Skip to main content
. 2021 Aug 2;10:135–143. doi: 10.1016/j.artd.2021.06.020

Table 5.

Discriminative power and calibration.

Methods AUROC overall (n = 156,750) Brier score overall (n = 156,750) AUROC obesity (n = 16,818) AUROC diabetes (n = 32,991)
Logistic Regression 0.629 ± 0.01 (0.604-0.654) 0.006 ± 0 (0.0063-0.0063) 0.619 ± 0.03 (0.602-0.636) 0.583 ± 0.07 (0.526-0.640)
XGBoost 0.601 ± 0.03 (0.578-0.624) 0.006 ± 0.0002 (0.0063-0.0066) 0.567 ± 0.03 (0.540-0.594) 0.590 ± 0.05 (0.549-0.630)
Gradient Boosting 0.662 ± 0.04 (0.625-0.698) 0.022 ± 0.0031 (0.0051-0.0106) 0.634 ± 0.04 (0.601-0.666) 0.637 ± 0.05 (0.594-0.680)
AdaBoost 0.657 ± 0.03 (0.630-0.684) 0.007 ± 0 (0.0072-0.0072) 0.625 ± 0.02 (0.609-0.641) 0.635 ± 0.03 (0.605-0.665)
Random Forest 0.545 ± 0.02 (0.525-0.565) 0.008 ± 0.0002 (0.0073-0.0077) 0.534 ± 0.03 (0.508-0.559) 0.549 ± 0.05 (0.505-0.593)
AutoPrognosis 0.679 ± 0.04 (0.642-0.716) 0.007 ± 0.0010 (0.0058-0.0075) 0.660 ± 0.02 (0.646-0.674) 0.657 ± 0.04 (0.620-0.693)

All values reported as mean ± standard deviation with (95% confidence interval).