Table 2.
Type | Measure | Area | Resolution | Method | Important Predictors | |
---|---|---|---|---|---|---|
Studies describing broad scale spatial patterns and hotspots in snakebite incidence | ||||||
Swaroop (1954) | Spatial* | Mortality | Global | Source data: | NA | NA |
Temporal* | Country | |||||
Predictions: | ||||||
NA | ||||||
Chippaux (1998) | Spatial | incidence | Global | Source data: | NA | NA |
Country | ||||||
Predictions: | ||||||
Snakebite Regions | ||||||
Kasturiratne et al. (2008) | Spatial | Incidence | Global | Source data: | NA | NA |
Mortality | Countries | |||||
Predictions: global burden region | ||||||
Studies using simple statistics, epidemiology, and coarse scale spatial predictors to describe spatial variation in snakebite incidence | ||||||
Molesworth (2003) | Spatial | Incidence | West Africa (Ghana & Nigeria) | Source data: | LogR | NDVI↑ |
Temporal | 29 health facilities Predictions: ~15 km grid | Season (Rainy season) | ||||
Leynaud and Reati (2009) | Spatial | Incidence | Cordoba, Argentina | Source data: | Spatial smoothing model | Location in departments with high percentage of persistence farming |
Department | Species identity | |||||
Predictions: | ||||||
department | ||||||
Mohapatra et al. (2011) | Spatial | Mortality | India | Source data: | LogR | Male/Female |
Temporal | ~7000 small areas | Religion (Hindu↑) | ||||
Individual | Predictions: states | Occupation (Agricultural worker↑) | ||||
Season (Monsoon↑) | ||||||
State (high prevalence states↑) | ||||||
Age (15–29↑) | ||||||
Chippaux, 2017** | Spatial | Incidence | Americas | Source Data: | t-test, Pearson Correlation, Chi Squared, Mann-Whitney Test | Altitude↓ |
Temporal | mortality | Province | Male/Female | |||
Individual | Predictions: | Age (young to middle aged↑) | ||||
Province | Climate Zone | |||||
Season (Rainy or Summer↑) | ||||||
Population density↑↓ | ||||||
Year↑↓ | ||||||
Angarita-Gerlein et al. (2017) | Spatial | incidence | Colombia | Source Data: | Cross-correlation analysis | Precipitation |
Temporal | Municipality | Municipality Identity | ||||
Predictions: | ||||||
Municipality | ||||||
Riascos et al., 2019 | Spatial | Incidence | Coffee Triangle Region, Colombia | Source data: Municipality | NA | Year |
Temporal | Predictions: | Season | ||||
NA | ||||||
León-Núñez et al. (2020) | Spatial | Incidence | Colombia | Source data: | t-test, Pearson Correlation, Chi Squared, Mann-Whitney Test | Male/Female |
Individual | Department | Urban/Rural | ||||
Predictions: Department | Ethnicity (Afro-Colombian & Indigenous↑) | |||||
Age (28–35↑) | ||||||
Region (Amazonia & Orinoquia↑) | ||||||
Species identity | ||||||
Year↑ | ||||||
Studies using relatively novel fine scale source data, advanced statistical models, and improved resolution | ||||||
Hansson et al. (2010) | Spatial | Incidence | Nicaragua | Source data: municipality | Poisson regression | Season (Rainy Season↑) |
Temporal | Predictions: | Environmental Region (altitude, precipitation, geographic clustering; Wet Lowlands↑) | ||||
Individual | municipality | Rural population percentage↑ | ||||
Male population percentage↑ | ||||||
Young population percentage | ||||||
Underreporting index↑ | ||||||
Hansson et al. (2013) | Spatial | Incidence | Costa Rica | Source data: district | Bayesian Poisson regression | altitude↓ |
Predictions: | precipitation↑ | |||||
district | length of dry season↓ | |||||
rural population percentage↑ | ||||||
population percentage near large forests↑ | ||||||
Snake habitat suitability↑ | ||||||
Chaves et al. (2015) | Spatial | incidence | Costa Rica | Source data: County | geographically weighted regression | Weather & Climate Oscillations |
Temporal | Predictions: | Temperature↑ | ||||
County | Precipitation | |||||
Poverty Indicators (Poverty gap | ||||||
index and percentage of destitute housing)↑ | ||||||
Altitude↓ | ||||||
Yañez-Arenas et al. (2016) | Spatial | Incidence | Americas | Source data: | GLM | Cumulative MRS presence & abundance index (SRI_2) ↑ |
Provinces Predictions: ~20 km grid | ||||||
Yañez-Arenas et al., 2014 | spatial | Incidence | Veracruz, Mexico | Source data: Municipality | GAM | 2 MRS species' abundance estimate↑ |
Predictions: Municipality | Index of marginalization↑ | |||||
Suraweera et al. (2020) | Spatial | Mortality | India | Source data: | Spatial Poisson model | Age group (30–69↑) |
Temporal | Incidence (inferred) | ~7000 small areas Predictions: ~50 km grid | Male/Female | |||
Individual | Season (Monsoon↑) | |||||
Elevation to 400m↓ | ||||||
Urban/Rural | ||||||
Poverty (rural female illiteracy)↑ | ||||||
Monthly mean temperature to 20 °C↑ | ||||||
Year↓ | ||||||
Species identity | ||||||
Schneider et al. (2021) | Spatial | Incidence | Brazil | Source data: | Negative binomial regression model | Major habitat type (Tropical↑) |
Municipality | Temperature↑ | |||||
Predictions: | Precipitation↑ | |||||
Municipality | Elevation↑ | |||||
Urbanization percentage↓ | ||||||
Venomous snake richness | ||||||
Forest loss↑ | ||||||
GDP per capita↓ | ||||||
Studies resulting in fine scale predictions of snakebite incidence | ||||||
Ediriweera et al., (2016) | Spatial | Sri Lanka | Source Data: household clusters in smallest administrative divisions | GLM GAM Geostatistical binomial logistic Log-linear models |
Male/Female Age (middle aged↑) Time of day (evening↑) Occupation (farm labourer↑) Education↓ Monthly income↓ Population density↓ Elevation Occupation distribution Climatic zone Season humidity weather abnormalities↓ |
|
Ediriweera et al. (2018) | Temporal | Predictions: | ||||
Ediriweera et al., 2019 | Individual | 1 km | ||||
Bravo-Vega et al. (2019) | Spatial | incidence | Costa Rica | Source Data: District Predictions: 1 km |
Linear regression | Encounter frequency of Bothrops asper Human population density |
Goldstein et al. (2021) | Spatial temporal |
Incidence | Sri Lanka | Source data: 10m-2km Predictions:2 km study squares |
Bottom-up Agent based modelling | Snake-famer activity overlap patterns based on: Monthly precipitation Number of rainy days Farmer type Land type Daily farmer activity time↑ Population percentage farmers↑ Snake activity season↑ Circadian snake activity time↑ Snake aggressiveness↑ Snake land type association↑ Snake abundance estimate↑ |
GAM = generalized additive models; GLM = generalized linear models; LogR = Logistic regression; SRI = ‘snakebite risk index’; NDVI = normalized difference vegetation index.
↑ = positive correlation; ↓ = negative correlation; no arrow = complex correlation pattern; bold text = significant categorical predictor.
*Information given in written form such as tables but could be analysed spatially and/or temporally.
**small scale studies already summarized in this review are not listed again separately in the table.