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Abstract

Objective: To determine the institutional diagnostic accuracy of an AI DSS, Aidoc, in diagnosing 

intracranial hemorrhage (ICH) on non-contrast head CTs and to assess the potential 

generalizability of an AI DSS.

Methods: This retrospective study included 3605 consecutive, emergent, adult non-contrast head 

CT scans performed between 7/1/2019 and 12/30/2019 at our institution (51% female, mean age 

of 61 ± 21 years). Each scan was evaluated for ICH by both a certificate of added qualification 

certified neuroradiologist and Aidoc. We determined the diagnostic accuracy of the AI model and 

performed a failure mode analysis with quantitative CT radiomic image characterization.

Results: Of the 3605 scans, 349 cases of ICH (9.7% of studies) were identified. The 

neuroradiologist and Aidoc interpretations were concordant in 96.9% of cases and the overall 

sensitivity, specificity, positive predictive value, and negative predictive value were 92.3%, 97.7%, 

81.3% and 99.2%, respectively, with sensitivity and positive predictive values unexpectedly lower 

than in previously reported studies. Prior neurosurgery, type of ICH, and number of ICH were 
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significantly associated with decreased model performance. Quantitative image characterization 

with CT radiomics failed to reveal significant differences between concordant and discordant 

studies.

Discussion.—This study revealed decreased diagnostic accuracy of an AI DSS at our institution. 

Despite extensive evaluation, we were unable to identify the source of this discrepancy, raising 

concerns about the generalizability of these tools with indeterminate failure modes. These results 

further highlight the need for standardized study design to allow for rigorous and reproducible 

site-to-site comparison of emerging deep learning technologies.

Graphical Abstract

Summary statement:

Unexpected lower sensitivity and positive predictive values were observed for an artificial 

intelligence decision support system for intracranial hemorrhage detection, raising concerns about 

the generalizability of deep learning tools.
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Introduction.

The use of diagnostic imaging has dramatically increased over the last several decades.1-2 In 

the acute care setting, CT imaging is a critical diagnostic tool for numerous emergent 

medical conditions such as intracranial hemorrhage (ICH). Timely interpretation is required 

to guide clinical interventions, especially for ICHs, with half of resulting mortality being 

reported to occur in the first 24 hours.3-4 However, increased imaging volumes place a 

significant burden on radiologists who must maintain diagnostic accuracy and efficiency.5 

While efforts have been made to reduce the number of unnecessary scans ordered, their 

effectiveness appears to be modest.6-7
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To help radiologists maintain diagnostic performance in the face of increasing clinical 

volumes, artificial intelligence (AI) decision support systems (DSS) have been developed. In 

their typical implementation, a DSS analyzes studies immediately after acquisition and flags 

those with emergent findings. In theory, a DSS can assist radiologists by directing them to 

prioritize flagged studies,8 thereby reducing the risk of missing or delaying the 

communication of a critical finding. Despite the promise of AI and the significant potential 

gains to be had with a DSS, radiologists are faced with choosing from hundreds of 

independently developed deep learning algorithms9 and 76 FDA-cleared AI algorithms10 

with considerable variation in the quality of the evidence supporting each one. AI algorithms 

also have many known limitations, such as the necessity for large and diverse training 

datasets,11 biases in dataset compilation,12 poor generalizability,13 overfitting,14 limited 

number of clinical validation studies,15-16 and the inability to interpret or analyze the 

underlying mechanisms. Additionally, a poorly performing DSS can hinder a clinician by 

highlighting false positive studies and promoting premature closure in falsely negative 

studies. Therefore, it is crucial to fully understand the role, performance, and 

generalizability of a DSS prior to widespread clinical implementation.

To these ends, we sought to determine and validate the performance and diagnostic accuracy 

of Aidoc, a widely used, FDA-cleared, and commercially available AI DSS used in the 

detection of ICH to examine the generalizability and reproducibility of deep learning tools. 

Early studies of this DSS have reported exceptional diagnostic accuracies.17-19 However, 

these studies have been limited by either small sample sizes or biased data processing, while 

more recent smaller validation studies report more modest operating characteristics.20 The 

aim of this study was to rigorously assess the performance of Aidoc for the detection of 

ICHs in its implementation at our institution.

Materials and methods.

This Health Insurance Portability and Accountability Act-compliant retrospective study was 

approved by our local institutional review board (IRB). The requirement for informed 

consent was waived by the IRB. The data was analyzed and controlled by the authors 

exclusively, none of whom are employees or consultants to Aidoc or its competitors.

Study population, data collection, and AI system.

All consecutive adult, non-contrast head CT (NCCT) scans performed at two emergency 

departments of an academic medical center between 7/1/2019 and 12/30/2019 were 

analyzed. A total of 3605 consecutive studies were identified (60.6 ± 20.7 years, 1843 

women), across seven General Electric (GE, Boston, MA) CT scanners. Our clinical site 

utilizes highly standardized GE CT protocols. Due to hardware differences, these protocols 

do vary slightly scanner to scanner; however, in general, our non-contrast head CT for adults 

is protocoled as a helical acquisition at a pitch of 0.531 (32x0.625 detector configuration) 

with a 0.4 s rotation at 120 kV using GE’s smart mA to achieve a noise index of 3.7. No 

smoothing algorithms are applied. The thin axial reconstruction is 1.25 mm slices at 0.625 

mm intervals using the “Soft” kernel; similarly, sagittal and coronal reconstructions are 

contemporaneously generated and available to the interpreting radiologist at the time of 

Voter et al. Page 3

J Am Coll Radiol. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



study interpretation. Interpreting neuroradiologists also have access to advanced 

visualization tools to aid in study interpretation (Vitrea Advanced Visualization, Vital 

Images, Inc., Minnetonka, Minnesota, USA). The thin source images are also saved to and 

available in PACS and for Aidoc (Aidoc, Tel Aviv, Israel) analysis. The software only 

accepts and interprets thin (interval 0.5-1 mm) axial CT images from modern (>64 slice) CT 

scanners. Clinical instances of Aidoc flag studies in real-time that are determined to have 

intracranial bleeding. However, to avoid potential bias influencing the final interpretation of 

the neuroradiologist, our study period only encompassed NCCTs that were performed prior 

to the clinical implementation of Aidoc at our institution. These NCCTs were then 

retrospectively analyzed by Aidoc (using the same FDA-cleared algorithm) and 

subsequently matched to the final imaging report.

Data processing and analysis.

Following study inclusion, the presence of an ICH, type of ICH, and study indication were 

manually determined from the attending neuroradiologist imaging report of each study. All 

studies were also analyzed by Aidoc, an FDA-cleared neural network algorithm, without 

technical exclusions and classified as positive for ICH (ICH+) or negative for ICH (ICH−). 

Because of the difficultly in assessing the presence of multiple ICHs in the algorithm output, 

scans were scored as ICH + irrespective of the number of ICHs detected. Key images 

highlighting the pathology identified by the AI model were obtained for each of the 

discordant, ICH+ studies. To establish the ground truth of the presence or absence of an 

ICH, the interpretation of the neuroradiologist and Aidoc were compared and the final 

certificate of added qualification (CAQ)-neuroradiologist attending interpretation was 

regarded as the ground truth. Studies with concordant interpretations (i.e. both positive or 

both negative) were assumed to be correct, while those with discordant interpretations were 

adjudicated after evaluation by both a second-year radiology resident and a second CAQ-

certified Neuroradiologist with 6 years of experience. Even if multiple ICHs were noted on 

the neuroradiologist interpretation, the presence of any ICH + indicated by the AI model was 

deemed concordant.

CT textural and quantitative image characterization.

All ICH+ and all discordant studies were uploaded to the HealthMyne server (HealthMyne 

Inc, Madison, WI), a platform for segmentation and computation of CT radiomic and 

textural features. Standardized spherical regions of interest (ROI) were drawn in the centrum 

semiovale, the thalamus, and lateral ventricle to broadly and quantitatively characterize 

image texture and appearance in multiple tissue types and locations in the central nervous 

system (white matter, gray matter, cerebrospinal fluid). ROIs were drawn on the right side, 

with a diameter of 10 mm. ROIs were either moved to the left side or drawn with a reduced 

diameter when anatomical distortion precluded drawing our standard ROI. All ROIs were 

drawn by a medical student with assistance from an attending neuroradiologist as required. 

CT textural features of each ROI were calculated by HealthMyne. In this work, the use of 

radiomic features in well-defined anatomic locations is not intended to describe underlying 

pathologies or physiological features21-23, but rather to quantitatively analyze both overall 

image quality as well as quantify image features that while not observable to radiologists, 

might nonetheless be image features driving image analysis in the AI algorithm . Some of 
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the selected features such as variance are very well established as image quality metrics on 

their own; however, other higher order features such as gray-level non-uniformity, kurtosis, 

and homogeneity describe other important characteristics of the image quality and texture 

which impact visual perception of the regions of interest.24-25

Statistical analysis.

Sensitivity, specificity, PPV, and NPV calculations were all performed in Microsoft Excel 

(Excel 365, Microsoft, Redmond, WA). The logistical regression analysis was performed in 

R (version 4.0.2, R Foundation for Statistical Computing, Vienna, Austria) with a 0.05 

threshold for statistical significance. Wald tests were used to test the effect of entire sets of 

categorical features. For CT textural analyses, for each feature, a two-sided t-test was used at 

each anatomical site to compare the set of concordant, ICH+ studies with 1) set of 

discordant studies and 2) all false negative studies. The threshold for statistical significance 

was corrected for multiple comparisons using the Holm-Bonferroni method with a 

familywise error rate of 0.05.

Results.

Aidoc diagnostic accuracy and failure mode analysis

A total of 3605 eligible NCCTs were analyzed and 349 (9.7%) ICHs were identified (Fig 1). 

Patient characteristics are summarized in table 1. The neuroradiologist and Aidoc 

interpretations were concordant in 3494 (96.9%) of the studies. After establishing a ground 

truth in discordant studies, 74 (2.1%) false positive and 27 (0.75%) false negative readings 

were reported by the AI model and 4 (0.11%) false positive and 6 (0.17%) false negatives 

were observed for the neuroradiologist interpretation (Fig 2A). The overall sensitivity and 

specificity of the DSS was 92.3% (95% confidence interval, 88.9 – 94.8%) and 97.7% (97.2 

– 98.2%) respectively with a positive predictive value of 81.3% (77.6 – 84.5%) and a 

negative predictive value of 99.2% (98.8 – 99.4%). We conducted a failure mode analysis to 

identify factors that could be contributing to the incorrect Aidoc interpretations. Factors 

were first analyzed using a univariable logistical regression model and age, sex, prior 

neurosurgery, the type of ICH and number of ICHs (a single type vs. mixed ICH) were all 

found to be significantly correlated with decreased diagnostic accuracy (Table 2). These 

factors were included in a multivariable logistic regression and all factors except for sex 

were found to significantly contribute to DSS performance (Table 2).

We next explored the etiologies of the false positive studies. Each study flagged by the DSS 

is accompanied by a key image highlighting the abnormality identified by the algorithm, 

allowing us to identify the etiology in each false positive case (Table 3). The most common 

false positive etiology was misidentification of a benign hyperdense imaging finding, 

accounting for 77% of the false positives results (Fig 2B), with non-hemorrhage pathologies 

and imaging artifacts comprising another 12% and 4% respectively (Fig 2C, D).

Image quality assessment using radiomic and textural analysis

During analysis, we noticed extensive noise or artifact on several of the discordant studies 

(e.g., Fig. 2D). Therefore, we sought to see if systematic differences between our concordant 
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and discordant studies might be uncovered in CT radiomics and CT textural analysis.26,27 A 

diverse set of 33 first order and higher ordered textural features were calculated in the 

centrum semiovale, the thalamus and ventricle (Fig. 3) and were compared between the ICH

+, concordant studies and both the false negative studies and all discordant studies. After 

correction for multiple comparisons, no significant textural differences were observed for the 

either the false negative studies or the discordant studies (Supplemental Table 1).

Discussion.

We performed a retrospective analysis of the performance of a deep learning DSS for the 

detection of ICH at our clinical site. We measured the diagnostic performance of Aidoc, 

identified common etiologies of false positive findings and find that age, surgical history, 

ICH type and isolated ICH (versus multiple foci of ICH) are associated with decreased 

algorithm performance. Furthermore, we demonstrate that diagnostic performance is not 

related to quantitative differences in image quality when assessed by CT textural analyses. 

We observed that most of the incorrect Aidoc flags were false positives and the etiologies of 

these errors are consistent with the sources of false positives noted in prior studies, typically 

hyperdense structures or imaging artifacts.17,20,28

We and others17, 20 have noted a small number of false positives that are directly attributable 

to post-surgical changes. However, these cases cannot fully account for the impaired 

performance in post-surgical patients. Even in cases where surgical changes are not directly 

flagged, the error rate is three-fold higher in patients with a history of neurosurgery (2.4% vs 

7.5%) and this compromised performance is seen with elevations in the rates of both the 

false negative and false positive studies. Because the mechanisms of neural networks are not 

readily interrogated, we cannot definitively determine the mechanisms for this observation, 

but in light of these changes in diagnostic performance, future deep learning models for 

detection of ICHs should more robustly include post-surgical patients to improve overall 

performance.

We also observed decreased diagnostic performance in patients with only a single ICH type 

relative to those with mixed ICHs. This could be explained in part by Aidoc only requiring a 

single bleed to score the study as positive for ICH. The presence of additional bleeds on a 

single study increases the probability that any bleed is detected. There was also decreased 

performance of the DSS in cases of a single ICH type compared to the ICH− studies, 

possibly due to the relatively lower number of ICH+ scans in our sample. Within the single 

ICH types, there were slight difference in the DSS performance, although the small number 

of bleeds within each subgroup increases the probability of spurious findings. Male sex was 

also associated with worsened performance of the algorithm in the univariable analysis, 

although this effect was not significant in the multivariable logistic regression and may 

simply be due to chance or confounding.

Next, we examined if image quality to might be responsible for the false negative findings. 

Poor image quality or artifacts can complicate or preclude interpretation by human readers, 

and we hypothesized that the performance of AI tools may also depend on image 

characteristics. Specifically, differences in diagnostic performance could stem from poor 
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image quality or significant differences in image quality and that incorrectly flagged studies 

might have worse image quality compared to the correctly flagged studies. As examples, 

beam hardening artifacts29 and excessive noise30 alter the textural features of CT datasets. 

However, we did not observe any systematic differences between our concordant and 

discordant studies in our CT radiomics and CT textural analysis. Therefore, it seems 

unlikely that image quality per se is a meaningful failure mode in our data, although it 

remains to be seen if AI tools are insensitive to image quality as image quality may have 

different meanings for machine vision applications versus human visual interpretation.

Overall, our estimates of the specificity and NPV agree with prior studies of the 

performance of Aidoc. However, we observed lower sensitives and PPV than in prior reports 

(Table 4).8,17,18,20,28 The lower PPV could be explained in part by the lower prevalence of 

ICH in our study, as prior studies report higher rates of ICHs, with correspondingly higher 

PPVs. However, sensitivity is independent of the prevalence and we sought to identify 

explanations for our elevated rate of false positive findings. As none of the population or 

study-specific factors we examined account for the impaired diagnostic performance of the 

AI DSS at our site when compared to previous reports, we hypothesize that in addition to 

unaccountable model biases, these differences may be explained in large part by study 

design. Numerous prior studies have relied on small sample sizes or enriched their data set 

with ICH+ studies.8, 18, 28 The largest study to date used the presence of repeat NCCTs to 

indicate a presumed ICH.17 While simplifying analysis, this necessarily biases the data set 

with an increased prevalence of ICH and thus inflates measures of diagnostic accuracy 

including PPV. Indeed, a manual review of a subset of their studies revealed a 2% error rate.
17 Our study design circumvents these limitations and to the best of our knowledge, is the 

largest to use manual review of the neuroradiologist interpretation to establish a ground truth 

and to include the true prevalence of ICH in our study population. There are numerous 

barriers to performing multi-institutional studies, meaning single site studies will play an 

outsized role in evaluating the performance of deep learning algorithms and AI DSS. Our 

work suggests that the development of a common set of rigorous study criteria will facilitate 

collaboration, helping safely grow the role of AI DSS in clinical practice.

AI DSSs are not limited to the detection of ICHs. Algorithms have been developed for breast 

cancer screening,31 detection of pneumonia,32 pulmonary nodules,33 and others. While the 

performance of these systems has improved in recent years, challenges have arisen in 

rigorously assessing the performance of algorithms34 and a failure of the algorithms to 

generalize to broad patient populations,13,35 similar to what we observed in our work here. 

The implementation of reporting standards (i.e. STARD) has facilitated the comparison 

between trials,36 although there can still be considerable differences even among STARD 

conforming studies.34,37,38 Generalizability can be improved by diversifying training sets, 

especially with the inclusion of local data.39 While site-specific training of DSSs is not 

currently permitted by the FDA, there is a movement towards relaxing these restrictions with 

the goal of improving algorithm performance.40

Our study has limitations. As with other studies examining diagnostic accuracy of deep 

learning technologies, our study is a retrospective single site study and the degree to which 

our findings are generalizable to other clinical sites remains unknown. However, our study 
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design, which examined consecutive NCCT head examinations performed in our emergency 

department, provides an unfiltered review of imaging cases evaluated by our AI DSS and 

allows for transparent comparison to future studies investigating diagnostic accuracy of ICH 

deep learning algorithms. An addition limitation is our inability to probe the source and 

frequency of false negative exams in further detail due to the black box nature of the AI 

algorithm. Another possible limitation is the assumption of accuracy in cases with 

concordant Aidoc and radiologist findings. Because each may have identified separate, albeit 

coincident, findings, this could artificially inflate the sensitivity of the model. Similarly, each 

may have independently failed to identify the same ICH, as it was not feasible to reassess all 

concordant scans. However, it is unlikely that enough ICHs were missed to significantly 

change our findings. Another potential limitation to our study is the equipment used. All of 

our studies were performed on a suite of GE CT scanners and while we did not find 

quantitative differences in image quality or texture between correctly and incorrectly flagged 

studies, potential vendor differences were not assessed and should be a consideration in 

future studies. Lastly, non-emergent referrals and other patient factors such as 

socioeconomic status and race were not considered in this work and will serve as the basis of 

future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Take-home points:

• Unexpected lower sensitivity and positive predictive values were observed for 

an artificial intelligence decision support system for intracranial hemorrhage 

detection, raising concerns about the generalizability of deep learning tools.

• Decreased diagnostic performance was associated with prior neurosurgery, 

type and number of hemorrhages, but is not associated with image quality.

• Comparisons of decision support systems is complicated by variations in 

study design. Creation of standardized study parameters will facilitate the 

unbiased evaluation of these valuable tools.
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Figure 1. 
STARD patient flow diagram.
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Figure 2. Examples of Aidoc reads and failure modes.
Each panel shows the non-contrast head CT (left) and the key image indicating the 

pathology identified by Aidoc (right). A) True positive, intracranial hemorrhage (ICH) 

missed by interpreting neuroradiologist. B) Benign finding (meningioma) misidentified as 

ICH by Aidoc. C) Pathology (cortical laminar necrosis) misidentified as ICH by Aidoc. D) 

Aidoc misidentification of an imaging artifact as an IC. E) Unclear failure mode without 

obvious pathology.
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Figure 3: Example regions of interest (ROI) for CT radiomics and quantitative image 
characterization.
Spherical ROIs with a 10 mm diameter were drawn in the centrum semiovale (teal), the 

thalamus (green) and ventricle (blue), to represent white matter, gray matter, and CSF, 

respectively.

Voter et al. Page 14

J Am Coll Radiol. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Voter et al. Page 15

Table 1.

Patient characteristics.

All (%) ICH + (%)
Aidoc

Incorrect (%)

Total 3605 100 349 100 101 100

Sex

   Male 1762 48.9 205 58.7 60 59.4

   Female 1843 51.1 144 41.3 41 40.6

Age (mean, SD) (SD) (SD) (SD)

   All 60.6 20.7 63 19.7 67.5 19.1

   Male 58.1 20.1 59 19.2 64.4 19.3

   Female 62.9 21.0 69 18.8 72 18.1

Prior neurosurgery

   yes 267 7.4 38 11 81 80.2

   No 3338 92.6 311 89 20 19.8

CT Scanner 0.0

   1 82 2.3 5 1.4 3 3.0

   2 72 2.0 8 2.3 3 3.0

   3 252 7.0 22 6.3 6 5.9

   4 346 9.6 48 13.8 10 9.9

   5 2085 57.8 232 66.5 62 61.4

   6 723 20.1 29 8.3 17 16.8

   7 45 1.2 5 1.4 0 0.0

NCCT indication

   Trauma 2064 57.3 173 49.6 60 59.4

   Altered mental status 525 14.6 25 7.2 12 11.9

   Headache 389 10.8 15 4.3 9 8.9

   Neurologic 241 6.7 16 4.6 5 5.0

   Repeat study 137 3.8 113 32.4 6 5.9

   Seizure 104 2.9 3 0.9 4 4.0

   Loss of consciousness 69 1.9 2 0.6 2 2.0

   Infection 20 0.6 2 0.6 2 2.0

   Other 56 1.6 0 0.0 1 1.0

ICH type

   No ICH 3256 90.3 0 0.0 74 73.3

   Any ICH 349 9.7 349 100.0 27 26.7

   Single ICH 226 6.3 226 64.8 26 25.7

      SDH 91 2.5 91 26.1 14 13.9

      SAH 72 2.0 72 20.6 5 5.0

      IPH 33 0.9 33 9.5 5 5.0

      Other 30 0.8 30 8.6 2 2.0

Univariable analysis Multivariable Analysis

         IVH 10 0.3 10 2.9 0 0.0
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All (%) ICH + (%)
Aidoc

Incorrect (%)

         Hem. Met. 9 0.2 9 2.6 1 1.0

         Extra-axial (not specified) 8 0.2 8 2.3 1 1.0

         EDH 2 0.1 2 0.6 0 0.0

         Subependymal 1 0.0 1 0.3 0 0.0

   Mixed ICH 123 3.4 123 35.2 1 1.0

SD: standard deviation, NCCT: non-contrast head CT, ICH: intracranial hemorrhage, ICH+: positive intracranial hemorrhage, SDH: subdural 
hemorrhage, SAH: subarachnoid hemorrhage, IPH: intraparenchymal hemorrhage, IVH: intraventricular hemorrhage, Hem. Met: Hemorrhagic 
metastases, EDH: Epidural hematoma.
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Table 2.

Results of univariable and multivariable logistical regression models for evaluating factors associated with AI 

DSS errors.

Parameter OR 95% CI P Value OR 95% CI P value

Age 1.018 1.008 - 1.029 <0.001* 1.018 1.007-1.030 0.002*

Sex

    Male
†

    Female 0.6 0.4-1.0 0.03* 0.7 0.4-1.0 0.06

Prior Neurosurgery

    No
†

    Yes 3.3 1.9 - 5.3 <0.001* 3.1 1.8-5.1 <0.001*

NCCT Indication

    Trauma
†

    Altered mental status 0.78 0.40-1.41 0.44

    Headache 0.79 0.37-1.53 0.52

    Neurologic 0.71 0.25-1.61 0.46

    Repeat study 1.5 0.58-3.3 0.33

    Seizure 1.3 0.40-3.3 0.58

    Loss of consciousness 1.0 0.16-3.28 >0.99

    Infection 3.7 0.58-13.3 0.08

    Other 0.60 0.03-2.8 0.62

    Overall (χ2) 0.60

CT scanner

    1
†

    2 1.1 0.2-6.4 0.87

    3 0.64 0.17-3.1 0.54

    4 0.78 0.23-3.6 0.72

    5 0.81 0.29-3.4 0.72

    6 0.63 0.21-2.8 0.48

    7 0 0-362 0.98

    Overall (χ2) 0.95

Number of ICH types

    None
†

    Single 5.59 3.44-8.83 <0.001*

    Multiple 0.35 0.02-1.61 0.3

    Overall (χ2) <0.001*

ICH type

    No Bleed
† -

    SDH 7.8 4.1-14.1 <0.001* 6 3.0-10.9 <0.001*

J Am Coll Radiol. Author manuscript; available in PMC 2022 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Voter et al. Page 18

Parameter OR 95% CI P Value OR 95% CI P value

    SAH 3.21 1.1-7.46 0.015* 3.26 1.11-7.63 0.014*

    IPH 7.67 2.55-18.8 <0.001* 7.49 2.44-18.9 <0.001*

    other 3.07 0.49-10.5 0.13 2.44 0.38-8.58 0.24

    mixed 0.35 0.02-1.61 0.3 0.34 0.02-1.55 0.28

    Overall (χ2) <0.001* <0.001*

OR: odds ratio, CI: confidence interval

†:
Used as reference category

*:
Statistically significant results (p <0.05)
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Table 3.

Etiology of false positive findings

False positive etiology Count %

Hyperdense structure 24 32.4

 Calcification 10 13.5

 Meningioma 5 6.8

 Hyperdense mass 3 4.1

 Choroid plexus 2 2.7

 Calcified oligodendroma 1 1.4

 Pineal calcification 1 1.4

 Colloid cyst 1 1.4

 Sellar mass 1 1.4

Thick dura 19 25.7

 Dura 3 4.1

 Falx 8 10.8

 Tentorium 8 10.8

Vessel 8 10.8

 Vessel 6 8.1

 Aneurysm 2 2.7

Dural Sinus 5 6.8

Non-specific 5 6.8

Imaging artifact 3 4.1

High intrinsic gyral density 3 4.1

Post-surgical 3 4.1

Cortical laminar necrosis 2 2.7

Osseous lytic lesion 2 2.7
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Table 4.

Operating characteristics of Aidoc in this and similar studies. Values are reported as percentages with 95% 

confidence intervals in parenthesis.

This study
Aidoc

510(k)18 Chodakiewitz28 Ojeda17 Ginat20 Wismuller8

Sens 92.3%
(88.9-94.8)

93.6%
(86.6-97.6)

96.2%
(93.2-98.2)

95%
(93.9-96.1)

88.7%
(84.7-92.0)

95
(88.6-98.0)

Spec 97.7%
(97.2-98.2)

92.3%
(85.4-96.6)

93.3%
(89.6-96.0)

99%
(98.4-99.0)

94.2%
(93.0-95.3)

96.7
(94.7-98.0)

PPV 81.3%
(77.6-84.5)

91.7%
1

(84.9-95.6)
93.4%

(90.1-95.7)
96%

(94.6 – 96.6)
73.7

(69.8-77.4)
86.1%1

(79.4-90.8)

NPV 99.2%
(98.8-99.4)

94.1%1

(88.4-97.2)
96.2%

(93.2-97.9)
98%

(98.2-98.8)
97.7

(97.1-98.4)
99.0%1

(97.4-99.4)

ICH+ (%) 9.70% 47.5%1 49.7% 23.2% 20.3% 17.9%

Total N 3605 198 533 7112 2011 620

ICH+: Intracranial hemorrhage positive

1:
Values were inferred from reported sensitivity, specificity, and N.
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