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Abstract

Background Reference ranges for lean mass (LM) and fat mass (FM) are essential in identifying soft tissue disorders;
however, no such reference ranges exist for the most commonly used Hologic dual-energy X-ray absorptiometry (DXA)
machine in Australia.
Methods Cross-sectional study of community-dwelling adults (aged 18–88 years) who underwent a Hologic DXA scan
at one of three commercialized densitometry centres in Australia. Age-specific and sex-specific percentile curves were
generated for LM [LM, appendicular lean mass (ALM), ALM adjusted for height squared (ALM/h2), and ALM adjusted
for body mass index (ALM/BMI)] and FM [FM, FM adjusted for height squared (FM/h2), appendicular fat mass, and
android and gynoid fat] parameters using the LMS statistical method. Cutpoints equivalent to T-scores of �1, �2,
and �2.5 standard deviations below the young mean reference group (20–29 years) were also generated for LM
parameters.
Results A total of 15 479 community-dwelling adults (54% men) with a median age of 33 years (interquartile range:
28, 42) were included. LM, ALM, and ALM/h2 remained stable until age 50, after which these parameters started to
decline in both sexes. Compared with age 50, median percentiles of LM, ALM, and ALM/h2 declined by �5.9 kg,
�3.7 kg, and �0.86 kg/m2 in men and by �2.5 kg, �1.8 kg, and �0.10 kg/m2 in women at age 70, respectively.
Adjusting ALM for BMI (rather than height squared) resulted in different trends, with ALM/BMI decreasing from as
early as age 20. Compared with age 20, median percentiles of ALM/BMI at age 40 declined by �0.10 kg/kg/m2 in
men and by �0.06 kg/kg/m2 in women; and at age 70, ALM/BMI declined by �0.25 kg/kg/m2 in men and by
�0.20 kg/kg/m2 in women. Cutpoints equivalent to T-scores of �1, �2, and �2.5 standard deviations for ALM/BMI
were 1.01, 0.86, and 0.77 kg/kg/m2 in men and 0.70, 0.59, and 0.53 kg/kg/m2 in women, respectively. All FM param-
eters progressively increased from age 20 and continued up until age 70.
Conclusions We developed reference ranges for LM and FM parameters from Hologic DXA machines in a large cohort
of Australian adults, which will assist researchers and clinicians in identifying soft tissue disorders such as obesity,
sarcopenia, and cachexia.
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Introduction

Body composition plays a fundamental role in health and dis-
ease across the life cycle. Lean mass (LM) protects bone den-
sity and skeletal muscle mass and strength1 and contributes
to energy expenditure via basal metabolic rate, as well as fa-
cilitating whole-body metabolism by partitioning nutrients
into several tissues.2 Age-related declines in LM (or low mus-
cle mass) are linked to mobility impairments, falls, fragility
fractures, disability and reduced quality of life,1,3 and several
acute and chronic conditions such as cachexia, sarcopenia,
sarcopenic obesity, and type 2 diabetes.1,4–6

On the other hand, fat mass (FM) is the body’s largest
energy reservoir, and, when required, this organ provides
a sustained release of energy via lipid metabolism.2 While
this tissue also supports processes such as hormone func-
tioning and thermogenesis,2 significant increases in FM
(or adiposity) is detrimental to health. Indeed, obesity
drives systemic low-grade inflammation,2 a key player in
the pathology of several metabolic diseases such as cancer,
diabetes, and cardiovascular diseases.7 Obesity also exacer-
bates the risk of falls in older populations.8 Thus, body com-
position assessments are valuable in research and clinical
settings to identify those with, or at risk of, LM and FM
abnormalities.

Body composition is commonly measured through
non-invasive imaging techniques such as computed tomogra-
phy (CT), magnetic resonance imaging (MRI), and dual-energy
X-ray absorptiometry (DXA). While CT and MRI offer the
highest accuracy and precision, they are costly and inconve-
nient for clinical purposes.9 DXA is a practical option that accu-
rately quantifies LM and FM (as well as bone mineral content)
and provides total and regional values for these parameters.10

When compared with MRI and CT measured skeletal muscle
mass, DXA-derived LM demonstrates high reliability and offers
shorter scan time, lower cost, and less radiation exposure.9

However, a caveat with DXA technology is that LM and FM
measures differ between manufactures due to the calibration
methods and/or algorithms used to distinguish soft tissue
compartments.11 An experimental study showed that when
comparing GE Healthcare Lunar and Hologic DXA scans in
199 healthy participants from the USA (n = 40, 6–16 years)
and China (n = 159, 5–81 years), significant differences were
found in total and regional LM and FM values.11 Others have
also reported differences in regional FM values when compar-
ing DXAmachines.12 These factors can affect the use of LM and
FM normative data in research settings (e.g. entry points onto
clinical trials) and clinical practice (e.g. diagnosis).

To account for this, US cohort studies developed LM refer-
ence ranges from GE Healthcare Lunar13 and Hologic14 DXA
machines, with reference equations for both machines de-
rived from a diverse multinational population.11 However, in
Australia, LM reference ranges developed by the Geelong Os-
teoporosis Study (GOS)15,16 were derived from GE Healthcare
Lunar machines, and at present, no normative data exist for
LM and FM parameters using Hologic machines in this region,
despite Hologic being the most commonly employed imaging
technique.

Conventional body composition parameters include total
and regional appendicular lean mass (ALM) adjusted for
height squared (ALM/h2) or body mass index (ALM/BMI)17

and total (kg and %) FM, including adjustments for height
squared (FM/h2).10 Alternatively, regional body composition
parameters may offer higher predictive value for health out-
comes. For instance, appendicular (the sum of arms and legs)
LM parameters (ALM, ALM/h2, and ALM/BMI) are preferred
over total LM, as the latter is subject to higher confounding
of organ masses in the trunk region.17 ALM parameters are
also more relevant to activities of daily living and thus are rec-
ommended in sarcopenia definitions.17 Studies have also
found that regional trunk adiposity is a better predictor of risk
factors for cardiometabolic disease, as opposed to total FM or
other conventional anthropometric measures (i.e. waist/hip/
thigh circumference and BMI).18,19 Moreover, adiposity of
the lower limbs (i.e. intra/intermuscular fat) is linked to mobil-
ity impairment20 and cardiometabolic disease21,22; thus, ap-
pendicular fat mass (AFM) may offer a useful surrogate
marker for this phenomenon. However, again, reference
ranges for these parameters are yet to be developed using
Hologic DXA technology in Australia. This is an important as-
pect as in addition to age, sex, and ethnicity, body composi-
tion normative values should be specific to the DXA system
and representative of the underlying population.16

Here, we developed reference ranges for total and regional
LM (LM, ALM/h2, and ALM/BMI) and FM (FM, FM/h2, AFM,
and android and gynoid fat) parameters directly from Hologic
DXA machines in community-dwelling Australian adults.

Methods

Participants

Deidentified whole-body scans of 26 999 community-dwelling
adults were acquired from three Australian commercialized
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densitometry centres: Mobile DEXA Pty Ltd (n = 13 138), EC
Group Pty Ltd (n = 7843), and DEXA Melbourne Pty Ltd
(n = 6018). Participants attended the densitometry centres
on their own accord between 2013 and 2020 to seek body
composition evaluation for health and fitness purposes. The
data were pooled, and the most recent scan for each individ-
ual was used (excluded scans: n = 10 782). This was carried out
by using the unique scan identifier number as the authors
were blind to participant names. Participants were excluded
if younger than 18 years (n = 87), had missing height or weight
(n = 17), taller than 192 cm (n = 623, maximum length of scan
area of the machine), or shorter than 130 cm (n = 6, possible
dwarfism). None of the participants had weight recorded
above 200 kg (maximum capacity of Hologic machines is
206 kg), but those with a weight <20 kg were excluded
(n = 1) as this was deemed to be a typographic error. Four
(n = 4) participants whose ALM was 0 were also excluded. A
total of n = 15 479 scans for total and regional LM and FM
were included in the analysis. LM is described here as bone
free.

Informed consent was waived as participants were not re-
cruited for this study, with only pre-existing data in a
non-identifiable format supplied by the densitometry centres.
This study was approved by the Melbourne Health Human Re-
search Ethics Committee (Reference Number: HREC/56560/
MH-2019).

Anthropometry and imaging

Machines in all three densitometry centres were Hologic™

(Mobile DEXA Pty Ltd: Hologic Horizon A, Software: Apex Ver-
sions 5.6.0.5 and 5.6.0.7; EC Group Pty Ltd: Hologic Discovery
A, Software: Apex Version 4.5.0.3; DEXA Melbourne Pty Ltd:
Hologic Horizon A, Software: Apex Version 5.6.0.4) and oper-
ated as per the guidelines of the manufacturer. Both models
(Hologic Horizon A and Discovery A) have shown similar pre-
cision in densitometry.23 Using spine phantom daily and
whole-body phantom at least once weekly, quality assurance
was carried out on all machines. The intra-machine coeffi-
cient of variation calculated from 30 phantom scans at each
centre was within acceptable ranges (<5%) for body compo-
sition parameters: total LM (Mobile DEXA Pty Ltd: 0.96%; EC
Group Pty Ltd: 0.60%; DEXA Melbourne Pty Ltd: 0.52%), total
FM (Mobile DEXA Pty Ltd: 1.30%; EC Group Pty Ltd: 0.79%;
DEXA Melbourne Pty Ltd: 0.59%), leg LM (Mobile DEXA Pty
Ltd: 2.96%; EC Group Pty Ltd: 1.74%; DEXA Melbourne Pty
Ltd: 2.11%), leg FM (Mobile DEXA Pty Ltd: 4.19%; EC Group
Pty Ltd: 2.94%; DEXA Melbourne Pty Ltd: 2.97%), trunk LM
(Mobile DEXA Pty Ltd: 2.06%; EC Group Pty Ltd: 0.70%; DEXA
Melbourne Pty Ltd: 1.08%), and trunk FM (Mobile DEXA Pty
Ltd: 1.52%; EC Group Pty Ltd: 0.67%; DEXA Melbourne Pty
Ltd: 0.79%).

All centres measured participants’ height to the nearest
centimetre. However, one centre (Mobile DEXA Pty Ltd) did
not measure the weight of the participants using a scale
and instead used whole-body mass estimates from the DXA
machine. A correlation between scale and DXA-derived
weight (for all participants from EC Group Pty Ltd and DEXA
Melbourne Pty Ltd centres, n = 7737) was excellent
(r = 0.975). Therefore, for uniformity purposes, we used the
weight estimates from the DXA machines for all centres.

Statistical analysis

Participant characteristics and descriptives on all outcomes
are presented as median (interquartile range) or frequency
(percentage).

Reference (centile) curves were generated using the LMS
method developed by Cole24 and Cole and Green.25 This
method fits a single explanatory variable (age in our study)
to a response variable (body composition outcomes) to create
centile curves. The outcome can follow skewed distribution; a
Box-Cox transformation is applied (with or without power
transformation of age) to estimate three parameters
representing skewness (lambda, L), median (M), and coeffi-
cient of variation (sigma, S). Z-scores can be calculated from
these parameters using the following formula:

z ¼
M X=Mð ÞL � 1
� �

Lσ
:

Body composition outcome is represented by X, and σ stands
for population standard deviation (SD) (calculated as M*S).26

The model fit was evaluated using residuals inspection of Q
statistics (values less than 2 considered good fit) and worm
plots.27

While Z-scores represent the deviation of an individual
from the average of age–sex-matched population, T-scores
represent the deviation from the average of young adults of
the same sex. In this study, young adults are participants aged
20–29 years.28 T-scores were calculated using the same for-
mula as for Z-score (above), but replacing parameters (M, L,
and σ) with those of the young adults. Cutpoints for each out-
come are presented using T-scores of �1.0, �2.0, and �2.5
describing the number of SDs below the young adult refer-
ence mean. The number and proportion of participants
within these cutpoints are shown for each 10 year age group.
BMI was calculated as body weight divided by height squared
(kg/m2) and followed the World Health Organization classifi-
cations (underweight: <18.5 kg/m2; normal weight: 18.5–
24.9 kg/m2; overweight: 25–29.9 kg/m2; obese: ≥30 kg/m2)
for reporting.29

All analyses were performed separately for men and
women. The LMS method was fitted using package ‘gamlss’
in R; other analyses were performed using Stata 16.1.
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Results

Participants

Participant characteristics are presented in Table 1, and the
number and proportion of men and women across age
ranges are available in Supporting Information, Table S1. A
total of 15 479 community-dwelling adults (54% men) with
a median age of 33 years (interquartile range: 28, 42) were
included. Of these, 8678 (69%) were younger adults
(18–40 years), 4259 (28%) were middle-aged adults
(40–60 years), and 458 (3%) and 78 (0.5%) were aged be-
tween 60–70 and 70–80 years, respectively. Six participants
(<0.1%) were aged above 80 years. In all age groups, median
height, weight, BMI, LM, ALM, ALM/height2, and ALM/BMI
were higher in men compared with women, and conversely,
FM (kg and %), FM/height2, AFM, and gynoid fat were higher
in women compared with men. Aside from age 20, median
gynoid fat was higher in men compared with women in all
other age groups. According to BMI classifications, 99
(<1%) were underweight, 6296 (~41%) were normal weight,
6094 (~39%) were overweight, and 2990 (~19%) were obese.

Lean mass parameters

Lean mass parameters are presented in Table 2. LM, ALM,
and ALM/h2 remained stable until the fifth decade, after
which these parameters started to decline in both sexes
(Figures 1 and 2). Compared with age 50, median percentiles
of LM, ALM, and ALM/h2 declined by �5.9 kg, �3.7 kg, and
�0.86 kg/m2 in men and by �2.5 kg, �1.8 kg, and
�0.10 kg/m2 in women at age 70, respectively. Adjusting
ALM for BMI (rather than height squared) resulted in differ-
ent trends, with ALM/BMI decreasing from age 20 and

continuing to age 70 (Figure 2). Compared with age 20, me-
dian percentiles of ALM/BMI at age 40 declined by
�0.10 kg/kg/m2 in men and by �0.06 kg/kg/m2 in women;
and at age 70, ALM/BMI declined by �0.25 kg/kg/m2 in
men and by �0.20 kg/kg/m2 in women.

Cutpoints equivalent to T-scores of �1, �2, and �2.5 SDs
below the mean reference group (20–29 years) for all LM pa-
rameters are presented in Table 3. The prevalence of LM pa-
rameters within defined T-score categories for men and
women is presented in Table 4.

All other LM reference range parameters (ALM/height,
ALM/height3, ALM/total body fat, ALM/per cent body fat,
ALM/weight, ALM/AFM, ALM/body surface area, ALM/
whole-body total area, and ALM/whole body subtotal) are
available in Tables S2–S4. Reference charts for LM, ALM,
ALM/h2, and ALM/BMI are available in Figures S2–S5.

Reference values to calculate T-scores and Z-scores for LM
parameters (using the formulas outlined in the Methods sec-
tion) are available in Files S1 and S2.

Fat mass parameters

Fat mass parameters are presented in Table 5. FM (kg and %)
progressively increased from age 20 up until age 70 (Figure 3).
Compared with age 20, median percentiles of FM (kg) at age
40 increased by 4.4 kg in men and 2.9 kg in women; and at
age 70, FM (kg) increased by 7.3 kg in men and by 9.5 kg in
women. Additionally, compared with age 20, median percen-
tiles of FM proportion (%) at age 40 increased by 4.2% in
men and 3.1% in women, while at age 70, it increased by
8.5% in men and by 9.0% in women.

Fat mass/height2, AFM, and android and gynoid fat in-
creased from age 20 up until age 70 (Figures 3 and S1). Com-
pared with age 20, median percentiles of FM/height2, AFM,
and android and gynoid fat increased by 1.4 kg/m2, 1.4 kg,

Table 1 Participant characteristics

Parameter

Total (n = 15 479) Men (n = 8381) Women (n = 7098)

Median (IQR) Median (IQR) Median (IQR)

Age (years) 33.0 (28.0, 42.0) 33.0 (28.0, 42.0) 33.0 (28.0, 43.0)
Height (m) 1.7 (1.6, 1.8) 1.8 (1.7, 1.8) 1.6 (1.6, 1.7)
Weight (kg)a 78.0 (66.7, 89.2) 85.0 (77.2, 94.5) 67.1 (60.0, 77.2)
BMI (kg/m2) 25.8 (23.5, 28.9) 26.7 (24.6, 29.5) 24.4 (22.2, 27.9)
LM (kg) 56.3 (45.9, 66.4) 65.5 (59.5, 71.3) 45.3 (41.2, 50.0)
ALM (kg) 25.1 (19.9, 30.4) 29.9 (27.0, 33.0) 19.6 (17.5, 21.9)
ALM/height2 (kg/m2) 8.4 (7.2, 9.6) 9.4 (8.7, 10.2) 7.2 (6.5, 7.9)
ALM/BMI (kg/kg/m2) 1.0 (0.8, 1.1) 1.1 (1.0, 1.2) 0.8 (0.7, 0.9)
Fat mass (kg) 17.6 (13.3, 23.9) 16.2 (12.3, 21.9) 19.3 (14.7, 26.3)
Fat mass (%) 23.8 (18.1, 30.3) 19.5 (15.5, 24.4) 29.5 (24.2, 35.3)
Fat mass/height2 (kg/m2) 6.0 (4.4, 8.2) 5.1 (3.9, 6.9) 7.1 (5.4, 9.7)
AFM (kg) 8.9 (6.7, 12.1) 7.6 (5.9, 10.0) 10.7 (8.4, 14.1)
Android fat (kg) 1.3 (0.8, 2.0) 1.3 (0.9, 2.0) 1.2 (0.8, 1.9)
Gynoid fat (kg) 3.3 (2.5, 4.4) 2.9 (2.2, 3.7) 3.9 (3.1, 5.1)

AFM, appendicular fat mass; ALM, appendicular lean mass; BMI, body mass index; IQR, interquartile range; LM, lean mass.
aDerived from dual-energy X-ray absorptiometry scan.
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0.6 kg, and 0.5 kg in men and by 1.2 kg/m2, 1.2 kg, 0.3 kg, and
0.3 kg in women at age 40, respectively. Compared with age
40, median percentiles of FM/height2, AFM, and android and
gynoid fat increased by 1.2 kg/m2, 0.4 kg, 0.6 kg, and 0.0 kg in
men and by 2.9 kg/m2, 2.2 kg, 0.7 kg, and 0.6 kg in women at
age 70, respectively. Reference charts for all FM parameters
are available in Figures S6–S11.

Reference values to calculate Z-scores and T-scores for FM
parameters (using the formulas outlined in the Methods sec-
tion) are available in Files S1 and S2.

Discussion

We have developed body composition reference ranges for
total and regional LM and FM parameters using data
from Hologic DXA machines in a large cohort of Australian
community-dwelling men and women. More specifically, we
generated new percentiles and cutpoints for a range of LM
(LM, ALM/h2, and ALM/BMI) and FM (FM, FM/h2, AFM, and
android and gynoid fat) parameters (Figures S1-S11) , which
can be adopted by national and international working groups
on sarcopenia, cachexia, and adiposity/obesity, as well as
other muscle wasting and metabolic disorders. These data
will help researchers and clinicians identify soft tissue disor-
ders in adults using the most commercialized DXA system
(Hologic) in Australia.

Lean mass parameters

Lean mass reference ranges have been developed in various
regions worldwide, including Australia,15,16 Europe,30 and
North America13,14,31; however, reference equations are
available for both Hologic and Lunar DXA systems only from
a multinational study.11 Our data provide an important exten-
sion to these findings by generating LM reference ranges di-
rectly from Hologic DXA systems among an Australian
cohort that were previously only available from Lunar DXA
machines in this region.15,16

In our Australian population, peak LM, ALM, and ALM/h2

occurred at around age 50 in both sexes, which is consistent
with findings from the US NHANES cohort of non-Hispanic
adults scanned on Hologic DXA systems.14 Interestingly, in
our study, adjusting ALM for BMI resulted in a different trend
with this parameter peaking at around age 20 and declining
thereafter in both sexes, a finding that is consistent with
2371 community-dwelling Australians (99% Caucasian)
scanned on Lunar DXA machines.16 Aside from age and sex,
several studies have shown that approximately 50% of the
variance in ALM can be explained by body size (height and
weight)31–34; it is for this reason that ALM/BMI is considered
a better index of muscle mass than ALM or ALM/h2 alone, in
addition to its more consistent relationship with muscleTa
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weakness and mobility impairment.35–38 Thus, we recom-
mend using ALM/BMI in clinical practice to identify LM ab-
normalities wherever possible (Figure S5).

Following the established criteria in the osteoporosis field,
we generated new cutpoints (equivalent to T-scores of �1.0,
�2.0, and�2.5 SDs) for a range of LM parameters using a sig-
nificantly larger reference sample than previous cohort stud-
ies both nationally and internationally.13–16,31 These aspects
are important as the larger sample size increases our power
and precision of results, and more conservative T-scores
(i.e. �2.5 SDs) have been recommended to identify low LM
in the diagnosis of sarcopenia39 but had not been developed
previously. Our cutpoints (equivalent to T-scores of �1.0 and
�2.0 SDs) for LM, ALM, and ALM/h2 were higher than the
GOS, which comprised 2371 community-dwelling adults
scanned on Lunar DXA machines.15 Considering that popula-
tion demographics were similar between studies and Hologic
compared with Lunar DXA systems provides higher estimates
of total and regional LM,11 this finding was unsurprising.

We also developed cutpoints for clinically relevant LM pa-
rameters such as ALM/BMI from Hologic machines that were
lacking in this region. When using the third percentile of
ALM/BMI for an individual aged 60 years, our reference
ranges (women: 0.48 kg/kg/m2, men: 0.75 kg/kg/m2) were

similar to those developed by the Foundation for the Na-
tional Institutes of Health (women: 0.51 kg/kg/m2, men:
0.79 kg/kg/m2) that were derived from nine US datasets of
26 625 community-dwelling adults (≥65 years) using both
Hologic and Lunar DXA systems. Our T-scores of �2.5 SDs
for ALM/BMI (women: 0.53 kg/kg/m2, men: 0.77 kg/kg/m2)
were also close to the Foundation for the National Institutes
of Health reference values. This provides us with confidence
in the accuracy of our reference ranges, which could be easily
implemented in research and clinical practice (Figure S5). In
saying this, future studies should investigate the relationship
between our LM reference ranges and adverse health out-
comes (mobility impairments, falls, fractures, and mortality)
in community-dwelling adults and other clinical populations
through cross-sectional and longitudinal studies.

Fat mass parameters

Median values for all FM parameters (apart from android
fat) were higher in women than men in our Australian popu-
lation, a finding that corroborates previous cohort
studies.14,30,31 However, total FM (% and kg) and FM adjusted
for height squared (FM/h2) increased monotonically from age

Figure 1 Age-specific and sex-specific percentile curves for (A) lean mass and (B) appendicular lean mass.
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Figure 2 Age-specific and sex-specific percentile curves for (A) appendicular lean mass adjusted for height squared (ALM/height2) and (B) appendicular
lean mass adjusted for body mass index (ALM/BMI).

Table 3 Young adult (20–29 years) reference data for lean mass parameters and cutpoints equivalent to T-scores of �1.0, �2.0, and �2.5 standard
deviations

T-score
category

Men (n = 2685) Women (n = 2340)

Lean mass
(kg)

ALM
(kg)

ALM/height2

(kg/m2)
ALM/BMI
(kg/kg/m2)

Lean mass
(kg)

ALM
(kg)

ALM/height2

(kg/m2)
ALM/BMI
(kg/kg/m2)

T-score = �1.0 56.96 26.04 8.39 1.01 39.38 16.82 6.30 0.70
T-score = �2.0 49.79 22.38 7.47 0.86 34.30 14.22 5.50 0.59
T-score = �2.5 46.49 20.71 7.05 0.77 32.01 13.06 5.14 0.53

ALM, appendicular lean mass; BMI, body mass index; T-score = �1.0, 1 standard deviation (SD) below the young adult reference mean;
T-score = �2.0, 2 SDs below the young adult reference mean; T-score = �2.5, 2.5 SDs below the young adult reference mean.

Table 4 Prevalence [n (%)] of lean mass parameters within defined T-score categories for men and women

T-score category

Men (n = 8381) Women (n = 7098)

Lean mass (kg) ALM (kg)
ALM/height2

(kg/m2)
ALM/BMI
(kg/kg/m2) Lean mass (kg) ALM (kg)

ALM/height2

(kg/m2)
ALM/BMI
(kg/kg/m2)

Less than �2.5 107 (1.3%) 109 (1.3%) 123 (1.5%) 114 (1.4%) 65 (0.9%) 70 (1.0%) 88 (1.2%) 160 (2.3%)
�2.5 to �2.0 140 (1.7%) 193 (2.3%) 187 (2.2%) 274 (3.3%) 134 (1.9%) 161 (2.3%) 152 (2.1%) 286 (4.0%)
�2.0 to �1.0 1110 (13.2%) 1252 (14.9%) 1203 (14.4%) 1832 (21.9%) 936 (13.2%) 1070 (15.1%) 1028 (14.5%) 1415 (19.9%)
Greater than �1.0 7024 (83.8%) 6827 (81.5%) 6868 (81.9%) 6161 (73.5%) 5963 (84.0%) 5797 (81.7%) 5830 (82.1%) 5237 (73.8%)

ALM, appendicular lean mass; BMI, body mass index; less than �2.5, more than 2.5 standard deviations (SDs) below the young adult ref-
erence mean;�2.5 to�2.0, equal to or between 2.5 and 2 SDs below the young adult reference mean;�2.0 to�1.0, equal to or between
2.0 and 1 SDs below the young adult reference mean; greater than �1.0, less than 1 SD below the young adult reference mean.
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20 up until age 70 in both sexes. This contrasts with previous
cohort studies. Among the NHANES dataset of US
non-Hispanic adults14 scanned using Hologic DXA technology,
total FM (%) and FM/h2 peaked at around age 80 in men and
age 65 in women. Similarly, in a population of healthy
Mexican adults scanned on Lunar DXA technology,31 FM/h2

peaked at 60–69 years in men and 50–59 years in women.
While genetic, epigenetic, and hormonal factors may, in part,
account for the different peaks in adiposity between men and
women,31 other factors such as sample size and geographical
region may explain the findings here. Irrespective of this, our
data will facilitate researchers and clinicians in identifying in-
dividuals with excess FM (i.e. adiposity/obesity), a condition
linked to several metabolic diseases7,19 as well as falls in
older populations.8

Another novel aspect of our study is the introduction of
reference ranges for AFM and android and gynoid fat. These
three regional parameters progressively increased across all
ages in our dataset. Considering the former, ectopic fat
accumulation within the appendicular limbs is a hallmark
of aging and degrades muscle and bone quality.40 Greater
intra/intermuscular fat is associated with mobility
impairment20 and metabolic risk factors,21,22 potentially via
the adverse effects of lipids on myofibres as well as glucose
metabolism. However, AFM is a composite of not only
intra/intermuscular fat but also fat located in subcutaneous
and fascia regions. Studies have shown an inverse relation-
ship of lower-limb AFM with metabolic risk factors,18,41,42 al-
though a cross-sectional study showed a positive association
of total AFM with metabolic risk factors in adults with meta-
bolic syndrome whereas the association was inverse in those
without the condition.43 Additional large, prospective studies
are required to explore the relationship between AFM and
metabolic risk factors in those with and without metabolic
abnormalities, as this measure may be a practical surrogate
marker for fat infiltration of the appendicular limbs.

Findings have been more consistent when examining
the link between trunk adiposity and cardiometabolic risk
factors, with numerous studies showing adverse effects of
android/gynoid fat in community-dwelling men and
women.18,19,43 Recent studies also suggest that regional trunk
adiposity is a better predictor for risk factors of cardiometa-
bolic disease, as opposed to total FM or other conventional
anthropometric measures (i.e. waist/hip/thigh circumference
and BMI).18,19 Thus, the development of reference ranges for
these parameters in our study may assist in assessing and
monitoring cardiometabolic health, independent of total FM
parameters, in both research and clinical settings. However,
it should be highlighted that our reference ranges for total
and regional FM parameters need to be validated in future
clinical studies.

Limitations

Our reference ranges should be interpreted in the context of
the study limitations. First, the authors were blind to metal
artefacts (i.e. pacemakers and prosthetic limbs) and, as such,
did not develop reference ranges for other body composition
components such as bone mineral content/density. Second,
the number of participants aged between 70 and 80 years
was low (n = 78, 0.5%), which can affect the validity of the
reference range in this age group. We did not develop refer-
ence ranges for those aged 80 years and above due to ex-
tremely low numbers (n = 6, <0.1%). Lastly, our reference
ranges were developed from a cohort of men and women at-
tending commercialized densitometry centres. This intro-
duces the possibility of selection bias of individuals across
all age ranges who are seeking body composition evaluation
to support athletic/sporting endeavours. In saying this, our
reference ranges were comparable with the NHANES14

dataset scanned on Hologic DXA systems and slightly higher

Table 5 Percentiles [median (3rd, 97th)] of fat mass parameters for men and women at specific ages

Age

Men

Fat mass (kg) Fat mass (%) Fat mass/height2 (kg/m2) AFM (kg) Android fat (kg) Gynoid fat (kg)

20 13.2 (6.7, 28.4) 16.5 (8.7, 28.9) 4.1 (2.1, 9.0) 6.6 (3.0, 15.9) 0.9 (0.4, 2.5) 2.5 (1.2, 5.2)
30 15.5 (7.1, 37.6) 18.9 (9.0, 33.7) 4.9 (2.3, 11.7) 7.5 (3.4, 17.2) 1.2 (0.4, 3.8) 2.8 (1.3, 6.4)
40 17.5 (7.9, 40.9) 20.6 (10.2, 34.7) 5.5 (2.6, 12.7) 8.0 (3.7, 17.9) 1.5 (0.5, 4.5) 3.0 (1.4, 6.5)
50 18.7 (8.8, 40.4) 21.6 (11.4, 34.6) 5.9 (2.8, 12.7) 8.2 (3.7, 17.6) 1.7 (0.6, 4.6) 3.0 (1.5, 6.1)
60 19.6 (9.1, 41.3) 23.1 (12.4, 36.0) 6.3 (3.0, 13.0) 8.2 (3.8, 17.3) 1.9 (0.7, 4.8) 3.0 (1.4, 5.9)
70 20.5 (9.2, 43.3) 25.0 (13.3, 38.8) 6.7 (3.1, 13.9) 8.4 (3.9, 17.2) 2.1 (0.7, 5.0) 3.0 (1.4, 6.0)

Women

20 17.4 (8.9, 37.6) 27.2 (15.7, 41.5) 6.3 (3.4, 13.5) 9.9 (5.1, 19.8) 1.0 (0.4, 2.7) 3.7 (2.0, 7.1)
30 18.7 (8.8, 43.5) 28.6 (15.3, 44.0) 6.8 (3.2, 15.7) 10.5 (4.9, 22.5) 1.1 (0.4, 3.6) 3.9 (1.9, 8.0)
40 20.3 (8.8, 48.5) 30.3 (15.7, 45.8) 7.5 (3.3, 17.4) 11.1 (4.9, 24.5) 1.3 (0.4, 4.3) 4.0 (1.9, 8.5)
50 22.2 (9.2, 51.9) 32.4 (16.6, 47.4) 8.3 (3.4, 19.1) 11.8 (5.1, 25.8) 1.5 (0.4, 4.6) 4.2 (1.9, 8.7)
60 24.3 (10.9, 50.1) 34.8 (19.7, 48.1) 9.3 (4.1, 18.8) 12.5 (5.9, 24.9) 1.7 (0.5, 4.6) 4.4 (2.2, 8.3)
70 26.8 (12.4, 51.2) 37.7 (23.1, 49.7) 10.4 (4.9, 19.2) 13.3 (6.8, 24.3) 2.0 (0.6, 4.9) 4.6 (2.4, 8.2)

AFM, appendicular fat mass.
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than the GOS15 values using Lunar DXA systems, which was
expected.11

Conclusions

To conclude, we have developed reference ranges for total
and regional LM and FM parameters using data from Hologic

DXA machines in a large cohort of Australian
community-dwelling men and women, which will help re-
searchers and clinicians identify soft tissue disorders. Future
studies should investigate the relationship between our refer-
ence ranges and adverse outcomes (cardiometabolic disease,
mobility impairments, falls, fractures, and mortality) in
community-dwelling adults and other clinical populations
through cross-sectional and longitudinal studies.

Figure 3 Age-specific and sex-specific percentile curves for (A) fat mass (kg), (B) fat mass (%), (C) fat mass/height2, and (D) appendicular fat mass.
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