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Abstract
Background.  Evidence from single and multicenter phase II trials have suggested diffusion MRI is a predictive im-
aging biomarker for survival benefit in recurrent glioblastoma (rGBM) treated with anti-VEGF therapy. The current 
study confirms these findings in a large, randomized phase III clinical trial.
Methods.  Patients with rGBM were enrolled in a phase III randomized (1:1), controlled trial (NCT02511405) to 
compare the efficacy and safety of bevacizumab (BV) versus BV in combination with ofranergene obadenovec 
(BV+VB-111), an anti-cancer viral therapy. In 170 patients with diffusion MRI available, pretreatment enhancing 
tumor volume and ADC histogram analysis were used to phenotype patients as having high (>1.24 µm2/ms) or low 
(<1.24 µm2/ms) ADCL, the mean value of the lower peak of the ADC histogram, within the contrast enhancing tumor.
Results.  Baseline tumor volume (P = .3460) and ADCL (P = .2143) did not differ between treatment arms. Univariate 
analysis showed patients with high ADCL had a significant survival advantage in all patients (P = .0006), as well as 
BV (P = .0159) and BV+VB-111 individually (P = .0262). Multivariable Cox regression accounting for treatment arm, 
age, baseline tumor volume, and ADCL identified continuous measures of tumor volume (P < .0001; HR = 1.0212) 
and ADCL phenotypes (P = .0012; HR = 0.5574) as independent predictors of OS.
Conclusion.  Baseline diffusion MRI and tumor volume are independent imaging biomarkers of OS in rGBM treated 
with BV or BV+VB-111.

Validation of diffusion MRI as a biomarker for efficacy 
using randomized phase III trial of bevacizumab with or 
without VB-111 in recurrent glioblastoma
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Key Points

	•	 Pretreatment volume and ADC were significant predictors of overall survival in 
rGBM treated with anti-VEGF treatment.

	•	 Patients with a high ADC prior to bevacizumab +/- VB-111 have 2–3 months 
additional median survival (HR = 0.55).

Despite promising initial data and widespread explora-
tion of anti-VEGF therapies in recurrent GBM, randomized 
phase II trials have not demonstrated an overall survival 
(OS) benefit for all patients with recurrent GBM.1–3 We have 
demonstrated retrospectively in both single center4–7 and 
multicenter phase II trials8–10 that recurrent GBM patients 
with distinct diffusion MR imaging features have a signifi-
cant survival benefit when treated with bevacizumab. We 
have demonstrated that measurements of the apparent 
diffusion coefficient (ADC) within the area of contrast en-
hancement on T1-weighted images can be modeled using 
a double Gaussian mixed model where ADCL is the mean 
value of the lower Gaussian distribution, reflecting the 
more densely cellular component of the tumor, and ADCH 
is the mean value of the higher Gaussian distribution, more 
representative of tumor tissue containing more necrosis, 
edema, or cerebrospinal contamination (Figure 1B–G). 
Data in rGBM treated with a wide range of anti-VEGF ther-
apies (eg, cediranib [NCT00035656]; bevacizumab (BRAIN 
Trial, AVF3708g; NCT00345163); cabozantinib (XL184-201; 
NCT00704288); and aflibercept (VEGF Trap; NCT00369590) 
suggests patients with tumors exhibiting an ADCL higher 
than 1.24  µm2/ms on pretreatment diffusion MR images 
have a significant survival benefit compared with patients 
who have a lower ADCL, even after controlling for known 
prognostic variables including age and baseline tumor 
size.8 This was independently confirmed8 using data from 
BELOB,3 which showed ADCL and tumor volume to be pre-
dictive for patients treated with bevacizumab monotherapy, 
but not single agent lomustine. Furthermore, a recent post-
hoc analysis of the EORTC-26101 trial by Schell et al.11 con-
firmed our findings, showing that ADCL using a threshold of 
1.24 µm2/ms is prognostic for both progression-free survival 
(PFS) and OS in rGBM patients treated with bevacizumab 
(10.4 vs 8.1 months median OS, P = .0004).

Ofranergene obadenovec (VB-111),12,13 a viral gene therapy 
that triggers apoptosis of tumor vascular endothelium, is a 
novel antiangiogenic therapy and an alternative to traditional 
anti-VEGF therapies. Phase II studies of VB-111 have shown to 
increase survival in rGBM when used prior to treatment with 
bevacizumab.13 In the current study, we examine whether 
diffusion MR imaging phenotypes in tumors included in 
the GLOBE trial,12 a randomized controlled phase III study 
of VB-111 combined with bevacizumab versus bevacizumab 
monotherapy in patients with recurrent glioblastoma.12 
Using this study, we aim to further validate the ability of dif-
fusion MR phenotypes to predict survival in patients treated 
with bevacizumab as well as combined antiangiogenic 
therapy consisting of bevacizumab and VB-111.

Methods

Study Objectives

This study was approved by UCLA institutional review 
board (#10-000655; #14-001261). We retrospectively re-
viewed clinical, imaging, and survival data from a phase 
III randomized (1:1), controlled trial (NCT02511405) 
aimed to compare efficacy of bevacizumab alone versus 
bevacizumab with ofranergene obadenovec (VB-111) in re-
current glioblastoma to determine whether diffusion MRI 
and other factors were independent prognostic factors 
for OS.

Patient Eligibility

Eligible participants were adults aged >18 years with first 
or second progression of histologically confirmed GBM, 

Importance of the Study

Bevacizumab, an antiangiogenic drug and the 
U.S.  standard of care for rGBM, has demon-
strated a PFS benefit, but has not shown an ad-
vantage in OS. Overwhelming evidence from 
single center and multicenter phase II data 
suggests patients with a higher apparent dif-
fusion coefficient (ADC) within their tumors 
have a significant OS benefit when treated with 
anti-VEGF therapy, including bevacizumab. 
The current study validates this observation 

in a randomized, controlled phase III trial 
of rGBM treated with bevacizumab with or 
without VB-111, a novel antiangiogenic treat-
ment. Results suggest diffusion MRI, which is 
recommended as part of the standardized brain 
tumor imaging protocol, may be a valuable 
tool for determining survival benefit in rGBM 
patients considering bevacizumab or other 
antiangiogenic therapies.
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who had received previous treatment with standard of care 
radiotherapy and temozolomide. Additionally, patients 
needed to have a KPS of at least 70%, life expectancy of 
at least 3  months, an interval of at least 12 weeks since 
the cessation of radiotherapy, and measurable lesion by 
RANO.28 Exclusion criteria included prior antiangiogenic 
therapy, history of recent grade 2 or higher CNS hem-
orrhage, gastrointestinal bleeding or pulmonary hem-
orrhage/hemoptysis, inherited bleeding diathesis or 
significant coagulopathy at risk of bleeding, surgical treat-
ment or significant trauma within 4 weeks, active vascular 
disease, proliferative and/or vascular retinopathy, inade-
quately controlled hypertension, history of gastrointestinal 
perforation or abscess.

Study Design

This was a phase III multisite, international, randomized, 
open-labeled, controlled trial. Study design and treatment 
regimens were determined in agreement with an FDA 
Special Protocol Assessment (SPA). Eligible patients with 
rGBM were randomized 1:1 to receive either VB-111 1  × 

1013 VPs every 8 weeks in combination with bevacizumab 
10 mg/kg every 2 weeks (VB+BV) or bevacizumab mono-
therapy 10  mg/kg every 2 weeks (BV). Treatment assign-
ment was determined by central randomization, and was 
stratified by age, KPS and first or second progression. 
Disease characteristics, including local assessment of the 
prognostic factors MGMT Methylation, EGFRvIII and IDH-1 
mutation, were collected from patients’ medical history (if 
available). Primary endpoint was OS, defined as the time 
from randomization until death from any cause.

Upon evidence of PD by RANO (defined as ≥25% increase 
in the sum of enhancing lesions diameters) continua-
tion or discontinuation of study therapy was decided per 
physician’s discretion, as long as the patient did not have 
increase in tumor measurements >50% or any confirmed 
T2/FLAIR and/or clinical deterioration. All patients who dis-
continued study drug were treated according to standard 
of care, and there was no cross-over from bevacizumab 
monotherapy to VB-111. All efforts were made to collect 
post-study MRIs, health related quality of life measures, 
follow-up of anti-cancer treatments and survival data every 
2–3 months until the patient expired. Dose reductions of 
VB-111 and bevacizumab were not allowed. Repeat VB-111 
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Figure 1.  Study schema and ADC histogram analyses for representative rGBM patients. (A) Study schema showing initial study size (N = 256), for 
which 84 patients were excluded for lack of high-quality pretreatment diffusion MRI data (73 missing data and 11 with significant artifacts), leaving 
N = 172 patients for this imaging sub study. Of these 172 patients, N = 80 were randomized to the bevacizumab monotherapy arm (BV) and 92 were 
randomized to the combination of VB-111 and bevacizumab (VB+BV). (B) Post-contrast T1-weighted, (C) apparent diffusion coefficient (ADC) map, 
and (D) ADC histograms for a patient with low ADCL, or high risk (ADCL = 0.97 µm2/ms). (E) Post-contrast T1-weighted, (F) ADC map, and (G) ADC his-
tograms for a patient with high ADCL, or low risk (ADCL = 1.53 µm2/ms).
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dosing was delayed for patients who experienced a drug 
related AE, until the severity of the event was no more than 
CTCAE Grade 1.  All patients received concomitant pre-
dose acetaminophen to mitigate post-treatment fever, and 
pre-dose dexamethasone (10 mg) followed by 4 mg twice 
daily for 3 days post-dosing to prevent potential cerebral 
edema.

Magnetic Resonance Imaging

For the current study, only baseline (pretreatment) MRI 
scans were used. All MRI scans were obtained on a 1.5T 
or 3T MR scanner and were compliant with the standard-
ized brain tumor imaging protocol,14 including 1–1.5 mm 
isotropic pre- and post-contrast T1-weighted images, 
T2-weighted turbo spin echo and T2-weighted FLAIR im-
ages, and diffusion-weighted images with at least b = 0 and 
1000 s/mm2 and slice thickness ≤4 mm.

T1 Subtraction Maps

Contrast enhanced T1-weighted digital subtraction maps 
were used to insulate areas of contrast enhancement and 
exclude blood products and necrotic regions within the 
tumor using previously described techniques.15–17 Briefly, 
T1-weighted images with and without contrast were 
co-registered, intensity normalized, then subtracted from 
each other on a voxel-wise basis to highlight the change 
in signal intensity due to contrast administration. Regions 
with positive values were segmented and used for ADC 
histogram analysis.

ADC Histogram Analysis

ADC histogram analysis was applied using standard 
techniques described elsewhere.4,6,8,9,18 Simply, his-
tograms were generated from ADC values ex-
tracted from contrast enhancing regions from T1 
subtraction maps were generated, with average histo-
gram bin size of 0.05  µm2/ms. Then, nonlinear regres-
sion was performed using a double Gaussian model defined  
as: p(ADC = f �N (ADCL,σADCL) + (1− f )N(ADCH ,σADCH ),  
where p(ADC) is the probability of a specific ADC value, 
f is the proportion of voxels in the histogram, N(μ,σ) is a 

normal Gaussian distribution with mean = μ and standard 
deviation = σ, and ADCL is mean of the lower Gaussian dis-
tribution and ADCH is mean of the higher Gaussian distri-
bution. From this, ADCL was used for further analyses.

Statistical Analysis

All analysis was carried out in MATLAB or using GraphPad 
Prism v9.0.1 (GraphPad Software). Baseline volume and 
ADCL were compared using unpaired t-tests. Overall sur-
vival between different diffusion phenotypes as well as 
between different treatment groups were evaluated using 
cox regression survival analysis. Multivariate cox regres-
sion analysis including age, pretreatment tumor volume, 
ADCL, and treatment arm was carried out to evaluate inde-
pendent predictors of overall survival. P values of < 0.05 
were considered significant.

Results

A total of 172 of the original 256 patients with recurrent 
glioblastoma enrolled in the phase III randomized con-
trolled trial (NCT02511405) had available pretreatment 
diffusion imaging and were included in this study (Figure 
1A). Of these patients, 92 of original 128 patients were 
randomized to VB+BV and had adequate diffusion im-
aging available (32 missing diffusion data and 4 with sig-
nificant artifacts by quality control procedures described 
previously19), while 80 of the original 128 patients were 
randomized to BV and had adequate imaging available 
(41 missing diffusion data and 7 with significant artifacts). 
Table 1 highlights the patient characteristics for patients 
included in the current study. Figure 1B–G illustrates rep-
resentative patients with low and high ADCL. There was 
no significant difference in mean pretreatment contrast 
enhancing tumor volume between the 2 groups (Figure 
2A; t-test, P =  .3460; BV, mean volume = 26.2 mL; range 
18.7–128.1  mL; VB+BV, mean volume  =  23.0  mL; range 
19.3–88.5  mL) Similarly, pretreatment ADCL values were 
not significantly different between the 2 groups (Figure 
2B; t-test, P = 0.2143; BV, mean ADCL  =  1.28  µm2/ms; 
range 0.78–3.03  µm2/ms; VB+BV, mean ADCL  =  1.23  µm2/
ms; range 0.64–1.94  µm2/ms). MGMT promoter methyla-
tion status was evenly split between ADCL high and low 

  
Table 1.  Patient Characteristics for Imaging Sub Study of GLOBE Trial

 VB-111 + Bevacizumab Bevacizumab  

Characteristics (VB+BV) (N = 92) (BV) (N = 80) P-Value

Mean age, y (SD) 55.1 (11.3) 54.4 (13.1) .7072

Sex    

  Male (%) 60 (65%) 55 (69%)  

  Female (%) 32 (35%) 25 (31%)  

Baseline KPS (SD) 83 (9.5) 84 (9.3) .4878

Median Survival (Months) 6.4 7.9 .3471
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(20 vs 17 methylated, 34 vs 46 unmethylated, and 28 vs 
27 missing or unknown). Similarly, IDH mutation status 
was also evenly distributed between ADCL high and low 
phenotypes (10 vs 12 mutated, 56 vs 58 wild type, 16 vs 20 
missing or unknown.

Pretreatment diffusion phenotypes as stratified by ADCL 
greater than or less than 1.24  µm2/ms were significantly 
associated with survival. Specifically, high ADCL (ADCL > 
1.24  µm2/ms) was associated with increased overall sur-
vival relative to patients with low pretreatment ADCL 
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Figure 2.  Baseline tumor volume and diffusion MRI measurements. (A) Comparison of pretreatment, baseline enhancing tumor volume (P = .3460) 
and (B) ADCL (P = .2143) between BV and VB+BV treatment arms showing no significant differences.
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when pooling all patients (Figure 3A; Log-rank, P = .0006; 
HR = 0.5726; median OS = 8.4 vs 6.2 months). The associa-
tion of increased overall survival with high ADCL held true 
when examining patients within the BV (Figure 3B; Log-
rank, P = .0159; HR = 0.5513; median OS = 8.7 vs 6.4 months) 
and VB+BV combination cohorts (Figure 3C; Log-rank, 
P = .0263; HR = 0.6175; median OS = 7.4 vs 5.7 months).

In patients with high ADCL, which has been associ-
ated with higher overall survival in anti-VEGF treatment, 
there was no difference in overall survival by treatment 
strategy (Figure 3D; Log-rank, P  =  .5743; BV median 
OS  =  8.7  months vs VB+BV median OS  =  7.4  months). 
Similarly, in patients with low ADCL, which is asso-
ciated with lower overall survival when treated with 
anti-VEGF therapies, there was no difference in overall 
survival by treatment strategy (Figure 3E; Log-rank, 
P  =  .4609; BV median OS  =  6.5  months vs VB+BV me-
dian OS = 5.7 months). Overall, when comparing 4 dis-
tinct groups: (1) high ADCL & BV, (2) low ADCL & BV, (3) 
high ADCL & VB+BV, and (4) low ADCL & VB+BV there 
was a significant trend in survival outcomes (Figure 3F; 
Log-rank test for trends, P = .0209), likely dominated by 
diffusion phenotypes rather than treatment strategy. 
A  multivariable cox regression accounting for treat-
ment arm, age, baseline tumor volume, and ADCL iden-
tified continuous measures of tumor volume (Table 2;  
P < .0001; HR = 1.0212) and ADCL phenotypes (Table 2;  
P = .0012; HR  =  0.5574) as independent predictors of 
overall survival.

Discussion

Identifying effective therapies in recurrent GBM remains 
one of the most difficult challenges in neuro-oncology. 
Given that these patients may often not be eligible for re-
peat debulking surgery, personalized treatment strategies 
in the recurrent setting are significantly limited because of 
lack of tissue biomarkers to inform decision-making. While 
some molecular markers such as MGMT methylation 
status and IDH mutational harbor prognostic implications, 
these have a limited role in the setting of recurrent GBM 
and specifically in the setting of salvage therapies like anti-
VEGF therapies. Thus, a pretreatment imaging biomarker 
that can be used to guide treatment decisions in rGBM is 
greatly desired. Results from the current study strongly 
support previous single institution4–7 and multicenter 
phase II trials8–11 showing that ADCL, using a threshold of 
1.24 µm2/ms, within contrast enhancing tumor is an inde-
pendent imaging biomarker for predicting overall survival 

benefit from anti-VEGF treatments, including combination 
therapies.

Whether diffusion MR phenotypes are predictive for anti-
VEGF treatment or merely prognostic for all treatments 
in rGBM is still open to considerable debate. Previous 
single institution studies have suggested that diffusion 
MR phenotypes are predictive for survival benefit in anti-
VEGF monotherapy, but not cytotoxic chemotherapies4 or 
surgical resection.7 This was independently confirmed8 in 
a separate cohort using data from BELOB,3 which showed 
ADCL to be predictive for patients treated with bevacizumab 
monotherapy, but not single agent lomustine. When this 
was tested post-hoc using data from EORTC-26101, Schell 
et al.11 found that ADCL using a similar threshold was prog-
nostic for both bevacizumab and non-bevacizumab treated 
patients. However, unlike previous studies,4,8 35% of these 
“non-bevacizumab” patients crossed over and received 
bevacizumab treatment after disease progression, sug-
gesting diffusion MR phenotypes may still be predictive to 
anti-VEGF treatment. Regardless, all these studies harmo-
nize and together strongly support the hypothesis that pre-
treatment ADCL is a powerful tool for identifying patients 
that will have a favorable outcome to anti-VEGF treatment, 
including bevacizumab.

The biological basis of these diffusion MR phenotypes 
has also been under recent investigation.5,20 Specifically, 
we have noted that ADCL is significantly correlated with 
increased DNA, RNA, and protein expression of decorin, 
a small proteoglycan that both modulates angiogen-
esis and alters viscosity of the extracellular matrix, and 
this relationship is preserved in patient derived xeno-
graft (PDX) models.5 Data suggest decorin may be a mul-
tifaceted antiangiogenic agent,21–24 as it interferes with 
thrombospondin-1,25 suppress endogenous tumor cell 
production of VEGF22,26 and VEGF-A,27 the therapeutic tar-
gets of bevacizumab, and binds with a high affinity to 
VEGFR1/2.28 Decorin also concurrently modulates the 
stiffness of the extracellular matrix by binding with var-
ious macromolecules and activating specific matrix 
metalloproteinases (MMPs),22 which may explain the re-
lationship between increased decorin expression and in-
creased ADCL, a measure of water mobility (or viscosity) 
within the tumor tissue. Studies aimed at identifying any 
causal associations between decorin expression, diffu-
sion MR phenotypes, and anti-VEGF efficacy are yet to be 
conducted.

In addition, the molecular status of the tumor may also 
contribute to the specific diffusion MR phenotypes. For ex-
ample, a TCGA study by Wu et al.29 suggested that newly 
diagnosed IDH mutant gliomas have significantly higher 
average ADC values within areas of bulk tumor compared 

  
Table 2.  Cox Multivariate Regression Results for Age, Treatment, Tumor Volume, and ADCL

Variable Coefficient Hazard Ratio (HR) [95% CI] P-Value

Age (years, continuous) −0.0086 0.9914 [0.9765–1.0066] .2660

Treatment (BV vs VB+BV) 0.1271 1.1356 [0.8042–1.6036] .4702

Tumor Volume (mL, continuous) 0.0209 1.0212 [1.0122–1.0302] <.0001

ADCL Phenotype (High/Low) −0.5844 0.5574 [0.3913–0.7940] .0012
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with newly diagnosed IDH wild-type gliomas, irrespective 
of tumor grade. Also, a study by Han et al.30 suggests newly 
diagnosed MGMT methylated tumors may have a higher 
ADC measurement compared to unmethylated tumors; 
however, a larger and more comprehensive study with 
more than twice the patients suggested the opposite, with 
newly diagnosed MGMT methylated tumors exhibiting sig-
nificantly lower ADC.31 While these other factors may have 
contributed a part in the underlying diffusion phenotype, 
these previous studies were in newly diagnosed gliomas 
and not recurrent disease. Additionally, the current study 
did not require IDH and MGMT status be obtained for all 
patients. Approximately 30% of patients in the VB+BV co-
hort and 25% of patients in the BV cohort did not have IDH 
status available, and 18% of patients on both arms did not 
have MGMT status available.12 Despite this, MGMT meth-
ylation status and IDH mutation status appeared evenly 
distributed across ADCL phenotypes. However, a proper 
accountability of these variables cannot be considered in 
the current study and is a potential limitation.

Conclusions

Results from the current phase III trial confirms that pre-
treatment contrast enhancing tumor volume and diffusion 
MR imaging phenotypes are independent predictors of 
overall survival in rGBM treated with bevacizumab with 
or without VB-111. Additionally, results suggest clinicians 
should consider using diffusion measurements within the 
enhancing tumor prior to bevacizumab treatment in order 
to estimate potential patient benefits.
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