persistent
organic pollutants (POPs) such as dichlorodiphenyltrichlor-
oethane (DDT) and per- and polyfluorinated alkyl
substances (PFAS) is either impossible or extremely slow, rais-
ing the issue of widespread biomagnification [15,16].

In this article, we describe the geogenic and anthropo-
genic sources of contaminants reaching the soil, and shed
light on the important role of soil constituents in contaminant
sequestration and removal processes. We also highlight var-
ious soil factors and mechanisms that are responsible for
governing the disposition, sequestration and decontamina-
tion of soil contaminants. As a novel approach, we illustrate
the above topics in the context of contributions of soils to Nat-
ure’s Contributions to People (NCP) and United Nations
Sustainable Development Goals (SDGs).

The disposition of contaminants in the soil can occur through
natural biogeochemical and/or anthropogenic processes.
Contaminants undergo cycling across the pedosphere, hydro-
sphere, biosphere and atmosphere via biogeochemical cycles.
Fluxes of contaminants between the four spheres depend on
the quantity of the contaminants present and the surrounding
physical, chemical and biological environments, and give an
approximate quantitative estimate of the disposition of con-
taminants in the soil. Owing to the highly dynamic nature
of the disposition and rapid changes in the species and frac-
tions of the contaminants, often the quantification of the
disposition degree (or transfer rate) becomes challenging
[17]. During the biogeochemical cycling, contaminants can
reach the soil from the atmosphere through wet deposition
with rainfall and dry deposition of particles and gases contri-
buting to the total contamination load. The processes
occurring at the solid—solution interface either within the
pedosphere (i.e. soil) or between the pedosphere and hydro-
sphere govern the concentration of dissolved contaminants
and their transport in the soil. The solid-solution processes
may involve chemical dissolution, precipitation, adsorption—
desorption, redox transformation and biological activities
leading to breakdown or biotransformation of contaminant
species. In the case of organic contaminants, the water affinity
of soil particles plays a major role where hydrophobic soils
tend to retain a greater quantity of persistent organic con-
taminants than hydrophilic soils. In addition to the natural
sources, numerous anthropogenic activities (e.g. dumping
of wastes, addition of organic matter and fertilizers, irrigation
with contaminated water, mining activities) add contami-
nants in the soil [8]. Contaminants can be introduced to the
soil as a point source (microscale distribution) but can diffuse
to large areas extending from national, regional and global
scales with the passage of time. The spatial distribution
of soil contaminants depends on where the contaminant is
originated (i.e. source location), how the contaminant is trans-
ported (e.g. dispersal processes) and where the contaminant is
finally deposited (i.e. sink processes) [18]. The following
sub-sections will explain examples of three key disposition
routes of contaminants in the soil environment via natural and
agricultural practices.

The chemical weathering of parent materials (i.e. primary
minerals) is known to add a number of PTEs, and radio-
nuclides into the soil environment. When silicate and
carbonate minerals weather with the action of water-



dissolved CO, (i.e. carbonic acid) and other organic acids
released by soil microorganisms and higher plants, various
ions are released into the soil, constituting the chemical com-
position of the soil solution. Most of the PTEs are present in
the soil parent materials and weathering of soil parent
materials results in the release of these PTEs to soil [19]. For
example, PTEs such as cadmium (Cd), zinc (Zn), lead (Pb)
and copper (Cu) are often released from sulfidic minerals in
parent materials [20]. Co-contamination of soils with Cr
from parent rocks along with other PTEs, including nickel
(Ni), Cd and As was also reported in various regions [8].
Although the anthropogenic As source resulting from waste
disposal and mining activities is increasingly becoming
important, the recent catastrophic episode of large-scale
groundwater As-contamination in many countries, including
Bangladesh, India, China and Mexico is a result of geological
origin, mobilized from sedimentary rocks in the Himalayas
over a long period [21,22], and the situation is likely to be
aggravated by climate change [23]. Similarly, weathering of
Se-rich rocks, such as black shales, carbonaceous limestones,
carbonaceous cherts, mudstones and seleniferous coal is a
major source of Se input in seleniferous soil [24]. Most of
the PTEs found in the soil are known to show high affinity
with soil clay and organic matter [25]. Naturally occurring
parent rocks such as fluorspar, rock phosphate, cryolite, apa-
tite and mica are the major source of fluorine (F)
contamination in global soils including in Afghanistan,
China, India, Japan, Iraq, Iran and Turkey [26]. Chemotoxic
and radiotoxic uranium (U) species are accumulated in soil
from U-containing rocks such as slate and granite, while
abandoned U mines could also heavily contribute to soil U
contamination [27]. The large-scale contamination of ground-
water with U in India was primarily geogenic via the
formation of soluble complexes of uranyl carbonate
following the weathering of parent rocks [28,29].

(b) Contaminants from biowaste disposal to soil

Biowaste (waste of biological origin) such as sludge from
sewage/wastewater treatment plants, compost and animal
manures are widely used organic amendments in agricultural
soils for improving soil fertility and crop productivity.
Though biowaste is an excellent source of plant nutrients, it
may contain contaminants such as pharmaceuticals and per-
sonal care products, PFAS, hormones, excess nitrate and
phosphate, pathogens and toxins. Wastewater application
into soil is practised in many countries, which too can trans-
fer toxins into the soil. Biowaste thus can act as a vector for
transporting emerging contaminants, toxic chemicals and
pathogens into the soil. Biosolids, for example, are known
as a major source of PTEs such as Pb and Cd inputs to soil.
Emerging organic contaminants such as antibiotics and
PFAS can also reach soil via biosolids from wastewater treat-
ment plants [16]. Similarly, animal manures and manure by-
products raise concern for off-site transport of N and
phosphorus (P) causing contamination of aquatic bodies.
Another important issue with manures is their high contents
of PTEs such as Cu, Zn and As. These metal(loid)s are added
in the animal feed as nutritional supplements, ultimately
finding their way into the soil via manure application [30].
Similarly, pathogenic microorganisms and their toxins can
enter into the soil system via compost application [31]. Fur-
thermore, microplastics, which have emerged as a

contaminant of great concern in recent days, can be incorpor-
ated to soil via composts and biosolids [32]. Additives in
plastics such as colourants containing toxic metals (e.g. Pd,
Cr, As) and POPs such as PFAS and phthalates may appar-
ently end up in soil as contaminants [33].

(c) Contaminants from agrochemicals

Chemical fertilizers are added to supply nutrients required
for plant growth and crop production. However, when nutri-
ents are applied in excess of food and fodder crops’
requirements, they can escape from fields to surrounding
soils, air and waterways, thereby leading to environmental
degradation and economic loss [34,35]. Fertilizer input is
the major source of nutrient contaminants such as nitrate
and phosphate reaching groundwater sources, and nitrous
oxide greenhouse gas emission to the atmosphere. Moreover,
the portion of the nutrients harvested in food and fodder
crops, and subsequently consumed by human and farm ani-
mals, is generally concentrated in the locations where
humans and animals reside, with the majority of the nutri-
ents excreted along with wastes, reaching the soil during
the disposal of these wastes [35,36]. Similarly, P fertilizers
are regarded as the primary source of PTE input to agricul-
tural soil, especially Cd, in many countries, including
Australia and New Zealand [37]. Phosphate rock which is
used for the manufacture of various phosphate fertilizers con-
tain a range of metal(loid)s including Cd. Cd contamination of
agricultural soils is an important human health issue because
it reaches the food chain through regular use of Cd-containing
P fertilizers and biosolids. The application of P fertilizer was
identified as the key source of U contamination in soils in
countries like Switzerland [38]. Similarly, F contamination in
soils could be traced back to long-term application of super-
phosphate fertilizers giving rise to increased plant available
F concentrations in the soil [37,39]. In addition to fertilizer-
associated contaminants, various pesticide residues, often in
a cocktail with other contaminants, are encountered in inten-
sively cultivated soils [40]. For example, pesticides such as
glyphosate, DDT, boscalid, epoxiconazole, tebuconazole and
some of their metabolites were frequently detected in some
European soils at alarming concentrations [41].

3. Role of soils in the sequestration of
contaminants

Soil is a porous and heterogeneous material containing min-
erals (inorganic silicate, metal oxides and non-crystalline
minerals), organic matter, water and gases. Soil solid phase
consisting of minerals and the organic matter mainly governs
the retention of organic and inorganic contaminants and
nutrients in soil [42]. The retention of contaminants on the
soil solid surface depends primarily upon soil particle size,
surface charge and their specific surface area which
ultimately drive the cation and anion exchange reaction in
soil [43]. The following subsections deal with how soils con-
tribute to contaminant

retention, mobilization and

transformation.

(a) Sorption and immobilization
Geogenic PTEs, such as Pb, Cd, As, Cu, Zn, are closely linked
to soil properties for their persistence in soil. The clay content
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(inorganic silicates and oxides), soil organic C, and carbon-
ates are the driving forces for sorption of contaminants in
soil [8]. Heavy metals like Cd remain as sulfide within natural
minerals along with other metals like Zn, Cu and Pb [20]. For
example, sorption of Pb on soil solid is high owing to its high
adsorption affinity towards soil minerals like manganese
oxides [44]. On the contrary, Cd showed relatively low sorp-
tion capacity within soil owing to its lesser affinity towards
soil minerals [45]. The soil pH is one of the most important
factors that influence the metal sorption capacity on the soil
surface. The low range acidic soil pH favours the bioavailabil-
ity of metals to the plants, while the high range alkaline pH
governs the retention of the metal contaminants in soil as
insoluble forms [45], and make them less available to the
plants. The soil organic matter (SOM) contains humic and
fulvic acids having functional groups like phenolic, car-
boxylic and hydroxyl that also adsorb the contaminants
(Cu, Hg) by making an insoluble complex in soil [46]. By con-
trast, humic and fulvic acids sometimes form soluble metal-
organic matter complexes with Cd and Hg, respectively,
enhancing the release of PTEs from the soil solid [47,48].
Further, the root exudates comprising of different organic
acids form chelate to make the metals immobile in soil.
Experimental data revealed that variable sorption capacity,
hysteresis and slow rates of sorption and desorption are
prime characteristics for hydrophobic organic contaminant
interactions with soils and sediments [49]. The organic
matter is typically negatively charged and enhances the
release of anionic hydrophobic organic contaminants such
as PFAS and polycyclic aromatic hydrocarbons (PAHs)
owing to electrostatic repulsion. However, electrostatic attrac-
tion of PFAS occurs at low pH of soil medium with small
organic carbon content [50]. Furthermore, the PFAS adsorp-
tion onto organic matter occurs due to hydrophobic
interactions for larger retention of PFAS in soil [51]. By con-
trast, low natural organic matter content reduces the
sorption of organic contaminants. The modification of
organic matter by long chain surfactant or natural surfactant
(derived from soil microbes) can improve the sorption
capacity of soil (10-30 times) to retain the organic contami-
nants like benzene [52] or total petroleum hydrocarbon [53].
Therefore, organic matter content and inorganic minerals
are considered as static parts that regulate the sorption and
release of contaminants in soils and sediments.

Soil also acts as a barrier for contaminants. The mobility
and transport of various contaminants could be minimized
by soil, therefore, limiting the exposure of the contaminants
to humans through drinking water and crops. The filtration
capacity of soils also minimizes the leaching of contaminants
into the groundwater. However, the filtration capacity of
soil, mobility and transport of contaminants depend highly
on soil composition especially clay and organic matter content,
pH, ionic composition of soil solution and soil microorgan-
isms. For example, the cationic dye adsorption capacity in a
soil (sand, clay, silty soil) was studied in batch and fixed bed
column. Results revealed that the column outlet did not
exceed 4.5% of the initial concentration even after 214 days.
Because of the presence of a smectite clay layer and capillary
barriers, the transport of dye was minimized by high sorption
capacity of clay and silty soil [54]. However, the soil may not
retain all the contaminants, while it creates equilibrium
(between solid-solution) with the existing contaminant
solutes in solution phase. The buffering capacity of soil

mainly forms the chemical barrier in soil against the chemical [ 4 |

transport and mobility of contaminants as a result of changes
in pH and clay content. In addition, some physical parameters
like pore blockage, pore constrictions of soil also act as barriers
against contaminant transport [9,55]. Some artificial biogeo-
chemical barriers (permeable reactive barriers) can be
applied in soil contaminated zones for improving the effi-
ciency of soil to minimize the transport and mobility of
chemical contaminants [56]. Similarly, establishment of a
plant cover on the surface of the contaminated sites (i.e. phy-
tostabilization) can be aimed at reducing the mobility of
contaminants within the vadose zone through accumulation
by roots or immobilization within the rhizosphere, thereby
reducing off-site contamination [57]. The concentration and
movement of redox-sensitive pollutants was minimized by
application of electron donors or acceptors through organic
matter and waste to the soil for activation of anaerobic micro-
organisms to reduce the activity and concentration of
radioactive elements, PTEs and organic contaminants [58]. In
this way, soil provides the foundation for a biogeochemical
barrier for a wide range of contaminants.

The mobilization, speciation and transformation of organic
and inorganic contaminants are primarily driven by chemical
factors like pH and oxidation-reduction (redox) potential
(Eh). The redox potential of the soil regulates the mobility
and speciation of toxic organic and inorganic contaminants
in soil. For example, Fiedler ef al. [10] studied V mobility in
the oil production fields of the Agua Dulce District near
Tabasco, Mexico. They reported that strongly reduced con-
ditions in organic-enriched soils (Eh=90 to -240mV)
aggravated the migration of V within soil which suggested
its entry into the human food chain. The As speciation and
solubility can change with prolonged oxidation and reduction
conditions under the rice field coupled with coexistence of
sulfate. Study revealed that an excess of sulfate reduced
extractable, dissolved and soluble As(III) in soil under redox
condition. About 50% of As(IIl) to the total As persisted
over 32 days of soil aerobic condition (Eh>400mV),
suggesting soil microsite sequestration against oxidation of
As(Ill) into a less toxic As(V) form (compared to As(III))
[11]. The release of PTEs like thallium (Tl), antimony (Sb),
and silver (Ag) from the soil is also influenced by redox poten-
tial, hence their retention in soil colloids in different phases
(solid, colloidal, dissolve) are dominated by soil redox poten-
tial. Results indicated that a wide range Eh (12 to +333 mV)
of biochar-treated soil released more PTEs like Tl and Sb than
untreated soil (Eh=-30 to +218 mV). Methylation of Hg
occurs under aerobic and anaerobic conditions by microor-
ganisms and their secreted enzymes, which is considered as
a detoxification process for Hg [7,59]. The methylated Hg
could be removed subsequently by volatilization. This reflects
the impact of redox potential on retention, detoxification and
mobilization of contaminants in soil [60]. Besides, mobiliz-
ation of iron (Fe) and formation of oxides are highly
influenced by fluctuations of Eh in soil. Under anaerobic con-
ditions, Fe(Ill) accepts electrons from microbial oxidation of
SOM and releases Fe(Il) in soil, which forms Fe-oxides
under aerobic conditions [61]. Similarly, P availability and
mobilization in soil depends upon water content and redox



potential of the soil that minimize the leaching of P in the
deeper soil profile [62].

The transformation of organic compounds occurs within
a diverse redox regime [63]. High oxygen transfer rates
often lead to the formation of a redox interface between the
sub surface vadose zone and soil saturated zone with the
occurrence of organic contaminants. Crawford et al. [64]
studied the biodegradation of atrazine under diverse redox
conditions in the absence or presence of electron acceptors
(O, NO;7) and glucose as electron donors. Results revealed
that faster degradation occurred under anaerobic conditions
with glucose and NO, . However, further research should
focus on deep sub surface redox processes that facilitate
chemical contaminant cycling [61].

A chemical process that forms sorption complexes of
metals on soil particles as a gradually increasing three-
dimensional solid form is known as surface precipitation. In
general, two mechanisms are observed in the formation of
surface metal precipitation: (i) change in metal properties
induced by soil solid surface, and (ii) change in soil solution
composition near the metal and solid surface interface. How-
ever, increased ionic activity of contaminants at the solid-
solution surface, oversaturation of contaminants owing to
adsorption on a solid surface, and co-precipitation of ions
at the solid-solution interface are the primary phenomena
that form soil precipitates in alkaline soils [65]. The co-pre-
cipitation of metals in the presence of metal hydroxides and
oxyhydroxide has been reported to make changes in the sur-
face chemical properties of the substrate. Precipitation of
aluminum (Al), Fe-phosphates in alkaline soils is considered
as phosphate-induced immobilization of metals, when metal
concentration becomes high [66]. Soil pH also governs the
precipitation of the contaminants like PTEs within soil,
which make them insoluble. The precipitation of contami-
nants on soil surface is, sometimes, required to recover the
metals and metalloids for further use in the industry. How-
ever, the microorganism induced metal precipitation in soil
is more beneficial than chemical reduction or oxidation in
terms of purity and cost for recovery of contaminants [67].
A combined process of solubilization through sulfuric acid
produced by sulfur-oxidizing bacteria with precipitation
through metal sulfide produced by sulfate-reducing bacteria
was conducted to recover purified metals in their sulfide
forms. Results revealed that 99% of Cu(ll), 96% of Cd(II) and
93% of Zn(II) were precipitated at pH 1.9, 3.0 and 4.0, respect-
ively, in the soil leachate. Finally, 75% of Cu(Il) and 86% of
Zn(Il) were recovered from the soil as CuS and ZnS which
remain protected in soil and minimized to a large extent
from its leaching to groundwater [68]. Similarly, microbial-
induced carbonate (MIC) precipitation of Pb in the form of
PbCO; and CaCO; also proved successful for contaminant
sequestration in soil as an insoluble form. The MIC used
for Pb precipitation was formed by soil bacteria, urease and
carbonic anhydrase enzymes [69]. The various soil biochemi-
cal compositional factors, including pH, surface charge, soil
bacteria and enzymes are closely responsible in the formation
of contaminant precipitates, therefore, minimizing the mobi-
lity and leaching of contaminants to the groundwater.
However, future research is required for a better understand-
ing of the detailed mechanistic insights on soil surface
precipitation of contaminants in order to achieve the conclus-
ive evidence on the role of soils in protecting contaminants
through precipitation.

4. Role of soil in the decontamination of
contaminants

The soil constituents (clays and clay minerals, and organic
matter) are useful to decontaminate various environmental
contaminants besides their multiple beneficial functions like
supporting plant growth, providing plant nutrients and pro-
tecting the contaminants within the soil medium. The soil
medium acts as a filtration unit for removal of contaminants
from the system. The soil solid constituents play a major role
in removing contaminants from soil through adsorption,
degradation and transformation of contaminants into less
toxic forms (figure 1). Besides, soil is the habitat for diverse
groups of microorganisms which also participate in the degra-
dation of toxic organic contaminants. Here, we highlight the
role of soil minerals, organic matter and microorganisms in
removing contaminants from soil.

(@) Soil minerals

Soil minerals are considered mainly as clay minerals which
are phyllosilicates constituted of silica and alumina frame-
works. The secondary inorganic
compounds of clay (less than 2 pm) size particles in soil
regardless of their crystallinity [70]. The crystalline clay min-
erals include 2 : 1 (smectite, vermiculite, mica), 1:1 (kaolinite,
halloysite) and 2:1:1 (chlorite) aluminosilicates and fibrous
clay minerals such as palygorskite and sepiolite. Besides,
oxides, hydroxides and oxyhydroxides of Fe, Al and
manganese (Mn) and other metals are also considered as

clay minerals are

crystalline clays, while allophane and imogolite are non-
crystalline clays [71]. These natural clays and clay minerals
can be used as adsorbents for contaminant removal from
soil and water owing to their low-cost, wide natural avail-
ability, and high specific surface area [72,73]. The natural
clay minerals such as montmorillonite, kaolinite and paly-
gorskite are used to remove various inorganic (PTEs) and
organic (dyes and pesticides) contaminants from water or
adsorb them in soil. For example, natural kaolinite and
bentonite removed 6.80 and 11.20mg g~ Cd [74], while
montmorillonite and palygorskite removed 17.88 and
2.35 mg g~' Cu from water [75,76]. Similarly, kaolinite, bento-
nite and smectite removed 47.27 mgg~' and 91% crystal
violet and malachite green [77], and 3300 pg g~' metalaxyl
[78] from water. Likewise, natural palygorskite adsorbed
372, 17.4 and 7.11 mg g ' Pb, Cu and Zn, respectively, in
soil [79], while natural smectite and kaolinite showed 53.80
and 58.36% As immobilization efficiency via adsorption in
soil [80]. However, the natural clays and clay minerals
suffer from low adsorption capacity, especially for organic
contaminants [81]. Therefore, the natural clay minerals are
modified with surfactants, inorganic salts, and mineral
acids in order to improve their functionality for adsorbing
high quantities of contaminants [82,83]. For example,
Fe-exchanged smectite had higher As adsorption capacity
(72%) than natural smectite (53.8%) in soil [80].
Similarly, AICl; modified bentonite adsorbed 61.4 and
323mgg~"! Cu and Zn in soil [84]. Besides, goethite (Fe-
oxyhydroxides (FeOOH)) adsorbed around 75 mg g™ As in
soil [85]. FeEOOH was also able to remove organic con-
taminants such as PFAS from water (3.5ugm™>) [86].
Additionally, Fe-oxide (Fe;O,) removed 49.90 mg g~' NO5~
from wastewater [87], while the starch modified-Fe;O, [88]
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Figure 1. Processes and mechanisms of sequestration, transformation and decontamination of soil contaminants. Abiotic processes are mediated by soil minerals,
whereas biotic processes involve soil microorganisms. SOM plays citical role at the juncture of biotic-abiotic processes governing the degradation (oxidation,
reduction, hydrolysis, alkylation) and adsorption (chemisorption, electrostatic attraction, ligand exchange, hydrophobic interaction) mechanisms of contaminants.

(Online version in colour.)

and humic acid modified boehmite (Al oxides) [89] removed
62.05 mg g~ and 0.17 ug m~> PFAS, respectively.

The adsorption of contaminants onto clay minerals occurs
through different mechanisms: (i) chemisorption occurs
through formation of chemical bonds between solute and
adsorbents, (ii) electrostatic attraction happens between two
oppositely charged particles (ions and adsorbent) as a func-
tion of pH of the medium, and (iii) ligand and anion
exchange occurs with exchange of a solid-phase ligand or
anion with the solution phase ligand or anion with change
in pH. Hence, the pH of the medium and surface charge of
the clay adsorbents (intrinsic charge and charge generated
as a function of pH) play a vital role in electrostatic attraction,
the chemisorption and anion or ligand exchange mechanism
between the clay surface and the contaminant [83]. At low
pH, the surface charge of the clay adsorbents become positive
favouring the adsorption of anionic contaminants, while
under high pH, the clay adsorbents become negatively
charged and favour the adsorption of cationic heavy
metals. However, clay adsorbents suffer from dose optimiz-
ation and high desorption potential when application is
made in the soil medium. Therefore, future research should
focus on contaminants remediation capacity of clays and
clay minerals in soil.

(b) Soil organic matter

Like clays and clay minerals, SOM also helps in adsorbing
contaminants in soil and water. The natural particulate
organic matter and natural dissolved organic matter partici-
pate in contaminant adsorption [90]. Addition of different
crop residues, municipal solid wastes and composts increases
the capacity of SOM to retain contaminants through

adsorption, redox reactions and complexation. The increase
in soil cation exchange capacity occurs owing to addition of
SOM by dissociation of H" ions from functional groups of
SOM, which in turn contributes to contaminant retention
[7]. Metal contaminants of organic and inorganic origins
make complexes in soil with organic matter. The Cd{I)
adsorption onto kaolinite was increased owing to the pres-
ence of SOM and formed a layer of organic matter on the
clay surface, which indicated that metal cations have high
affinity towards SOM to form chelates owing to the presence
of ligands or functional groups of SOM [91]. In addition,
SOM can affect the degradation of hydrophobic organic con-
taminants such as PAHs and PFAS. Experimental results
revealed that 2% SOM content of soil had higher degradation
of PAHs than 20% SOM content of soil, which suggested a
negative correlation between PAH bioavailability and SOM
content [92]. Similarly, peat soil (rich in SOM) heated at
200-250°C improved the decontamination efficiency of
Cr(VD). About 99% of Cr(VI) was decontaminated initially,
however, the increased heating temperature from 300 to
600°C reduced the Cr(VI) decontamination rate. The released
lignin substances and carboxylic groups of SOM enhanced
Cr(VID) reduction to Cr(Ill) at the initial stage upon heating
the peat soil, while raising heating temperature (greater
than or equal to 300°C) reduced the oxygen (O)-containing
functional groups that led to decreased reduction of Cr(VI)
[93]. The humic and fulvic acids are inseparable parts of
SOM, and contribute to contaminant removal individually
or in combination with other mineral adsorbents [89]. The
humic acid fraction of SOM when used as coating to the
clay minerals enhanced the removal of PFAS (0.17 ug m ™)
through hydrophobic interaction [89]. Loading of biochar
with water-soluble organic matter increased the O-containing
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Figure 2. Proposed actions to maintain the role of soils in protecting the environment from contaminants and delivering SDGs. (Online version in colour.)

functional groups on the biochar surface owing to the com-
plexation between biochar and water-soluble organic
matter, which subsequently reduced the Cd(II) concentration
in soil [94]. The reactive mineral matter mixed with SOM in
soil interferes in the mobility of organic contaminants too.
Acid treatment of such SOM removes the reactive mineral
and enhances the sorption of hydrophobic contaminants,
making them immobile [95]. However, SOM might be fractio-
nated in the soil system, and the details of how properties
change in SOM when coupled with contaminant behaviour
are still not fully understood.

(¢) Soil microorganisms

Soil is the habitat for diverse groups of microorganisms. Soil
microorganisms including fungi, bacteria and actinomycetes
play a significant role in decontaminating organic and inor-
ganic contaminants by degradation or transformation into
less toxic forms. Involvement of soil microorganisms in con-
taminant remediation is considered as inexpensive and eco-
friendly although microbial remediation is mostly confined
to a small area and at low contaminant concentration. Certain
soil microorganisms have the ability to decontaminate soil
pollutants naturally, but owing to the immutable bioavailabil-
ity of contaminants, natural attenuation might not always be
effective in remediating the soil. The attenuation of
contaminants could be accelerated by human interventions
such as application of certain types of amendments to the
contaminated soil, resulting in some changes in the

biogeochemical processes in the soil, thereby increasing the
rate of decontamination [7].

There are four probable ways by which soil microorgan-
isms decontaminate contaminants in soils: biosorption,
biodegradation, biotransformation and biomineralization
[96]. For example, Bacillus subtilis adsorbed 95% of Cd(II) in
the cell wall and cell membrane, and kept the remaining
Cd(I) in the soluble fraction of the cell [97]. Polti et al. [12]
evaluated Streptomyces sp. M7,
contaminated environment with PTEs and pesticides for
lindane and Cr(VI) decontamination, and found that the
bio-accessibility of lindane and Cr(VI) were decreased by 42
and 52%. Likewise, fungal species Aspergillus sydowii
showed potential to remediate soil contaminated with tri-
chlorfon and CddI) [98]. Among soil fungi, mushrooms
(Basidiomycota phylum) are highly efficient in the decontami-

isolated from co-

nation of organic and inorganic contaminants by secreting
laccase and manganese dependent peroxidase (MnP) enzymes.
Jia et al. [99] evaluated Lentinus edodes substrate in remediating
dichlorophen and Cd(II) co-contaminated soil. The degradation
rates of dichlorphen were 85-97%, and the substrate also
reduced the bioavailability of Cd(Il) in soil. In the case of co-
contamination, the degradation is more favoured by the pres-
ence of low concentration of PTEs. The mechanisms involved
in the microbial degradation of pesticides are oxidation,
hydrolysis, and alkylation. Firstly, pesticides are converted
into water-soluble and less toxic forms through oxidation,
reduction, or hydrolysis. In the later stage, pesticides are com-
bined with amino acids, which further promotes the formation
of water-soluble and non-toxic compounds. Finally, the
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metabolites are transformed into non-toxic secondary
conjugates [100]. Besides biosorption and biodegradation, bio-
mineralization and transformation of contaminants by soil
microorganisms are highly appreciable. Pseudomonas putida
has been shown to be capable of degrading organophosphorus
pesticides and promoting biomineralization of Cd(II) [101].
Many fungi and bacteria also produce biosurfactants and
extracellular enzymes that transform PTEs from toxic to non-
toxic forms (e.g. Hg(I) to volatile Hg® by mercuric reductase)
[102]. Similarly, Se-reducing bacterium Thauera selenatis
reduced selenate into selenite by the selenate reductase
enzyme, and then periplasmic nitrite reductase reduced sele-
nite into Se’ [103]. In addition, biotransformation of
contaminants depends on the quantity of transforming metab-
olites produced by soil microorganisms, soil physico-chemical
characteristics, and nature and concentration of concerned con-
taminants in soil.

5. Implications in Nature’s Contributions to
People and United Nations Sustainable

Development Goals

With the aim to contextualize the ‘Regulating NCP -
Formation, protection and decontamination of soils and sedi-
ments’ [104,105], this paper discusses how soils act both as a
source and sink of contaminants contributing to potential
positive (contaminant cleaning), negative (contaminant
addition) and context-specific (contaminant bioavailability
and leaching control) contributions to NCP. The contami-
nants governing functions of soils seem closely related to
the NCP such as ‘Food and feed’, ‘Medicinal, biochemical
and genetic resources’, ‘Regulation of freshwater and coastal
water quality’, ‘Habitat creation and maintenance’, ‘Regu-
lation of air quality’, and ‘Regulation of organisms
detrimental to humans’ [106]. The role of soil is also impor-
tant in the continuous efforts of achieving the SDGs by
global communities. In addition to serving for SDG ‘Zero
hunger’, soil contributes to achieve SDGs, such as ‘Life on
land’, ‘Climate action’, ‘Clean water and sanitation’, ‘Life
below water” and ‘Good health and wellbeing’ via playing
key roles in the disposition, sequestration and decontamina-
tion of contaminants [107] and the above-mentioned NCP
[106,108]. In order to achieve the SDGs successfully and to
protect the invaluable soil resource, we suggest the following
actions to be undertaken (figure 2).

(i) Accumulate soil contamination (contaminant types
and concentrations) data and combine them with
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