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Abstract

Over the past two decades, evo-devo (evolution of development) studies have elucidated genetic 

mechanisms underlying novel dipteran body color patterns. Here we review the most recent 

developments, which show some departure from the model organism Drosophila melanogaster, 
leading the field into the investigation of more complex color patterns. We also discuss how 

the robust application of transgenic techniques has facilitated the study of many non-model 

pest species. Furthermore, we see that subtle pigmentation differences guide the discovery 

and description of new dipterans. Therefore, we argue that the existence of new field guides 

and the prevalence of pigmentation studies in non-model flies will enable scientists to adopt 

uninvestigated species into the lab, allowing them to study novel morphologies.
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Introduction

Diptera, or the “true flies”, is an order of holometabolous insects set apart by their single 

pair of wings and set of flight-stabilizing halteres [1,2]. With regards to investigating 

body coloration, the most well-studied dipterans belong to the family Drosophilidae, which 

includes the “common fruit fly” (Figure 1). Attempts to understand the evolution of color 

pattern development in Drosophila (D.) have persisted for decades. In this review, we will 

discuss the ongoing research in not only “common fruit flies”, but the order Diptera as a 

whole. One early focus of dipteran evo-devo pertained to simple color patterns, like that 

of D. melanogaster. Today, we investigate body coloration across an array of genera and 

species. Recently, there appears to be a major trend in the use of the CRISPR/Cas9 system 

to disrupt pigmentation to develop pest control methods. Furthermore, the critical analysis 

of color patterns has led to the identification of new species. Here we review the recent 

literature on dipteran coloration and provide our opinion on how the field should move 

forward.

The evolution of dipteran color patterns

Dipterans exhibit a multitude of color patterns; however, the bulk of recent literature pertains 

to the genus Drosophila. Recent studies in these “common fruit flies” examined complex 

abdominal, wing, and thoracic color patterning. We also note the exhibition of new methods 
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and tools with the potential to impact the field of evo-devo and a paradigm shift in our 

understanding of pigment biosynthesis. Finally, we see that a complex color pattern outside 

of the genus Drosophila is thoroughly analyzed, a progression welcome in the field.

Abdominal color patterns

The myriad of abdominal color patterns seen in Drosophila species, ranging from full-body 

pigmentation to intricate combinations of spots and stripes, have inspired investigators 

to study how these novel morphologies emerged [3,4]. The evolutionary divergence of 

coloration between the pale-yellow colored D. novamexicana and the brown D. americana 
was shown to have occurred, at least in part, from differences in the ebony alleles between 

the species [5*]. Sramkoski et al. (2020) examined the intraspecific pigmentation of D. 
americana. They noted that populations found in the eastern United States display a darker 

body coloration than the western populations, and that this progressively lighter body 

coloration seen in western D. americana results in a pigmentation phenotype that resembles 

D. novamexicana. Sramkoski et al. (2020) suggested that allelic similarities in ebony and 

tan between lightly colored D. americana morphs and D. novamexicana might underly the 

pigmentation cline seen in D. americana. However, this hypothesis was not supported [6].

The quinaria group’s 26 species [7] display an impressive array of pattern elements. Dion 

et al. (2020) demonstrated that the co-expression patterns of three key pigmentation genes, 

Dopa decarboxylase, tan, and yellow, prefigure the spot patterning of three quinaria species 

group members: D. guttifera, D. palustris, and D. subpalustris [8]. D. guttifera was further 

examined by KKB Raja et al. (bioRxiv doi: 10.1101/2020.04.09.034900), who showed that 

a cis-regulatory element in the yellow locus drove the expression of a reporter construct in a 

pattern that resembled the adult abdominal pigmentation. They also showed correlational in 
situ hybridization data indicating that the toolkit genes wingless, decapentaplegic, hedgehog, 

abdominal-A, and zerknullt may play a role in the formation of the abdominal color pattern. 

Kalay et al. (2019) focused on the cis-regulatory capabilities of sequences derived from the 

5’ intergenic and intronic regions of the yellow gene in D. melanogaster, D. pseudoobscura, 

and D. willistoni. They observed reporter gene expression patterns driven by redundant and 

cryptic cis-regulatory elements, the latter being a sequence with the ability to regulate gene 

expression alone but not in its naturally occurring position in the genome. They suggested 

that the observed cis-regulatory complexity may underlie the yellow gene’s wide range of 

expression patterns within the genus Drosophila [9].

Sexually dimorphic pigmentation is widespread across Drosophila, a phenomenon that 

Hughes et al. (2020) proposed to have emerged through parallel evolution [10]. Roeske et al. 
(2018) demonstrated that in female D. melanogaster, bab represses posterior coloration by 

binding to a cis-regulatory element (body element) of yellow required for the male-specific 

pigmentation [11]. The development of this male-specific coloration was also shown to 

require the activity of the gene grainy head [12]. The female-specific pigmentation of this 

fly was shown to be controlled by a gene-regulatory network that is thermally sensitive. 

Abdominal B and (female-specific) doublesex initiate the expression of bab, a gene with 

a role in the development of sexually dimorphic body coloration [13], which dials down 

the activity of three pigmentation genes: Dopa decarboxylase, tan, and yellow. De Castro 

Dion et al. Page 3

Curr Opin Genet Dev. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al. (2018) demonstrated that higher temperatures yielded increased levels of bab, which 

resulted in reduced pigmentation. They further suggested that Abdominal B, a gene whose 

product has an established role in Drosophila pigmentation [14,15], may turn on tan 
expression at lower temperatures [16]. Abdominal B was further investigated by Liu et 
al. (2019), who demonstrated that untangling the evolution of a gene-regulatory network 

is not straightforward. Abdominal B facilitates dark body coloration in D. yakuba, and 

modifying its expression was shown to not alter the body pigmentation of the sister species 

D. santomea (whose absence of abdominal pigmentation resulted from an evolutionary 

loss of tan and yellow expression [17]) [18]. The morphological diversity of Drosophila 
abdominal coloration continues to be a fruitful resource for investigating the development of 

novel traits.

Wing pigmentation

Attempts to understand the development of dipteran wing coloration has been ongoing 

for more than 20 years [19]. Recent studies of Drosophila and Samoaia progressed our 

understanding of how wing color patterns evolved. The gene wingless is an established 

coordinator in the development of wing pigmentation in D. guttifera [20,21]. Fukutomi et 
al. (2020) further demonstrated that wingless is a key regulator of 151 genes associated 

with the color pattern on the wings of this polka-dotted fruit fly [22*]. Massey et al. 
(2020) suggested that the X-chromosomal gene optomotor-blind possibly underlies the 

disparity of pigmentation between two sibling species, D. elegans (which has a male-specific 

wing spot) and D. gunungcola (which lacks a wing spot) [23]. The male-specific spot 

seen in D. biarmipes was also the subject of a recent study. CC Galouzis et al. (bioRxiv 

doi: 10.1101/2020.03.23.003103) showed that homologous alleles for the X-chromosomal 

yellow gene interact with each other to inactivate the regulatory element (spot enhancer) 

responsible for this trait in females. They further noted that the intron of yellow and the 

protein Mod(mdg4) are required for this function to occur.

The expression of engrailed is normally located only in the rear section of the early 

developing fly wing to dictate posterior wing identity. However, Engrailed also plays 

a role in the development of the wing spot seen in D. biarmipes [24]. Dufour et al. 
(2020) suggested that engrailed was co-opted into the development of wing pigmentation 

in Samoaia leonensis, a process that occurs after the development of the basic wing 

morphology. This co-option results in a complex wing color pattern; engrailed represses 

pigmentation in specific areas of an ancestrally black wing, resulting in many irregular 

light areas spread across the wing surface. Dufour et al. (2020) further proposed that 

engrailed gained new temporal and spatial domains of expression with an onset after its vital 

developmental role in posterior wing identity [25**]. This study provided valuable insights 

into how toolkit genes can gain novel domains of expression without interrupting their other, 

essential roles in organismal development.

Thoracic trident of D. melanogaster

One other specific pigmentation feature, the thoracic trident of D. melanogaster, inspired 

recent studies. Gibert et al. (2018) suggested that the expression pattern of stripe - a 

gene involved in flight muscle attachment and also the repression of pigmentation - 

Dion et al. Page 4

Curr Opin Genet Dev. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



caused the emergence of this unique color pattern as a consequence of its co-option 

into a pigmentation gene-regulatory network [26]. Endler et al. (2018) showed that single­

nucleotide polymorphisms within the tan male-specific enhancer and a missense mutation 

in CG15370 (a gene upstream of tan) have a high impact on trident pigmentation [27]. 

Based on the discovery that alterations to the regulation of ebony impacted the abdominal 

coloration of D. melanogaster [28], Telonis-Scott and Hoffmann (2018) suggested that 

ebony enhancer variation, in part, underlies the diversity in color intensity of the thoracic 

trident pattern [29].

Methods and pigment biosynthesis

Besides “common fruit flies” being at the center of experiments that progressed our 

understanding of the molecular mechanisms underlying the evolution and development of 

body color patterns, we see techniques relevant to evo-devo designed and refined through 

the use of both model and non-model Drosophila species, such as a method to investigate 

enhancer-promoter interactions [30], a method to produce transgenics in a much more 

delicate “common fruit fly”, D. guttifera [31*], and the robust application of the Oxford 

Nanopore sequencing technology [32]. Also, it is now widely accepted that black pigment 

is produced by Yellow from dopamine, as opposed to dopa (Figure 2) [8,10,33,34]. These 

studies show that our evo-devo toolkit and our understanding of pigmentation continue to 

develop.

Head pigmentation in a tephritid species

One interesting study, notably outside of the genus Drosophila, investigated a complex 

spot pattern crowning the head of Bactrocera dorsalis. Bai et al. (2019) demonstrated 

that the knockout of the white gene partially erased this dark pigmentation pattern. These 

white mutants had lower expression levels of yellow (Bd-yellow1 specifically), prompting 

the authors to speculate that a regulatory relationship between white and yellow may 

exist, where White possibly facilitates the transport of secondary messengers that affect 

transcription factor activity and gene expression [35**]. This study clearly demonstrated the 

value of incorporating diverse fly species into our efforts to understand both the architecture 

of gene-regulatory networks and the evolution and development of complex color patterns.

Pigmentation as a target for pest control

Applying our understanding of the underlying molecular pathways and adapted molecular 

techniques for model and non-model species has allowed for advancements in translational 

research. Mosquitoes are an established disease vector, and one method to manage their 

populations could be through manipulating their pigmentation development. Pigmentation 

studies in Aedes albopictus demonstrated that ovary-specific genes of the yellow family 

have been found to play roles in both melanization timing and proper development of the 

chorion [36]. CRISPR/Cas9 knockouts of kynurenine hydroxylase and yellow in Aedes 
albopictus demonstrated the feasibility of genetic manipulation in this mosquito [37], and 

RNAi knockdown of Laccase 2 in Anopheles sinensis identified a target that could facilitate 

the control of this mosquito population [38]. Juvenile hormone receptors are integral to 

insect development. Zhu et al. (2019) knocked out the gene methoprene-tolerant encoding 
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one of these receptors in Aedes aegypti through the use of CRISPR/Cas9. This knockout led 

to black third-instar and fourth-instar larvae that eventually died before reaching the pupal 

stage [39].

In Cochliomyia hominivorax and Lucilia cuprina, two flesh-eating parasitic flies in 

livestock, yellow plays a key role in the development of dark adult body coloration, and 

the gene was targeted to prove the viability of the CRISPR/Cas9 system in these insects. 

Taking it one step further beyond pigmentation, Paulo et al. (2019) then knocked out the 

gene transformer in C. hominivorax, which disrupted reproductive organ development and 

demonstrated a possible avenue for pest control [40]. Additionally, the brown body locus in 

Musca domestica was shown to be orthologous to the yellow gene in Drosophila through the 

use of CRISPR/Cas9 [41].

The Tephritidae, or the “true fruit flies”, are a large and invasive dipteran family at 

the center of recent studies of genetic manipulation. CRISPR/Cas9 facilitated the first 

successful manipulation of the gene scarlet in Bactrocera oleae [42]. In Anastrepha ludens, 

a previously unidentified mutation affecting both pupal and adult pigmentation, slow larvae, 

was identified [43]. Chen et al. (2018) and Zhang et al. (2019) demonstrated that the 

pigmentation gene tyrosine hydroxylase (a.k.a. pale) plays an important role in the pupal 

pigmentation (tanning) of Bactrocera dorsalis [44] and Zeugodacus tau [45], respectively. 

These studies focused primarily on pest control; however, their contributions to refining 

transgenic techniques in non-model organisms and their data regarding the roles of key 

pigmentation genes are a boon to the field of dipteran color pattern evo-devo.

The identification and characterization of new species and traits

A new species, D. carrolli, isolated from Brunei has been recognized. Some defining 

characteristics that separated this species from the closely related D. rhopaloa included 

unique body and wing pigmentation traits [46*]. Additionally, wing pigmentation supported 

the identification of five previously unknown species of Culicoides [47], and differences in 

thoracic pigmentation helped to distinguish a new member of the genus Corethrella from an 

established species [48].

While body pigmentation is easily visible to the human eye, wing interference patterns 

require multispectral digital imaging to be properly visualized. Hawkes et al. (2019) 

suggested that these structural colors in the wings of D. simulans play a role in sexual 

selection [49], and NJ Butterworth et al. (bioRxiv doi: 10.1101/2020.02.18.948646) 

observed species-specific and sexually dimorphic wing interference patterns in species of 

the genus Chrysomya.

As a discipline, evo-devo is incomplete without field work. Field guides and references 

providing high-quality images and accurate descriptions of species across the order Diptera 

have recently become available [50–52, 53*, 54*]. We hope that these guides facilitate the 

identification and investigation of rarely studied flies.
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Conclusion

The advancement in our understanding of dipteran body color evo-devo, though impressive, 

is mainly localized to well-characterized Drosophila species. We propose two directions 

for the field: First, we hope to see an even greater incorporation of non-model Drosophila 
species into evo-devo research. The availability of new, comprehensive field guides coupled 

with broadly applicable methods for genetic manipulation will facilitate the broader 

exploration of novel morphologies - a scenario that should excite every naturalist. Second, 

we propose that in-depth studies of body color patterns displayed by the family Tephritidae 

should be pursued. Recent literature demonstrated that genetic manipulation is practical in 

this dipteran family and that novel gene-regulatory architectures underlying pigmentation 

development may exist. We believe that the broader inclusion of non-model Drosophila and 

the “true fruit flies” into a field dominated by well-studied “common fruit flies” is a vital 

step towards understanding the evo-devo of very complex dipteran body color patterns.
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Figure 1: Drosophilid body coloration.
Here, we see just a fraction of the diverse body color patterning exhibited within the 

order Diptera. Some of these unique morphologies are the subjects of recent investigations 

detailed within this review. However, many other traits shown here are not mentioned 

in the literature, and their developments deserve to be investigated. Row 1: (A, B) D. 
guttifera, (C, D) D. deflecta, and (E, F) Leucophenga varia. Row 2: (G) D. palustris, (H) D. 
subpalustris, (I) D. busckii, (J) D. hydei, (K) the thoracic trident of D. melanogaster, and 

(L) the striped thorax of Zaprionus indianus. Row 3: (M) D. melanogaster (female), (N) 

D. melanogaster (male), (O) Hirtodrosophila duncani (female), (P) Hirtodrosophila duncani 
(male), (Q) Samoaia leonensis, and (R) Chymomyza amoena. Row 4: (S) D. americana, (T) 

Mycodrosophila claytonae, (U) Mycodrosophila dimidiata, and (V) Phortica variegata. Row 
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5: (W) D. macrospina, (X) D. borealis, (Y) D. peninsularis, and (Z) D. ananassae. Images 

are from [53*, 54*].
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Figure 2: The pigmentation biosynthesis pathway.
The previously understood role of Yellow (Yellow*) is shown by a dashed line. POs 

are phenol oxidases, aaNATs is arylalkylamine N-acetyl transferases, NADA is N-acetyl 

dopamine, and NBAD is N-β-alanyl dopamine. Figure adapted from [8,10,33,34].
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