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A B S T R A C T

Background: Since its emergence in Autumn 2020, the SARS-CoV-2 Variant of Concern (VOC) B.1.1.7 (WHO
label Alpha) rapidly became the dominant lineage across much of Europe. Simultaneously, several other
VOCs were identified globally. Unlike B.1.1.7, some of these VOCs possess mutations thought to confer partial
immune escape. Understanding when and how these additional VOCs pose a threat in settings where B.1.1.7
is currently dominant is vital.
Methods: We examine trends in the prevalence of non-B.1.1.7 lineages in London and other English regions
using passive-case detection PCR data, cross-sectional community infection surveys, genomic surveillance,
and wastewater monitoring. The study period spans from 31st January 2021 to 15th May 2021.
Findings: Across data sources, the percentage of non-B.1.1.7 variants has been increasing since late March
2021. This increase was initially driven by a variety of lineages with immune escape. From mid-April,
B.1.617.2 (WHO label Delta) spread rapidly, becoming the dominant variant in England by late May.
Interpretation: The outcome of competition between variants depends on a wide range of factors such as
intrinsic transmissibility, evasion of prior immunity, demographic specificities and interactions with non-
pharmaceutical interventions. The presence and rise of non-B.1.1.7 variants in March likely was driven by
importations and some community transmission. There was competition between non-B.1.17 variants which
resulted in B.1.617.2 becoming dominant in April and May with considerable community transmission. Our
results underscore that early detection of new variants requires a diverse array of data sources in community
surveillance. Continued real-time information on the highly dynamic composition and trajectory of different
SARS-CoV-2 lineages is essential to future control efforts
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Research in Context

Evidence before this study

Evidence about novel SARS-CoV-2 variants is rapidly being dis-
seminated through genome sequencing databases, governmen-
tal reports, preprints, scientific papers, and even social media.
We consulted journal publications, preprint repositories (medr-
xiv and biorxiv), and technical briefings from public health
agencies (primarily Public Health England). For England, the
COVID-19 Genomics UK Consortium (co-authors on this paper)
maintain the most comprehensive dataset on genomic sequen-
ces. Data on variants obtained from genome sequencing data-
bases often comes from non-random samples, meaning that
there is a risk of bias. We also rely on estimates from the
sequencing of viral RNA from sewage water. This form of envi-
ronmental surveillance can be used to track variants with
potentially lower bias due to the random sampling design.

Added value of this study

By bringing together passive-case detection PCR data, cross-sec-
tional community infection surveys, genomic sequencing surveil-
lance, and wastewater monitoring we are able to examine very
recent spatial and temporal trends in the circulation of novel var-
iants of SARS-CoV-2 in the regions of England. We highlight the
situation that is currently unfolding in London where the pattern
is clearest, and note similar patterns in other regions.

Implications of all the available evidence

We are witnessing dynamic shifts in the composition of SARS-
CoV-2 lineages driving transmission across England in March
and April 2021, with an expansion of non-B.1.1.7 VOCs. This
still ambiguous but potentially concerning early signal of com-
munity transmission of non-B.1.1.7 VOCs in England suggests a
need for intensified monitoring. Such information is critical to
the epidemic’s immediate control and to future vaccine devel-
opment and deployment - both in the UK and other countries
where the potential emergence of other novel SARS-CoV-2 var-
iants remains a serious public health threat.
1. Introduction

Since its emergence in Autumn 2020 in South East England, the
SARS-CoV-2 variant of concern (VOC) B.1.1.7 has become the domi-
nant lineage across much of Europe [1]. Characterised by several
mutations in the spike protein receptor-binding domain (RBD), epi-
demiological studies suggest B.1.1.7 is 50�80% more transmissible
[2,3] and causes more severe disease [4] than previously circulating
lineages. B.1.1.7 rose rapidly, from near 0% to over 50% in under two
months, and soon made up >98% of sequenced samples in England.
Its rapid spread necessitated a third English national lockdown in
January 2021. Subsequent spread in Europe [5] and North America
[6] has similarly highlighted the threat this variant poses to contin-
ued control of community transmission.
The 69�70 deletion in B.1.1.70s Spike gene causes PCR tests to
return negative results for that gene target [3], allowing S-gene target
failure (SGTF) to act as a proxy for genomic surveillance. The rapidity
of PCR testing means that this proxy is available more quickly than
genomic sequencing data. Both community-based testing of symp-
tomatic individuals (“Pillar 200 [7]) and a weekly survey of more than
100,000 randomly sampled UK residents conducted by the Office for
National Statistics (ONS) [8] have shown trends in SGTF frequency
which mirrored the pattern seen in sequenced samples. The fre-
quency of SGTF increased from near 0% in October 2020 to 98.8% in
March 2021.

After B.1.1.70s emergence, several other VOCs have been identified
globally, including B.1.351 (first identified in South Africa [9]), P.1
(first identified in Brazil [10]), and B.1.617.2 (first identified in India).
These VOCs have been associated with extensive transmission fol-
lowing emergence, leading to substantial infection and mortality
rates even in settings where seroprevalence was high (for example in
Manaus, Brazil [11,12]). Epidemiological analysis suggests that
B.1.351 and P.1 are more transmissible than ancestral SARS-CoV-2
lineages; [10,13] for B.1.617.2, emerging evidence suggests the same.
Additionally, all three VOCs carry mutations thought to contribute to
partial immune escape (E484K or T478K) [14�16]. The three VOCs do
not have the 69�70 deletion and can thus be distinguished from
B.1.1.7 in the Spike gene PCR.

The UK now has a high level of population immunity to SARS-
CoV-2: at the beginning of April 2021, it was estimated that 55% (95%
CI: 49%�60%) of the English population were seropositive, either due
to prior infection or vaccination [17]. However, such high levels of
immunity also represent an evolutionary selection pressure on the
virus and may give VOCs with even a partial degree of immune
escape (relative to B.1.1.7) a transmission fitness advantage
�especially at a time where control measures are being progressively
relaxed. Further, the UK’s vaccination rollout has relied heavily on
the AstraZeneca vaccine; a vaccine that has proven highly protective
against B.1.1.7 and prior variants [18], but may possess reduced effi-
cacy against other VOCs [15]. Understanding when, how and if these
VOCs pose a threat in settings where B.1.1.7 is currently dominant is
vital also for other countries.

Here, we use a combination of data from passive-case detection
PCR data, cross-sectional community infection surveys, genomic
sequencing surveillance, and wastewater monitoring to examine spa-
tial and temporal trends in the prevalence of non-B.1.1.7 lineages in
England between February and May 2021.

2. Methods

2.1. Pillar 2 symptomatic community testing

Public Health England’s surveillance system assembles data from
dozens of PCR testing laboratories, the largest of which are the three
large “Lighthouse” laboratories developed specifically in response to
the pandemic. Approximately 30% of the samples processed by the
Lighthouse laboratories use the ThermoFisher TaqPath PCR assay,
which includes Spike as a target. For tests that give a PCR cycle
threshold (Ct) value for non-spike targets substantially below the
positivity threshold of 40, SGTF is a highly accurate proxy for B.1.1.7.
Thus we are able to categorise a substantial proportion of all lab-con-
firmed community SARS-CoV cases as B.1.1.7 or non-B.1.1.7 [2]. SGTF
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becomes less reliable when Ct values for all targets are high since the
Spike target is more likely to test negative by chance when sample
viral load is low. Hence we estimate the frequency of SGTF only from
cases with Ct values in non-Spike targets of 30 or less. However,
results and conclusions were unchanged when we included cases
with Ct of 40 or less.

We consider the period from 31st January 2021 to 15th May 2021.
We only consider test results in self-reported symptomatic cases and
exclude tests conducted following a lateral flow test (used, for
instance, for asymptomatic screening for infection in schools and
workplaces). Unlike the COG-UK data detailed below, we do not have
metadata to exclude individuals with recent travel history. Over that
period and with these exclusions applied, there was a total of 72,881
S-gene positive (S+), and 586,854 S-gene negative (S-) cases in Eng-
land processed by the Lighthouse laboratories and 4246 S+ and
79,207 S- cases in London. Given that SGTF results are only available
for a subset of samples, we estimate total Spike-positive (S+) case
incidence by multiplying the frequency of S+ among all cases with
SGTF results by the total Pillar 2 case incidence. Uncertainty estimates
are detailed in Supplementary Text.
Fig. 1. Trends in S+ infections in London, February-May 2021. (A) Estimated aggregated wee
lar 2) calculated by multiplying the fraction of S+ cases by the total number of positives and
proportion of cases and infections that are S+, estimated from symptomatic community test
public data, which may include travelers and surge testing; non-B.1.17 fraction is shown). Sh
intervals can be found in Supplementary Text. Results for other regions of England can be fou
2.2. ONS infection survey

ONS conducts a fortnightly survey of randomly selected private
households in the UK. In the two weeks prior to 16th April 2021,
139,948 participants from 73,328 households were tested using nose
and throat self-swabs, analyzed with a PCR test. A Bayesian model
was used to estimate the positivity rate for SARS-CoV-2 in the com-
munity, stratified by regions of England [19]. We use the ONS esti-
mates of the percentage of PCR-positive samples that are “not
compatible with UK variant” (gene pattern S + ORF1ab + N; indicated
as S+ in Fig. 1) and the estimates of samples that are “UK variant com-
patible” (gene pattern ORF1ab + N indicating likely infection with
B.1.1.7). Uncertainty estimates are detailed in Supplementary Text.

Each ONS release provides estimates for a 6 week period. We
combine all the ONS releases from 26th February 2021 to 14th May
2021. For duplicated dates, we take the most recent estimate avail-
able in the combined data. To estimate total infection prevalence for
each region (Fig. 1A and Supp Figure A), we multiply the estimated S
+ infection prevalence for that region by its population size as
reported by ONS [20].
kly incidence (log scale) of symptomatic S+ cases diagnosed via community testing (Pil-
S+ infections estimated from the ONS infection survey [35]. B) Temporal trends in the
ing (Pillar 2), the ONS infection survey, and from SARS-CoV-2 sequence data (COG-UK
aded ribbons represent 95% uncertainty intervals for the mean. Details on uncertainty
nd in Supplementary Figures 1 and 2.



4 S. Mishra et al. / EClinicalMedicine 39 (2021) 101064
2.3. Sewage water monitoring

Sequencing of viral RNA from sewage water has been a valuable
tool for tracking the distribution of SARS-CoV-2 variants in the UK,
both during the first wave [21] and the rise of B.1.1.7 [22]. In particu-
lar, a key advantage of this method is low sampling bias as it captures
all people in the catchment area and not only those that receive
COVID-19 tests. Here, we analysed fortnightly samples from the
Beckton Sewage Treatment Works plant, which has a catchment area
containing approximately 4 million people in North London. The
catchment area does not include Heathrow Airport and adjacent
quarantine hotels, which drain into the Mogden Sewage Treatment
Works plant (as confirmed by Thames Water). Sample collection,
processing, and analysis are described in detail in previous work;
[21,22] a short summary is given in Supplementary Text.

2.4. COG-UK genomic sequencing

We studied 10,3247 sequences collected from Pillar 2 testing in
the greater London area after March 1, 2021 and provided by the
COG-UK consortium [23]. Sequence quality control, alignment, and
lineage classification was carried out as described in previous work
[24] and computed with the MRC��CLIMB computational infrastruc-
ture [25]. Among the 10,324 sequences, 2957 were found to be from
a lineage other than B.1.1.7 with 2560 sequences in the set of VOCs
and 397 variants under investigation (VUIs) P.1 (n = 81), B.1.1.318
(n = 74), B.1.525 (n = 96), B.1.617.2 (n = 2225), B.1.617.1 (n = 131),
B.1.351 (n = 254) and C.36.3 (n = 28).

We estimated the frequency over time for each lineage with more
than 20 samples using a Gaussian process generalized additive model
with a multinomial response for each lineage (details are in Supple-
mentary Text). Only a minority of the non-B.1.1.7 sequences
(n = 2957) were found to be collected frommanaged quarantine facil-
ities and individuals with recent travel history. We repeated the anal-
ysis excluding this set.

2.5. Statistical analysis

All analysis was done using R version 4.0.5 unless stated other-
wise. We used a bootstrapping approach to obtain confidence
Fig. 2. Mean Cycle threshold (Ct) values by week for Pillar 2 symptomatic community testing
as 1.96 * standard error (assuming asymptotic normality). Ct values for ORF1ab gene and N
of Bacteriophage MS2, which is added to samples for calibration purposes. In each plot, samp
regions of England can be found in Supplementary Fig. 3.
intervals for Pillar 2 and COG-UK data. For sewage data the sequences
were processed and analysed using Geneious 10.2.3 software. Statis-
tical analysis of COG-UK sequencing data was performed using the
MGCV package in R. See Supplementary Text: Methods for detailed
description of the statistical methodologies we used.

2.6. Ethical approval

The COVID-19 Genomics UK Consortium has been given approval
by Public Health England’s Research Ethics and Governance Group
(PHE R&D Ref: NR0195). For sewage data not applicable as no human
materials were used in the study, and hence, no individual patient
consent is required.

2.7. Reporting

The reporting of this paper adheres to the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE)-guide-
lines.

2.8. Role of the funding source

Beyond supporting our work over the long term, no funding
agency had any role in the study or its analysis.

3. Results

Since the beginning of March 2021, S+ case incidence (Pillar 2) has
been increasing against a backdrop of initially falling, and then stable,
low overall case numbers. Fig. 1 displays the data for London, where
this trend started earliest, but similar increases in S+ cases happened
in every other region in England (Supplementary Figs. 1 and 2). How-
ever, Pillar 2 is based on non-random testing. S+ infection prevalence
(ONS) showed an early slight increase in March but then decreased
again and increased strongly only in early May. However, the ONS
survey suffers from sampling variability due to the low overall inci-
dence in London. Similar patterns, with increases in the ONS survey
lagging behind Pillar 2 data, are seen in several other regions of Eng-
land (Supplementary Figs. 1 and 2).
in London. Shaded ribbons show 95% confidence intervals around the mean calculated
gene are shown, with S+ in blue and S- in red. MS2 control indicates the mean Ct value
les with Ct values above 30 for the specific gene shown are excluded. Results for other



Fig. 3. Fraction of viral RNA showing mutations at key spike protein amino acid positions, identified in sewage samples from North London. Mean values from replicate sequences
(n = 8�12) for each sampling date are shown. Error bars indicate standard error of the mean. A) HV69�70del, Y144del, and A570D are relatively uniquely found in B.1.1.7 (Supple-
mentary Table 1). B) E484K is absent in B.1.1.7. but present in several other variants of interest/concern; and linked to evasion of previous immunity. C) G142D and T478K are associ-
ated with B.1.617.2 (G142D is also found in B.1.617.1, Supplementary Table 1).
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Examination of the Pillar 2 Ct values supports a quantitative and
qualitative change in S+ transmission patterns. Ct values in commu-
nity testing are inversely related to viral load. Recent work has shown
that population-level average Ct values can therefore provide an indi-
cation about the epidemic’s dynamics, with average Ct values
declining when epidemics are growing and increasing when epi-
demics are declining [26]. Fig. 2 shows that until March 2021, S-
samples (primarily B.1.1.7) had considerably lower Ct values than
S+ samples, especially for the N gene. This is as expected; reports
suggest B.1.1.7 has higher viral loads, and thus lower Ct values,
than prior lineages [27]. Since the end of March 2021, however,
mean Ct values for S+ samples have considerably decreased and
are now comparable to values for S- samples. This suggests an
increase in transmission of S+ lineages; for imported cases, it
may suggest an increasing epidemic in the country of origin.
Additionally, a change in the genetic composition of S+ cases,
towards variants causing higher viral loads, could also have con-
tributed to the drop in Ct values.

Fig. 3 shows the frequency of mutations in SARS-CoV-2 viral RNA
found in sewage water [21,22] from North London. This data source
includes all people living in the sewage plant’s catchment area, not
just those that are tested. Fig. 3 confirms that the increase in the pro-
portion of S+ observed in other data sources is due to a decrease in
the proportion of B.1.1.7, with mutations HV69�70del, Y144del, and
A570D (all largely unique to B.1.1.722; Supplementary Table 1) all
showing considerable declines. All three mutations were detected at
a stable frequency >95% from early January [22] to mid-March 2021
and then decreased to mean frequencies of 67% - 75% by April 13th
(Fig. 3A). The frequency of the E484K mutation—absent in B.1.1.7 but
present in many variants of concern that evade immunity—had
increased to over 30% by April 13th, though it declined in the follow-
ing weeks (Fig. 3B). The non-B.1.1.7 population on April 13th
included variants B.1.351 and B.1.525 but not P.1 or B.1.617.2, as
revealed by analysing additional mutations (Supplementary Text).
After April 13th, B.1.1.7-associated mutations further decreased in
frequency, to 28% - 49% by May 11th (Fig. 3A). In turn, B.1.617.2-asso-
ciated mutations increased to 41% - 62% (Fig. 3C). In summary, sew-
age water samples suggest that various immunity-evading variants
started to replace B.1.1.7 in the North London viral population by
early April 2021. By mid-May a single variant of concern, B.1.617.2,
dominated, constituting around half of the virus found in sewage
water.



Fig. 4. The sample frequency of non-B.1.1.7 lineages in Greater London in community
testing (n = 2957 sequenced samples). (A) Bar charts show the sample proportion of
lineages with at least 20 samples after 31 March 2021. Error bars show 95% confidence
intervals based on binomial sampling. (B) Stacked area charts show estimates over
time of the frequency of lineages in the period 1 March to 29 May. Colour-code is iden-
tical to panel A). While a variety of non-B.1.1.7 variants (all S+) are in circulation in
March and the beginning of April, by May B.1.617.2 predominates. A of this figure, dis-
playing data that was available until mid-April, can be found in the Supplement (Sup-
plementary Fig. 6).
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Fig. 4 shows results from COG-UK sequencing of SARS-CoV-2 sam-
ples from London, mirroring the sewage water results. Throughout
March, the sequenced non-B.1.1.7 samples included chiefly B.1.351
and B.1.525 but also several other variants (see also Supplementary
Figure 6). Over the course of April, the frequency of B.1.617.2 in
sequenced samples increased rapidly, ultimately making up more
than 75% of all sequences by late May. A similar overall pattern is
seen when excluding cases which are linked to travel or surge-testing
(Supplementary Figure 5), suggesting community transmission of
B.1.617.2.

4. Discussion

Experiences across the globe to date have highlighted the signifi-
cant public health threat that new SARS-CoV-2 VOCs can pose, even
in settings where transmission is currently under control or where
population-level immunity should preclude resurgence. They have
also highlighted the importance of early detection and identification
of emerging viral threats, which provides the opportunity for prompt
implementation of measures to control spread. Here, using four inde-
pendent data sources, we present evidence supporting recent
increases in the number and proportion of COVID-19 infections that
are S+; a dynamically changing population that was driven first by a
variety of lineages with immune evasion (see below), and then over-
whelmingly by the newest VOC, B.1.617.2.

When detecting increases in the proportion of a new variant, a
key question is whether this reflects local transmission, or imported
infections detected on the background of low overall incidence. Var-
iants under investigation such as B.1.525 and A.23.1 have undergone
periods of rapid expansion in January-March 2021 associated with
travel-related importation and limited local spread, only to subside
later. At the time of writing, however, B.1.617.2 has become the dom-
inant variant in England (Supplementary Figures 1 and 2) and makes
up more than 75% of sequenced samples in London even from cases
which are not linked to travel (Supplementary Figure 5); sustained
community transmission has taken place.

A considerable increase in the fraction of non-B.1.1.7 variants was
apparent in multiple data sources already in early/mid-April 2021.
This finding, and its consistency across independent data sources,
gave an early warning about the potential for highly transmissible or
immunity-evading variants to spread in England. However, data on
the degree to which community transmission was driving this
increase was ambiguous. While >20% of sequenced cases were from
non-B.1.1.7 lineages as of mid-April, the fraction was only around
10% in cases not known to be associated with travel or surge testing
(Supplementary Figure 6). There were clusters detected in London
and elsewhere [9,28,29], but it was not known to what extent this
transmission was self-sustaining or associated with short chains of
transmission initiated by individual importation events. In addition,
VOCs are subject to enhanced public health interventions, and thus
the patterns seen in sequenced samples may deviate substantially
from the overall population. Analysis of Ct values and mutations
found in sewage water gave further evidence for community-trans-
mission, but by no means conclusive. Sewage water sequencing is
not subject to the same surveillance biases as symptomatic case test-
ing, but the increase in non-B.1.1.7 variants in North London in April
(Fig. 3) could still have been caused by an increase in imported infec-
tions, especially given that London has several large airports. Finally,
decreasing Ct values (Fig. 2) can indicate rising epidemics, but they
could also be explained by importation of infections from countries
with rising epidemics.

Throughout May, the independent data sources we considered
painted a consistent picture pointing to the rapid emergence and
spread of B.1.617.2. S+ surveillance from Pillar 2�the most timely sig-
nal available due to the rapid turnaround of PCR testing�now serves
as a useful proxy for B.1.617.2 vs B.1.1.7, due to the fact that B.1.617.2
now predominates among S+ variants, as confirmed by genomic sur-
veillance of positive cases. While the ONS Infection Survey did not
show signs of an increase in S+ in April (probably because the overall
number of positive cases was very low), this population survey shows
a marked increase in S+ in May, matching the other data streams.
Finally, wastewater surveillance for North London is consistent with
the rapid emergence of B.1.617.2 in April/May.

The outcome of competition between two variants depends on
their relative transmission fitness, which is determined by the intrin-
sic transmissibility of each strain, the extent to which each can evade
prior immunity, and any targeted non-pharmaceutical interventions
in place. Several studies suggest that VOCs B.1.1.7 [2,3], P.1 [10],
B.1.35113, and B.1.617.230 are more transmissible than previously cir-
culating lineages, but precise estimates of their relative transmissibil-
ity are not yet available. However, even if B.1.351, B.1.617.2 and P.1
are less intrinsically transmissible than B.1.1.7, any substantive ability
to evade prior immunity may give these VOCs an overall transmission
advantage over B.1.1.7 in the context of a highly immunised popula-
tion such as the UK’s. Mounting evidence from in vitro [14,30], epide-
miological [10,13], and vaccine studies [15,16,31,32] suggests that
variants with E484K, T478K, or E484Q mutations may partially evade
prior immunity. Indeed, rapid resurgences followed variant emer-
gence, for example in Manaus, Brazil (P.1) and Delhi, India
(B.1.617.2), despite evidence of high levels of prior immunity in the
population [11,33,34].

Events following the emergence of novel SARS-CoV-2 variants
have emphasised the value of identifying and responding to changes
in lineage frequency early. Our results underscore the value of utilis-
ing a diverse array of data sources in community surveillance. They
also underscore the value of timely genomic surveillance to provide
real-time information on the highly dynamic composition and trajec-
tory of different SARS-CoV-2 lineages in a country. Such information
is critical to the epidemic’s immediate control and to future vaccine
development and deployment - both in the UK and other countries
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where the potential emergence of other novel SARS-CoV-2 variants
remains a serious public health threat.
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and Javier Martin are responsible for the veracity of and accessing the
datasets used in this study.
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