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Abstract: Patients with chronic kidney disease (CKD) have an increased cardiovascular (CV) risk that is 
only in part explained by established risk factors. Carotid arteriosclerosis and atherosclerosis are increased 
in CKD, play a role in the causation of CV disease in these patients and can affect the progression of 
renal disease. The arterial stiffening process is evident even in CKD patients with a very mild reduction of 
glomerular filtration rate (GFR) whereas arterial thickening is evident in more advanced stages. Possible 
mechanisms include functional and structural alterations of the arterial wall. Arterial stiffness can mediate the 
effect of CKD on target organs (i.e., brain, kidney and heart). In this review we discuss the arterial phenotype 
of patients with CKD. This is characterized by increased common carotid artery stiffness and outward 
remodeling (enlargement and thickening of the arterial wall) and a normal/reduced stiffness paired with an 
inward remodeling (narrowing of the arterial wall) of muscular arteries. We also discuss the consequences 
of carotid dysfunction, including the involvement of large elastic arteries stiffness on ventricular-vascular 
coupling, the mechanisms linking carotid stiffening and increased cardio- and cerebrovascular risk in CKD 
patients, and the therapeutic options to improve carotid function.
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Introduction

Cardiovascular (CV) risk is higher in patients with 
chronic kidney disease (CKD) compared with the general 
population (1) and, among patients at high CV risk, in those 
with a reduction of glomerular filtration rate (GFR) (2). 
This risk may be evident even with a mild reduction in renal 
function (2-4) or in the presence of microalbuminuria (5) 
and is 10–100-fold higher in patients with end stage kidney 
disease (ESKD) (6). In fact, patients in the early stages CKD 
are more likely to die from CV diseases than to progress 
to ESKD (7). These findings suggest that a reduced GFR 

is an independent CV risk factor. Since the prevalence of 
CKD in the general population is high and rising (8), this 
condition is a major public health problem. 

Established CV risk factors, such as hypertension 
and diabetes mellitus, only explain part of the excessive 
CV risk reported in CKD patients (9). Therefore, other 
factors are likely to be involved. Carotid arteriosclerosis 
and atherosclerosis are increased in CKD, play a role in 
the causation of CV disease in CKD patients (10-12) and 
can also affect the progression of kidney disease (13-15). 
Possible mechanisms include functional and structural 
alterations of the arterial wall, including endothelial 
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dysfunction, extracellular matrix stiffening, mesangial cell 
proliferation, low density lipoprotein (LDL)-dependent 
stimulation of fibronectin, mesangial matrix production and 
recruitment of inflammatory cells (16-19). Considering that 
myocardial disease [left ventricular hypertrophy (LVH), 
fibrosis and dysfunction] and not atheromatous coronary 
artery disease is the principal cause of CV death and disease 
in CKD (20), large elastic arteries arteriosclerosis could 
contribute to the effect of CKD on CV events.

The reduction in carotid-femoral pulse wave velocity, 
a measure of large elastic arteries stiffness, is associated 
with improved survival independent of blood pressure 
changes in patients with ESKD (21). Several treatment 
options have been proposed to improve carotid function 
in various clinical settings, including CKD (19); the early 
identification of patients with increased large elastic arteries 
stiffness could be useful to reduce the progression of CKD 
and the risk for CV events. 

In this review we aimed to discuss the specific carotid 
phenotype of CKD, the different vascular involvement in 
carotid and muscular arteries, the effect of carotid stiffness 
on ventricular-vascular coupling and the mechanisms at the 
origin of the increased cardio- and cerebrovascular risk in 
CKD patients.

We present the following article in accordance with 
the Narrative Review checklist (available at http://dx.doi.
org/10.21037/atm-20-5001).

Methods

A literature search of studies in humans was performed 
using MEDLINE, Scopus, ISI Web of Science, and Google 
Scholar databases (last accessed on 01 September 2020) 
without restrictions on the year of publication using the 
terms “carotid artery”, “arterial stiffness”, or “intima-
media thickness” in combination with “chronic kidney 
disease”, “inflammation”, or “hypertension”. The inclusion 
criteria included peer-reviewed publications of randomized 
controlled trials, observational studies, reviews, meta-
analyses and guidelines in English. First, the titles of these 
articles were screened for relevance. Second, publications 
with titles or abstracts appearing to meet the aims of this 
review were selected. The reference lists of the analyzed 
articles were also searched. These articles were subjected to 
the same selection procedures. We discuss both the findings 
and their relevance in the subsections below.

Discussion

Carotid phenotype in CKD

In patients with CKD, 2 distinct and partially overlapping 
alterations of the carotid arteries are detectable, 
atherosclerosis and arteriosclerosis. Atherosclerosis is a 
disease of conduit arteries with a patchy distribution, caused 
by lipid deposition in the intima layer of the arterial wall 
that leads to intima-media thickening and atherosclerotic 
plaque formation (22). In contrast, arteriosclerosis is 
caused by functional (i.e., endothelial dysfunction) and/
or structural alterations of the arterial wall (i.e., changes of 
the intrinsic characteristics of the biomaterial, thickening 
and calcification of the medial arterial layer). In patients 
with CKD, arterial remodeling seems to differently affect 
elastic (i.e., aorta and common carotid artery) and muscular 
arteries (i.e., brachial, femoral and renal artery).

Carotid atherosclerosis in CKD

Atherosclerosis is a progressive disease that includes 
subclinical lesions [increased carotid intima-media 
thickness (cIMT) (23)] and more advanced lesions (plaque 
and stenosis). The involvement of the carotid district is 
considered a proxy of systemic atherosclerosis (24). 

Carotid plaque rupture or stenosis are two critical 
complications in the evolution of atherosclerotic plaque 
(25,26).  Plaque formation is characterized by the 
deposition of cholesterol in the intima layer. The further 
production of connective tissue by fibroblasts, and calcium 
deposition contribute to the sclerosis and hardening of the 
atherosclerotic lesions and reduction of the arterial calibre (27).  
In patients with CKD, further studies are needed to test 
whether alterations of the Wnt/β-catenin signalling pathway 
is involved in the development of atherosclerotic lesions 
(28,29). Moreover, atherosclerotic lesions can stimulate 
clot formation and thrombosis, with the consequent sudden 
obstruction of blood flow. Finally, plaque rupture can lead 
to the cholesterol crystal embolization syndrome (30,31), 
a manifestation of atherosclerotic disease and a relatively 
rare complication of invasive arterial procedures, with 
important clinical manifestations ranging from peripheral 
cutaneous manifestations (e.g., livedo reticularis, blue toe 
syndrome) and renal failure to global neurologic deficits, 
depending on the arterial district involved. The changes 
in plaque composition, inflammation and geometry may 
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predispose to plaque rupture (32,33). In this regard, the 
common carotid artery at the level of the plaque is stiffer 
than the adjacent segment (34). This may limit the strain of 
the whole arterial wall and increase the arterial wall stress, 
predisposing carotid plaques to a greater risk of rupture (35).  
Carotid remodelling is more evident at the level of the 
plaque since the stiffness and the mechanical properties of 
the common carotid artery measured in a section free of 
plaque is comparable to that observed in patients without 
carotid plaque (34). In patients with advanced CKD, the 
enlargement of the carotid artery (Figure 1) may contribute 
to the increased in arterial wall stress and risk of plaque 
rupture.

From carotid atherosclerosis to CKD progression and CV 
events

Carotid atherosclerosis is associated with an increased CV 
risk in the general population (36,37) and in patients with 
CKD (38-40). In particular, the risk for stroke is high in 
CKD patients with advanced atherosclerotic lesions (41) 
and increases according to the decline in renal function (42). 

The link between carotid atherosclerosis and GFR, weak 
in patients with normal kidney function and in those with 
diabetes, increases in patients with CKD (43-48). However, 
it is difficult to dissect the role of CKD from the cluster of 
risk factors that may accompany carotid atherosclerosis (e.g., 
hypertension, diabetes, dyslipidaemia and inflammation) 

in these patients (49-51). In this context, qualitative and 
quantitative lipid abnormalities have been reported in these 
patients (52-55) and linked to both carotid atherosclerosis 
(55-58) and CKD progression (59). Moreover, blood 
pressure, haemoglobin and several mineral metabolism 
parameters predict carotid atherosclerosis progression in 
CKD patients (60,61). Finally, the association between 
GFR and carotid atherosclerosis is greatly reduced or lost 
after adjustment for CV risk factors (43,62) and it has been 
suggested that cIMT can even be comparable between 
patients with CKD and healthy controls (63). Accordingly, 
in a recent study, known vascular risk factors only explained 
a small proportion of variance in cIMT whereas the addition 
of GFR did not significantly contribute to the cIMT 
variance (64). Considered together, these studies suggest 
that the role of kidney dysfunction as an independent risk 
factor for carotid atherosclerosis should be better clarified.

Carotid arteriosclerosis in CKD

The increase of large elastic arteries stiffness, a vascular 
biomarker (24) and an independent CV risk predictor (65), 
is reported in patients with CKD (63,66-68), even in those 
with a very mild reduction in GFR (60–90 mL/min/1.73 m2 

without proteinuria) (69).
Several mechanisms are involved in the pathogenesis 

of carotid and aortic stiffening in CKD (19). Briefly, 
several uraemic toxins (i.e., hypercalcaemia, phosphates, 

Figure 1 Arterial phenotypes. CKD, chronic kidney disease; ESKD, end-stage kidney disease; IBD, inflammatory bowel disease; IMT, 
intima-media thickness; HTA, hypertension; Ref., reference group (healthy state).
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increased levels of parathyroid hormone, uric acid, 
endothelin, advanced glycation end-products, and 
asymmetric dimethylarginine) are also vascular toxins. 
They may contribute, directly or through the development 
of endothelial dysfunction (70,71), inflammation (72), 
oxidative stress (73,74), and vascular calcification (75,76), to 
functional and/or structural arterial stiffening (19). 

Functional alterations of the arterial wall could precede 
structural arterial stiffening in CKD since endothelial 
dysfunction is reported in participants with a mild reduction 
in GFR (77,78) whereas the changes of the characteristics of 
the biomaterial and the outward remodeling (enlargement 
and thickening) of the arterial wall are evident in patients 
with advanced CKD and ESKD but not in early stages of 
CKD (63,68,69). In this context, the enlargement of the 
carotid arterial wall is probably due to the inability of the 
arterial wall to sustain a repeated alternating deforming force 
and the consequent thinning and fragmentation of elastic 
fibers (elastic fatigue); qualitative and quantitative alterations 
of elastic fibers have been involved in the enlargement 
of the arterial wall in experimental CKD models (79,80). 
Carotid thickening has been reported in patients with 
ESKD and in those with CKD and hypertension (81). In 
this regard, carotid thickening is considered a compensatory 
mechanism aimed at normalizing circumferential wall stress 
in the presence of dilatation or increased blood pressure. 
Therefore, considering that carotid enlargement precedes 
wall thickening (63), circumferential wall stress is increased 
in advanced CKD. Moreover, carotid plaque, carotid intima-
media thickness, and coronary calcification, known non-
invasive measures of atherosclerosis, equally discriminate 
prevalent CV disease in patients with reduced renal  
function (82).

Muscular elastic arteries stiffness in CKD

In contrast to the carotid artery, the stiffness of brachial 
and femoral arteries is not increased and can be even 
reduced in patients with CKD (83,84). In these patients, 
an inward remodeling (reduction of diameter) of the 
renal arteries has been also reported and associated with 
an increased risk of CV events (85,86). The association 
between GFR and renal artery diameter was confirmed in 
patients with and without renal artery stenosis, and was 
age, sex, body surface area, diabetes, hypertension and 
smoking independent (85).

Stiffness mismatch in CKD

Physiologically, arterial stiffness is lower in the carotid 
and aorta, two central elastic arteries, than in peripheral 
muscular arteries in youth. However, central elastic arteries 
stiffness increases with aging whereas the stiffness of 
muscular arteries remains almost unchanged or increases 
to a lesser extent (87). The consequence of this differential 
effect of aging on muscular and elastic arteries is that the 
elastic/muscular arteries stiffness gradient is first equalized 
(elastic arteries stiffness = muscular arteries stiffness), and 
then reversed (elastic arteries stiffness > muscular arteries 
stiffness). This process is referred to as stiffness mismatch 
(88-90) and has important haemodynamic and clinical 
consequences since in youth the physiological stiffness 
gradient helps to reduce the transmission of the forward 
pressure wave into the microcirculation whereas with 
advancing age the increased carotid and aortic stiffness 
leads to the inversion of the stiffness gradient and causes 
an enhanced transmission of forward energy waves into the 
microcirculation. This may cause vascular damage (90), 
contributing to the pathogenesis of white matter lesions 
of the brain (91), renal dysfunction (92,93) and, at least in 
patients with ESKD, increased mortality (94).

In contrast to what happens in other models of increased 
arterial stiffness (Figure 1), in patients with ESKD carotid 
and aortic stiffening can be accompanied by the reduction in 
stiffness of muscular arteries (94). This mechanism is useful 
to dampen the backward wave reflections and to mitigate the 
effects of increased central elastic arteries stiffness on central 
blood pressure; this is potentially cardioprotective. Moreover, 
the reduced stiffness of muscular arteries could help to smooth 
the forward waves and prevent an enhanced transmission of 
these waves to the microcirculation of target organs.

Ventricular-vascular coupling in CK

Physiologically, left ventricular (LV) function is coupled 
with arterial function to ensure maximum cardiac work and 
efficiency (95). The coupling ratio between arterial elastance 
(Ea), a measure of ventricular afterload determined by the 
ratio of end-systolic pressure to stroke volume, and LV 
systolic elastance (Ees), a measure of ventricular stiffness at 
end systole determined by the ratio of end-systolic pressure 
to end-systolic volume (is generally 0.7–1.0). Therefore, 
LV work efficiency is physiologically maximised. Ees falls 
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in the presence of systolic dysfunction and increases in the 
presence of a stiff vascular system (increased Ea), to maintain 
cardiac efficiency (Ea/Ees =0.7–1.0) and to ensure a proper 
transfer of blood to the arterial tree without excessive 
changes in pressure. This compensatory mechanism is useful 
to maintain cardiac performance but leads to the reduction 
in cardiac reserve and diastolic function, haemodynamic 
instability and increased susceptibility to flash pulmonary 
oedema (95). In CKD, the increase of carotid and aortic 
stiffness leads to a parallel increase of LV stiffness (96). 
Therefore, considering that large elastic arteries stiffness 
is increased even in patients with a very mild reduction of 
GFR (60–90 mL/min/1.73 m2 without proteinuria) (69), the 
abnormalities of LV function could start early in patients 
with CKD. Further studies are needed to test this hypothesis 
in patients with a mild reduction of GFR.

Vascular phenotypes in other models of increased arterial 
stiffness

Carotid and aortic stiffness is  increased in CKD, 
hypertension and several diseases characterized by a chronic 
severe inflammation, such as inflammatory bowel disease 
(IBD) and rheumatoid arthritis (RA) (97,98). However, 
according to the different pathogenesis and clinical features, 
also the mechanisms involved in the arterial stiffening 
process and the arterial phenotypes may be different in 
these diseases (Figure 1). 

Arterial phenotype in hypertension

The acute increase of blood pressure leads to an increase 
of carotid diameter and, consequently, circumferential wall 
stress and arterial stiffening. In patients with hypertension, 
the chronic increase of carotid diameter and circumferential 
wall stress leads to an adaptive increase of the arterial 
wall thickness (63). The consequence of this process is 
an increased carotid stiffness and outward remodeling 
(increased arterial diameter and thickness). The impact of 
high-normal blood pressure and hypertension on stenosis 
were more evident in subjects with CKD (99). Moreover, 
the elastic modulus, a measure of the elastic properties of 
the biomaterial of the arterial wall, of the carotid artery is 
increased in patients with hypertension (63). Therefore, 
considering that the stiffness of muscular arteries can also 
be increased in these patients, the muscular/elastic artery 
stiffness gradient can be comparable between controls and 
patients with hypertension (100).

Arterial phenotype in patients with chronic severe 
inflammation

The arterial phenotype of patients with CKD differs from 
that of patients with chronic severe inflammation (i.e., IBD 
and RA). Elastic artery stiffness is increased in patients 
with either chronic severe inflammation or CKD compared 
with their respective controls (101,102). Interestingly, the 
stiffness of the brachial artery, a muscular artery, increases 
with aging in IBD but not in CKD (83) and is higher, (I) 
in IBD and RA patients than in matched healthy control 
subjects (83,101), and, (II) in IBD patients than in CKD 
patients with a comparable stiffness of the aorta (83).  
Moreover, the stiffness of both muscular and elastic arteries 
is positively correlated with disease duration in IBD 
(101,103). Considered together, these findings suggest that 
both elastic and muscular arteries stiffness could increase 
in patients with chronic severe inflammation; in support of 
this hypothesis, the vessel targets of inflammation (elastin, 
collagen and smooth muscle cells) can be found in both 
elastic and muscular arteries. Inversely, the increase of 
elastic arteries stiffness accompanied by the reduction of 
muscular arteries stiffness could be a feature of CKD.

From large elastic artery stiffening to CV events

Physiologically, the arterial system has 2 important 
functions, the conduit and “cushioning” functions. The 
former is involved in the delivery of blood from the heart 
to peripheral tissues whereas the latter is involved in the 
dampening of the pulse wave during systole, achieving a 
continuous flow in peripheral blood vessels. In this regard, 
approximately 50% of the stroke volume is momentarily 
stored within large elastic arteries thanks to the elastic 
deformation of the arterial wall during systole and returned 
to the circulation by the discharge of the energy stored in 
the arterial wall during diastole (104). In the presence of 
stiffened arteries, the cushioning function of the carotid 
artery and aorta is altered and a larger part of the stroke 
volume is directly forwarded to the peripheral tissues during 
systole, leading to a rise in central systolic blood pressure 
(SBP) and a drop in central diastolic blood pressure (DBP). 
The rise of central SBP leads to a parallel increase in 
LV work and oxygen requirement and is involved in the 
development of LVH, present in >70% of patients with 
ESKD and detectable even in patients with early stages of 
CKD (105,106); the drop of central DBP leads to decreased 
coronary artery perfusion pressure and is associated with an 
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increased risk of myocardial ischaemia; finally, the increase 
of central pulse pressure leads to an increased risk of stroke. 
In patients with ESKD and renal transplant recipients, the 
increase of carotid stiffness is associated with an increased 
risk in all-cause mortality and CV events (13,107).  

Increased carotid stiffness and baroreflex dysfunction

Baroreflex dysfunction is reported in advanced CKD and 
ESKD and is associated with an increased risk of sudden 
death and all-cause mortality in hypertensive patients 
with ESKD (108). Baroreceptors are located within the 
arterial wall in the carotid bulb and are stretch-sensitive 
mechanoreceptors. Therefore, considering that the increase 
of large elastic arteries stiffness is associated with the drop 
in orthostatic SBP in stage 3-4 CKD patients (109), the 
impaired baroreflex function reported in patients with 
increased carotid stiffness (110) could be caused by the 
reduced stimulation of the baroreceptors rather than an 
alteration of the neural component of the baroreflex arc (111).  
Further studies are needed to test whether the neural 
component of the baroreflex arc is altered in patients with 
early stages CKD, in whom an increased carotid stiffness is 
reported (69).

Treatment options

Several therapeutic options have been proposed to improve 
carotid function (19,112). Statin therapy is useful to reduce 
the risk of CV events and contrast-induced acute kidney 
injury in patients with carotid artery disease (113-115) 
and in those with CKD (116-118). Statin therapy is useful 
to reduce also all-cause mortality, CV death, myocardial 
infarction and proteinuria in patients with CKD whereas has 
uncertain effects on stroke and CKD progression (118,119). 
The use of statins may improve patient and graft survival 
after kidney transplantation (120). Moreover, in patients 
with severe carotid artery stenosis, statin pretreatment 
may decrease the periprocedural complications of carotid 
artery stenting (CAS) (113,121) and carotid endarterectomy  
(CEA) (113). These benefits can be explained by the lipid 
lowering effect as well as the antiproliferative effect on 
smooth muscle cells, the stabilisation of atherosclerotic 
plaques, improvement of endothelial function and arterial 
stiffness, decreased oxidative stress and antithrombotic 
effect of statins (112). Interestingly, the effect of statins 
on cIMT could be reduced in patients with CKD (122), 
confirming that several mechanisms are involved in the 

thickening process of the carotid artery in these patients. 
CEA and CAS are options for the management of 

severe carotid artery stenosis. In these patients, renal 
function should be evaluated with GFR rather than serum 
creatinine since the former measure was more sensitive in 
detecting perioperative stroke/death after CEA in patients 
with CKD (123). Moreover, CEA has shown promising 
results for stroke risk reduction in CKD patients with 
high-grade symptomatic carotid stenosis (124). In a 
National Inpatient Sample surveyed for CAS and CEA 
among CKD stage 3–5 and ESKD patients, although 
CAS was independently associated with in-hospital 
major adverse CV and cerebrovascular events (MACCE), 
propensity score matching showed no risk difference in 
MACCE between CAS and CEA (125). After intervention 
for carotid artery stenosis, stroke rate is low in patients 
with moderate-severe CKD whereas mortality increases 
with worsening renal function at 30-day (126); severe CKD 
is associated with cerebrovascular events or death at 1 and 
5 years of follow-up (126,127). Carotid revascularization 
in ESKD has been recently questioned since both CAS 
and CEA were associated with 4-fold higher odds of in-
hospital mortality (128). Moreover, considering that 
CAS requires the administration of contrast media, 
the risk of contrast-induced acute kidney injury should 
be considered (115) and CAS performed in selected 
symptomatic high-risk patients if CEA is not suitable (124).  
CAS in asymptomatic  pat ients  with severe renal 
dysfunction should be considered with caution since the 
risks of repair may outweigh the benefits in these patients 
(129,130). Further treatments tested to improve carotid 
function include antihypertensive, anti-inflammatory 
and immunosuppressive drugs, renal transplantation and 
dialysis modalities (19). However, more large-scale and 
randomized trials are needed to confirm the efficacy of 
these treatment options in the reduction of CV events 
or delay of the progression of CKD. In this regard, only 
one trial, performed in 150 ESKD patients monitored 
for 51±38 months, has demonstrated that the CV risk is 
reduced in those with improved arterial stiffness (21).

Conclusions

Carotid arteriosclerosis and atherosclerosis are reported in 
patients with CKD and are associated with poor outcome. 
The stiffening process of the carotid artery starts early, in 
patients with a mild reduction in GFR, whereas an outward 
remodeling is evident in more advanced stages of CKD. In 
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muscular elastic arteries, a reduced stiffness is reported in 
patients with advanced CKD and an inward remodeling is 
evident during early stages of CKD. An increase in cIMT 
and plaque formation is evident in patients with advanced 
CKD. Contrast-induced acute kidney injury and kidney 
function, in general, deserve more attention from vascular 
surgeons. 
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