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Abstract

Fused deposition modeling (FDM) 3D printers, the most popular choice among home hobbyists, 

have been shown to release volatile organic chemicals (VOCs) and billions of airborne particles 

per minute, indicating the potential for consumer inhalation exposure and consequent health risks. 

Publications on FDM 3D printer emissions however, contain large heterogeneity of testing 

methods and analytical procedures making it difficult to reach overall conclusions for particle 

characteristics or particle number emission rates across the field. In this publication, data were 

collected over the printing time from 3D printer emission studies including particle count 

diameters (PCDs) (nanometers), particle number concentrations (PNCs) (particles/cm3), and 

particle number emission rates (PNERs) (particles min−1). Despite heterogeneity in methods, the 

majority of particles released were reported as ultrafine in size (i.e., <100 nm) indicating that using 

both acrylonitrile butadiene styrene (ABS) and poly-lactic acid (PLA) may present a risk of 

exposure to respirable particles. Mean PNC emitted in 3D printing tests ranged over several orders 

of magnitude across publications with overall means of 300,980 particles/cm3 for ABS and 65,482 

particles/cm3 for PLA. Although mean PNC data were available from only 7 of the 16 papers 

reviewed, ABS resulted in greater particle numbers than PLA suggesting increased exposure to 

ultrafine particles. A linear mixed model was fitted for mean PNCs to further explore the impact of 

nozzle temperature and filament material. Finally, the PNER calculation method especially 

regarding losses, varied widely across studies, and directly impacted the PNERs reported. To 

strengthen direct comparability of results going forward, it is recommended that standard 

emissions testing protocols be developed for FDM 3D printers and particle influxes and losses be 

more uniformly calculated.
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1. Introduction

3D printers are gaining popularity around the world for at-home and office use. Between 

2016 and 2018, it is estimated that 528,952 desktop 3D printers priced at under $5000 were 

sold worldwide (McCue, 2018). In particular, Fused Deposition Modeling (FDM) printers 

have become the most popular choice for home hobbyists (de Leon et al., 2016). A 2017 

industry report on the state of 3D printing showed that 85% of over 1000 survey respondents 

who owned a 3D printer used a FDM 3D printer (Coré-Baillais et al., 2017). These printers 

are popular because of their low cost, low weight of filaments, processing flexibility and 

ease of use (de Leon et al., 2016).

The most popular filament materials used in FDM 3D printers are poly-lactic acid (PLA) 

and acrylonitrile butadiene styrene (ABS). PLA is derived from renewable sources like corn 

and is advertised for its ability to reduce greenhouse gases during use and manufacturing. 

PLA is also popular because of its mechanical properties, biodegradability and low cost 

(Raquez et al., 2013). ABS is a petrochemical derived copolymer created by the 

copolymerization of monomers acrylonitrile, 1,3-butadiene and styrene. It is widely used in 

industry because of its superior chemical resistance, mechanical properties and ease of 

processing (Jyoti et al., 2015).

The FDM 3D printing process uses thermoplastic filaments that are extruded through a high 

temperature nozzle at around 200 °C. This partially melts the filaments to form a 3D shape 

one layer at a time (Yi et al., 2016). The 3D printing process releases particles, which are 

mostly ultrafine (<100 nm. in diameter), and volatile organic chemicals (VOCs) from the 

melting thermoplastic filaments. Ultrafine particles are released at rates of billions of 

particles per minute during operation (Stefaniak et al., 2017; Stephens et al., 2013). Across 

the literature, it is generally concluded that ABS filament produces higher particle number 

emission rates than PLA (Azimi et al., 2016; Stefaniak et al., 2017). Stefaniak et al. (2017) 

found that ABS released thirteen detectable VOCs while PLA released nine detectable 

VOCs with four common between the two filaments. Other studies have found varying 

compositions of VOCs released (Azimi et al., 2016; Floyd et al., 2017; Vance et al., 2017).

The particles and VOCs released during 3D printing have the potential to be inhaled by 3D 

printer users. Inhaled ultrafine particles have been linked to a variety of health effects 

including increased oxidative stress, inflammation, cardiovascular effects and cytotoxicity 

(Madl and Pinkerton, 2009; Stefaniak et al., 2017). Because of their small size, ultrafine 
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particles penetrate deeper into the respiratory system than larger particles and may be harder 

to clear from the body (Bierkandt et al., 2018). In addition, VOCs may contribute to the 

development of asthma, allergies, obstructive pulmonary disease and lung cancer with 1,3-

butadiene classified as carcinogenic to humans (Gałęzowska et al., 2016; IRIS, 2002; Lee et 

al., 2006). These VOCs may adsorb to the surface of particles and travel with them through 

the respiratory tract(Roberts et al., 2018).

The severity of health effects caused by the inhalation of ultrafine particles has been linked 

to the physical properties of particles, including their size, and the number of particles an 

individual is exposed to over time (Madl and Pinkerton, 2009). Thus, the count of particles 

emitted per minute in particles per cubic centimeter (particle number emission rates or 

PNERs), and the sizes of particles based on their individual particle diameter in nanometers 

(particle count diameters or PCDs) emitted by a 3D printer, are important parameters to 

assess exposure potential. However, PNERs are affected by the assumptions used to create 

the mass balances that serve as the basis of PNER calculations (Zhang et al., 2017). 

Consequently, variations in these assumptions and how they affect the calculated PNER 

values across these studies should be evaluated (Azimi et al., 2016; Vance et al., 2017; Yi et 

al., 2016). Particle number concentrations (PNCs) over the printing time in particles per 

cubic centimeter are direct measurements of particle counts per unit volume and do not 

depend on the assumptions of potential particle losses in a system. As the PNC value 

increases, it can, like PNER, indicate a greater potential for inhalation of particles. 

Additional considerations such as room size, air exchange rates, printer enclosures, etc., will 

also likely have a significant impact on particle and VOC exposure.

Measurements of PCDs, PNCs and PNERs during printing of PLA and ABS filaments are 

reported across the 3D printing literature under many different conditions. Nozzle 

temperatures used in 3D printer studies range from 180 °C to 280 °C (Deng et al., 2016). 

Test chamber sizes range from a 0.085 m3 chamber to a 776.9 m3 room (Steinle, 2016; 

Vance et al., 2017). There are also large variations in the range of particle sizes sampled, test 

chamber characteristics, air flow rates and, significantly, assumptions of particle influxes 

and losses during the experiment that are used to calculate PNERs. Influx of non-printer 

generated particles into the test chambers through air inflow systems has not been uniformly 

considered across studies (Azimi et al., 2016; Stefaniak et al., 2017). Particles can also be 

lost through unaccounted leakages, outflow, settling, adhering to chamber walls and 

agglomeration, which were considered together or separately depending on the study (Floyd 

et al., 2017; Kim et al., 2015; Vance et al., 2017). In some studies, a particle loss coefficient 

was calculated based on the natural exponential decay of particles after printing was stopped 

to quantify losses (Floyd et al., 2017; Vance et al., 2017; Zhang et al., 2017).

Despite the publication of at least 16 studies in the scientific literature looking at 3D printer 

emissions, the emissions of these printers across the literature have not yet been evaluated in 

a systematic way. The variability in testing and reporting makes it difficult to synthesize 

information about FDM 3D printers (Pelley, 2018). Based on the studies available, it is not 

clear if choosing ABS or PLA will result in different PCDs or PNCs across a wide variety of 

testing environments or if the PNER calculation methods influence PNERs significantly. 

This publication is an attempt to synthesize information from the peer-reviewed literature 
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about particles emitted from 3D printers using ABS and PLA filaments. PCDs, PNCs, and 

PNERS were compared using descriptive statistics. In addition, a meta-analysis was 

conducted on mean PNCs to understand the significance of nozzle temperature and filament 

type. Comparison of mean PCDs suggested that there was not a biologically significant 

difference between filament types, and therefore a meta-analysis was not pursued for PCDs. 

PNER calculations were explored in detail to understand the impact of particle loss 

assumptions on final results. Accordingly, the specific objectives were to (1) compare and 

contrast ABS and PLA particle emissionsfrom select studies with an emphasis on 

differences of PCDs and PNCs and (2) compare and contrast PNER calculations used in 

several studies.

2. Methods

2.1. Collection and comparison of data across publications using scatterplots

Data were systematically collected following guidance from the PRISMA statement (Moher 

et al., 2009). Literature was first collected by the authors and the EPA Research Triangle 

Park library staff. Search terms included, “3D printers”, “nozzle”, “Fused Deposition 

Modeling”, “emissions”, “FDM”, “filaments”, “ABS”, and “PLA”. Databases including 

Web of Science, Science Direct and Google Scholar were used to collect literature. In 

addition, a general Google search was done. Through our search, approximately one 

thousand titles of peer-reviewed publications were viewed (Fig. 1).

Of these one thousand titles, approximately fifty publications were downloaded and 

reviewed in detail. All other studies were excluded at this stage because they contained titles 

and/or abstracts that did not indicate they would contain relevant particle emission 

characteristic data related to 3D printer use. Of the approximately fifty publications 

reviewed in detail, sixteen were ultimately selected. These sixteen studies met the following 

criteria: (1) the study collected and analyzed emissions from an operating FDM 3D printer 

using PLA or ABS filament; (2) the study provided data on size, concentration and/or 

emission rates of emitted particles and (3) the study was peer-reviewed. All other studies, 

approximately thirty-four, were related to 3D printing but did not contain relevant emission 

data from 3D printer tests. Seven studies out of the final sixteen selected were used in our 

meta-analysismodel of mean PNCs. They: (1) directly reported mean particle number 

concentrations for PLA and ABS polymer filaments or this value could be calculated from 

available data and (2) these studies had three or more observations for both ABS and PLA.

Data were collected by manual extraction into Excel (Microsoft Corp., USA) spreadsheets. 

The six dependent summary statistics considered for this study included mean PCDs, mode 

PCDs, mean PNCs, peak PNCs, mean PNERs and peak PNERs (see Table S1a in the 

Supplemental section for frequency). WebPlotDigitizer was used to extract some values 

from figures when numerical data were not available in text (Table S1a and Fig. S2 in the 

Supplemental section) (Rohatgi, 2018). Mean and peak PNCs were also calculated from the 

raw data of one author to have the correct values for published runs (Table S1a in the 

Supplemental section).
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Independent variables that were initially considered included filament type, color, nozzle 

temperature, bed temperature, test environment volume, test environment characteristics, air 

changes per hour, printer model, number of printers operating, and range of PCDs measured. 

Nozzle temperature and filament type were chosen to be directly compared against the six 

dependent summary statistics in scatterplots. Nozzle temperature was chosen as the 

parameter to plot these data against as it was the most commonly reported printing 

parameter and has been reported to influence emissions from a 3D printer, especially at mid-

range bed temperatures (Azimi et al., 2016; Mendes et al., 2017). In addition, it is central to 

the melt extrusion process and reasonably should affect particle emissions (Turner et al., 

2014). Filament type influenced PNC and PNER values across several 3D printer emission 

studies (Azimi et al., 2016; Kwon et al., 2017; Mendes et al., 2017). These scatterplots were 

created using R and their distributions were assessed in box plots created using SAS 

SGPANEL (Fig. S5 in the Supplemental section).

Mean PCDs were further compared quantitatively using descriptive statistics. ABS and PLA 

may breakdown into their monomer components during printing either as VOCs or ultrafine 

particles (Vance et al., 2017). It was not clear from the available literature whether or not 

there was a significant difference in the sizes of emitted particles between ABS and PLA. 

We evaluated mean PCD instead of modes or medians because mean values were reported 

more frequently and could capture data from a larger number of studies. In addition, for 

most cases, the PCD size distribution was not heavily skewed in either direction, indicating 

that mean could be used as a measure of central tendency (Mendes et al., 2017; Vance et al., 

2017; Yi et al., 2016; Zhang et al., 2017). Finally, means were heavily correlated with modes 

and medians, so we decided to use only one statistic.

2.2. Development of a linear mixed model to perform a meta-analysis

Several publications have reported that ABS resulted in higher concentrations of particle 

emissions than PLA (Stefaniak et al., 2017). However, it is not known whether this 

relationship holds when considering many different print conditions. We wanted to 

understand if using ABS resulted in larger particle number emissions than PLA when 

considered across select studies. We chose to look at mean PNC, rather than peak PNC, 

because means were reported more frequently and peak PNC may not be representative of 

the entire print duration. Peak PNC could, for example, be affected by printer 

malfunctioning or sudden changes in testing environment.

Mean PNC values were subjected to meta-analysis to test differences of ABS and PLA 

across the studies using a linear mixed model fitted in the SAS MIXED procedure (SAS 

Institute Inc., 2015). Specifically, log-transformed mean PNC data were modeled using 

restricted maximum likelihood (REML) to assess the fixed effects of filament (ABS versus 

PLA) and nozzle temperature within filament and the random effect of study. The 

logarithmic transformation was used to stabilize variance, as indicated by graphical 

assessment and Shapiro-Wilks tests of normality for model residuals. As mentioned in 

Section 2.1, studies with data for both filament types and with 3 or more data observations 

(total) were included in the model; remaining studies of the 16 papers reviewed were 

omitted since their study-specific mean filament differences could not be estimated. 

Byrley et al. Page 5

Sci Total Environ. Author manuscript; available in PMC 2021 August 09.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Frequency counts, means, standard deviations, and confidence interval endpoints by filament 

type and study were calculated for 3D printer test data observations used in the model (Table 

S3 in the Supplemental section). Model code is given in the supplementary information (Fig. 

S4 in the Supplemental section).

The linear mixed model estimated the variability in the mean PNC dependent variable 

through random effects for the between-studies variability and repeated measures for the 

within-study variability (Dempster et al., 1984; Riley et al., 2010; Sutton and Higgins, 

2008). The random effect for between-studies variability was used to capture, for example, 

the effect of studies using different testing environments and methods. Repeated measures 

estimated the within-study variability of 3D printer observations for study-level clusters 

using (default) compound symmetry covariance structure grouped by study. The Kenward-

Roger method was used to calculate the denominator degrees of freedom; it is protective 

against Type I error and corrects test statistics and standard errors for bias (Guerin and 

Stroup, 2000; Kenward and Roger, 1997).

2.3. Particle number emission rate calculations analysis

In addition to peak and mean PNERs compared in scatterplots, PNER calculations were 

compared across five different publications. This was done to determine the effect of using 

five different PNER calculation methods on one set of PNC data. The PNER equations used 

in these publications were selected because they (1) relied on methods that calculated PNER 

at each time step and were not just a summary PNER for the entire run; (2) were unique in 

their assumptions about particle influxes and losses or equation construction as compared to 

other methods; (3) were all based on a dynamic mass balance; and (4) provided sufficient 

methodological detail for analysis, either through the publication and/or correspondence 

with the author. Three authors were then asked for PNC data for use in the five different 

PNER calculations to derive numerical outputs of PNERs, like those presented across the 

literature.

The PNER equations used in the five different publications are displayed (Table 1). Each 

equation is kept in its original notation. Key assumptions for each equation are shown on the 

right (see Section S7 in the Supplemental section for definitions of loss terms). Eq. (5) was 

taken from a paper by Zhang et al. (2017) and is the same equation published by in “RAL-

UZ 171” (Barthel et al., 2013; Zhang et al., 2017). Three raw datasets of PNCs were kindly 

provided by three authors, Stefaniak et al. (2017), Zhang et al. (2017) and Azimi et al. 

(2016) (S8 in the Supplemental section). Each one of these datasets was used as PNC data 

for the five different PNER equations (Table 1).

Throughout the literature, numerical methods based on the mass balance of particles have 

been used to calculate PNERs. Each of these methods were similar in that they were derived 

from a dynamic mass balance by treating the test environments as a continuously stirred tank 

reactor with the printer as the sole emitter of particles (S9 in the Supplemental section) 

(Zhang et al., 2017). The first term in every method relied on the difference in PNCs 

between two time steps. Despite the common basis for the derivation of PNER equations 

(Table 1), different assumptions were made about terms for loss of particles in the systems 

(S7 in the Supplemental section). In the publication containing Eq. (1), it was stated that 
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when compared to Eq. (5), they found that their loss coefficient was on the order of 10−4 s
−1and was deemed negligible. Thus, they dropped any other loss terms from their analysis 

(Stefaniak et al., 2017).

Eq. (2) incorporated particles going into the chamber, losses within the chamber, and 

particles leaving the chamber through flow going out (Azimi et al., 2016). A decay loss 

term, LUFP, was determined based on the exponential decay of PNC when the printer was 

turned off. This was then paired with the background PNCs to describe particles flowing into 

the chamber. It was also paired with particles leaving the chamber to describe losses from 

settling and particles lost by flowing out of the chamber (Azimi et al., 2016).

Eq. (3) described losses from the chamber outflow by pairing flow, Q, through the chamber 

with the particle number concentrations in the chamber at time tn−1, C(tn−1). A decay loss 

term, β, was created similarly to Eq. (2) by taking the linear regression of the decay of 

particles after the printer was turned off. However, in this case, β was calculated when flow 

was turned off so that it only represented wall losses of particles and was calculated for each 

PCD bin. This was then paired with a volume term and PNC term within the chamber at 

some time tn-1. Air flowing into the chamber was filtered through a high efficiency 

particulate air filter so that only particles generated by the printer were considered (Vance et 

al., 2017).

Eqs. (4) and (5), despite the different nomenclature, are essentially the same. They were both 

based on Eq. (4) (Barthel et al., 2013). The only difference was that Eq. (5) in Table 1 was 

derived using a Taylor series approximation (S10 in the Supplemental section). KL was 

calculated using linear regression similarly to the method used in Eq. (2) to calculate the 

Lufp value. The beta value in Eq. (5) was calculated the same way except it had the opposite 

sign and was thus used in the PNER equation with an opposite sign making it equivalent to 

KL (Floyd et al., 2017). Across the selected literature there was no standard equation for 

measuring PNERs. Though these five equations are all based on a dynamic mass balance 

they make different assumptions about particle influxes and losses (Zhang et al., 2017).

3. Results

3.1. Data collection and study characteristics

Sixteen studies fit our inclusion criteria. Test environment volume, test environment 

description, printer model, filament, size range of particles measured, and instruments used 

to measure particle count and/or size were recorded (Table 2). Each publication used 

different instruments or procedures for counting and sizing particles, resulting in different 

ranges of particle count diameters measured. The ranges used for particle sizing versus 

particle counting are not differentiated in this table. Descriptive statistics for mean PNC and 

mean PCD were calculated (Table 3). Rao et al. (2017) reported values in terms of mass, 

rather than particle count, and was not included in Table 3 (Table S1a in the Supplemental 

section) (Rao et al., 2017).
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3.2. Particle count diameter data

Mean PCDs were plotted against the nozzle temperature used for that study (Fig. 2left). 

Mode PCDs were plotted against the nozzle temperature used for that study (Fig. 2 right). 

Descriptive statistics for mean PCDs were calculated (Table 3). Mean PCD values revealed a 

difference of 8.1 nm between ABS and PLA for the seven studies that reported them.

Mean PCDs were compared to the PCD range measured for each study (Table 4). Each set 

of data represents an individual run from that publication. Mendes et al. (2017) and Zhang et 

al. (2017) reported numerous runs and mean PCDs in their studies (Mendes et al., 2017; 

Zhang et al., 2017). Mode PCDs were compared for each publication and the corresponding 

measured PCD size range for that study (Table S1b in the Supplemental section). Mode 

PCDs are reported simply for further exploration as some studies reported modes and not 

means. It was determined that regardless of the PCD range measured, the majority of PCD 

means and modes were found to be in the ultrafine size range (i.e. <100 nm).

3.3. Particle number concentration data and meta-analysis

Mean PNCs were plotted against the nozzle temperature (Fig. 3 left). Peak PNCs were 

plotted against the nozzle temperature (Fig. 3 right). Meta-analysis of the published 

individual mean PNCs tests the difference of ABS and PLA filaments and is based on the 

seven publications with 3 or more observations (Azimi et al., 2016; Deng et al., 2016; Kim 

et al., 2015; Kwon et al., 2017; Mendes et al., 2017; Yi et al., 2016; Zontek et al., 2017). 

Mean PNCs for Yi et al. (2016) were calculated from PNC data provided by the author 

(Table S1a in the Supplemental section). Descriptive statistics for these publications were 

calculated with overall means of 300,980 particles/cm3 for ABS and 65,482 particles/cm3 

for PLA, yielding 235,498 particles/cm3 as the overall difference of means (Table S3 in the 

Supplemental section). After adjusting for nozzle temperature within filament (F 31.49 p < 

0.0001), the linear mixed model for log-transformed mean PNCs is suggestive of an 

association with the fixed effect of filament at α = 0.05 (F 3.14, p0.0802) and a difference of 

ABS and PLA least squares means (t 2.08, p 0.0538). Forest plots were created of the mean 

PNC data used in the model for the ABS and PLA filaments (Fig. 4) and diagnostics of 

model residuals were performed (Fig. S6 in the Supplemental section). SAS code 

corresponding to Fig. 4 is included in this publication as well (S4 in the Supplemental 

section).

3.4. Particle number emission rates

Mean PNERs were plotted against the nozzle temperature used for that study (Fig. 5left). 

Peak PNERs were plotted against the nozzle temperature used for that study (Fig. 5 right). 

Three studies used summaries of PNERs across the entire print time to calculate mean 

PNERs instead of calculating values at each step in a time series (Kim et al., 2015; Kwon et 

al., 2017; Mendes et al., 2017). These were included in the comparison of mean PNERs to 

nozzle temperature (Fig. 5).

The results of the PNER equations when using PNC data from Stefaniak et al. (2017), Zhang 

et al. (2017) and Azimi et al. (2016) were plotted over the active print time (Fig. 6). The 
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calculated PNER for each time step is plotted on the y-axis. Mean and peak PNERs were 

calculated from each dataset of PNCs (Table 5).

4. Discussion

Sixteen papers were reviewed that tested FDM 3D printers emissions. From these papers, 

mean PCD, mode PCD, mean PNC, peak PNC, mean PNER and peak PNER were extracted. 

Despite heterogeneity in PCD ranges measured, almost all mean PCD and mode PCD values 

were considered ultrafine. Descriptive statistics for mean PCD revealed a difference of 8.1 

nm between ABS and PLA. A meta-analysis of PNC data after adjusting for nozzle 

temperature suggested an association with filament type. Lastly, PNER calculation method 

drastically influenced PNER values for the same PNC dataset.

4.1. Particle count diameter

There were a wide range of mean and mode PCDs reported in the studies analyzed. These 

data were compared for ABS and PLA in box plots (S5 in the Supplemental section). The 

observed difference in means of 8.1 nm (48.5 nm for ABS minus 40.4 nm for PLA) was 

statistically significant. However, both particle sizes are considered within the ultrafine 

range and would be approximately equivalent in their respiratory tract deposition and 

predicted to reach the tracheobronchial and alveolar/pulmonary regions of the human lower 

respiratory system (Table 3) (Miller et al., 2016). There was an extremely wide range of 

PCD size ranges tested across the studies (Table 4). Several studies used multiple devices to 

measure different ranges of PCDs and PNCs for the same test (Table 2) (Mendes et al., 

2017; Stefaniak et al., 2017; Yi et al., 2016; Zhang et al., 2017). However, despite the 

differences in PCD ranges measured and instruments used, most PCD means and modes 

were reported in the ultrafine size range. Although Zhou et al. (2015) reported a high mode 

of 265 nm, the instrument used had a lower limit of 250 nm (Table S1b in the Supplemental 

section).

For studies that reported distributions of PNCs by PCD bin size, data showed no heavy 

skewness or outliers outside of the ultrafine range (0–100 nm) (Mendes et al., 2017; Stabile 

et al., 2017; Steinle, 2016; Vance et al., 2017; Yi et al., 2016; Zhang et al., 2017; Zontek et 

al., 2017). Ultrafine particles have been shown to have unique health risks compared to 

larger particles including deep penetration into the lungs, higher retention than larger 

particles and the potential ability to translocate to a number of organ systems (Gate et al., 

2017; Valavanidis et al., 2008). These studies suggest that 3D printers may pose a unique 

health hazard under certain use conditions.

4.1.1. Particle count diameter analysis limitations—There are several limitations 

for the analysis for PCDs. One limitation, based on differences in instrumentation, is that the 

studies were not standardized for the range of PCDs measured, and the different ranges 

affect the comparability of the means. In addition, several studies reported PCD data that 

were created using several different PCD sizing instruments. These studies then combined 

data differently, affecting the way PCD means or modes were calculated (Floyd et al., 2017; 

Mendes et al., 2017; Zhang et al., 2017). A third limitation is the lack of reporting PCD 
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measurements, or reporting data in figures that could not be digitized using 

WebPlotDigitizer.

In our analysis, we also did not account for time sensitive changes in particle diameter nor 

did we account for particle mass, surface area or chemical composition. Zhang et al. (2017) 

and Vance et al. (2017) found that particle diameter increased farther into the print time. In 

addition, Zhang et al. (2017) found that while particle number was dominated by particles < 

100 nm in diameter, total particle mass and total surface area were dominated by particles > 

100 nm. Lastly, the mean PCD difference of 8.1 nm between ABS and PLA does not 

account for chemical compositions of emissions which may differentially affect overall 

health risks caused by particle inhalation.

4.2. Particle number concentration

A higher nozzle temperature typically results in higher PNCs (Fig. 3). This is also supported 

by box plots (Fig. S5 in the Supplemental section). These observations raise several 

questions. For example, are PNCs higher for ABS because of the material being inherently 

different than PLA, or because the nozzle temperature typically tends to be higher when 

using ABS? Several studies were available that used ABS and PLA at the same temperature, 

showing that ABS PNCs tend to be higher than PLA PNCs (Fig. 3). In contrast, Mendes et 

al. (2017) does show PLA PNCs to be higher than ABS PNCs at the same nozzle 

temperature. However, Mendes et al. (2017) acknowledged that printing PLA at 230 °C was 

higher than what is typically used which could lead to further decomposition (Mendes et al., 

2017). Steinle (2016), not included in Fig. 3, found PLA PNCs to be higher than for ABS. 

However, the study did not report a nozzle temperature.

As stated earlier, ABS was typically run at a higher nozzle temperature than PLA, and our 

linear mixed model for log-transformed mean PNCs included an adjustment for nozzle 

temperature within filament. The results of this model suggested that the increased mean 

PNCs when using ABS was correlated with nozzle temperature, less so for filament type 

after adjusting for nozzle temperature, and that the difference of ABS and PLA least squares 

means indicated that filament type had an effect that was on the threshold of significance.

4.2.1. Particle number concentration analysis limitations—The analysis of PNCs 

has several limitations. One limitation, as for the PCDs, is the lack of measurement data for 

mean PNCs across the selected literature, including data presented in figures that could not 

be quantified using WebPlotDigitizer. Another limitation may be due to bias present in the 

reported PNC data. 3D printers have nozzles that jam due to collection of filament material 

at the head. As the number of successful print runs increase, the chance of filament material 

collected at the nozzle increases. This collection of material at the nozzle head can lead to 

higher PNCs (Mendes et al., 2017). Most authors did not discuss the influence of filament 

accumulation on their results and no authors reported the number of previous runs 

performed. By not reporting concentrations that are recorded during misprints, authors could 

be biasing concentrations to be lower than seen for all runs (Mendes et al., 2017). Also, by 

not reporting the number of previous runs, authors could be biasing PNCs to be higher or 
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lower depending on the amount of filament material collected at the nozzle. Finally, the 

meta-analysis of mean PNC data was based on limited data from 7 papers.

4.3. Particle number emission rate analysis

The PNER values for ABS tended to be higher than PLA (Fig. 5). These values were taken 

directly from PNER means and peaks reported in each study. Given the discrepancies in 

PNER calculation methods across selected studies, it was found that PNER calculation 

methods would need to be investigated further.

To understand how the different assumptions in the five selected PNER calculation methods 

could affect their outcomes, these five methods were tested against three different sets of 

data from three different authors (Azimi et al., 2016; Stefaniak et al., 2017; Zhang et al., 

2017). These three systems were similar in terms of the size and composition of the test 

chambers. Particles emitted from the 3D printer may have different amounts of electrostatic 

attraction to chamber sidewall materials, so the comparison was limited to chambers 

constructed of the same material (McMurry and Rader, 2007). The first author, Stefaniak, 

used a 0.5 m3 stainless steel chamber with an air exchange rate (AER) of 3 h−1 (Stefaniak et 

al., 2017). The second author, Zhang, used a 1 m3 stainless steel chamber with an AER of 1 

h−1 (Zhang et al., 2017). The third author, Azimi, used a 3.6 m3 stainless steel chamber with 

an AER of 1 h−1(Azimi et al., 2016). All three sets of data used an ABS filament.

We ran PNC time series data produced by Stefaniak through the particle number emission 

equations (Stefaniak et al., 2017). Although the PNC values differed for each particle 

number emission equation, they were similar in terms of their summary statistics. The 

relative standard deviation (standard deviation divided by the mean) of the PNERs across the 

values was 41.14% while the relative standard deviation of the peak values was 0.11%, 

indicating that peak values were nearly identical. This indicated that while there was 

variability in individual values at each time step, the means were relatively close together.

The second set of data examined was from Zhang et al. (2017). The PNC data showed an 

overall downward trend. PNC datasets found in the literature may have a drop in PNC after 

reaching their maximum value at the beginning of the printing process (Azimi et al., 2016; 

Zhang et al., 2017). One explanation for this drop is that as the particles begin to form and 

aggregate, they provide a surface for VOC adsorption, lowering the overall number of 

particles measured (Zhang et al., 2017). As VOCs move away from the high temperature 

nozzle head, they may cool off and partition onto surfaces and larger particles more readily 

(Wei et al., 2018). This particular dataset represents a point in the 3D printing process where 

particles are still beginning to aggregate into larger ones with VOCs attaching to them 

(Zhang et al., 2017).

The mass balance numerical models used to compute PNERs at each time step were not 

viable (Table 5). Most of the values of each method, except for those of Eqs. (2) and (3), 

yielded negative values. This of course, is impossible in terms of a physical understanding 

and is explained in the next section. The relative standard deviation of the mean PNERs 

across the values was 148.21%, while the relative standard deviation of the peak values was 
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47.90%. These values are much larger than those from the previous run and show that 

magnitude of losses was larger for this set of PNC data.

Interestingly, it was also shown that Eqs. (4) and (5) differ more for the Zhang et al. (2017) 

dataset than other PNC time series. This may be related to the time interval between each 

data point. Zhang et al. (2017) used an interval of 2 min and 15 s, Azimi et al. (2016) used 

an interval of 1 min, and Stefaniak et al. (2017) used an interval of 1 s. Eq. (5) converted 

from Eq. (4) relies on the assumption that Δt is small. The larger that Δt becomes, the more 

the results of Eqs. (4) and (5) differ (S10 in the Supplemental section).

For the data from Azimi et al. (2016), we selected a PNC time series that followed both an 

up and down trend to act as a “middle” example between the data from Stefaniak et al. 

(2017) and Zhang et al. (2017). Again, values differed by orders of magnitude. The mean 

PNERs had a relative standard deviation of 126.94% while the relative standard deviation of 

the peak values was 38.36%. There were two “dips” in the overall curves that resulted in 

some negative values across the print time.

4.3.1. Negative emission rates and the variation in emission rates—3D printers 

are either off and not emitting particles or on and emitting particles. Negative PNERs 

indicate that there are losses in the system that are unaccounted for (L) and/or the influx of 

particles (QinCin) is overcounted in the PNER calculation (S9 in the Supplemental section). 

As the slope of the PNC data becomes more negative, this causes the time step term at the 

beginning of the equation to become more negative as well. This then drives the entire result 

of the equation at that time, t, to become negative. The lack of a loss term, L, of a large 

enough magnitude or the presence of an influx of particles term, QinCin, that was too large 

resulted in a negative PNER. This inability to accurately calculate losses and particle 

influxes resulted in differences among the five methods. Azimi et al. (2016) stated that the 

uncertainty of their time-varying UFP emission rate calculations was about 45%. For PNC 

datasets where there was a larger negative slope, there was a large amount of discrepancy 

between the mean PNERs and PNER time series curves over the print time among the five 

different methods.

It is important to note that in Stefaniak et al. (2017) the AER was reported as 3.0 h−1while 

the AERs reported in Zhang et al. (2017) and Azimi et al. (2016) were 1.0 h−1. For chamber 

studies of hard copy devices (printers), an AER above about 1.3 h−1causes outflow to 

dominate particles losses as compared to deposition on particle walls and coagulation 

(Barthel et al., 2013). In addition, VOCs reach steady-state particle/gas equilibriums more 

easily at smaller air exchange rates (Wei et al., 2018). Thus, it is reasonable to assume that 

the PNER equation used in Stefaniak et al. (2017) (Eq. (1)) can account for most of the 

particles in their system. However, Eq. (1) cannot account for all of the particles emitted in 

the studies by Zhang et al. (2017) or Azimi et al. (2016) where deposition and coagulation 

contribute more to a loss factor other than outflow, as indicated by the lower air exchange 

rate.

Pelley (2018) argued that there was a strong need for a standard testing procedure for 3D 

printers. Our evaluation of PNC data using different calculation methods supports the need 
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to use a standard PNER equation with a standard experimental setup. Zhang et al. (2017) 

suggests several experimental setup characteristics that should be followed including a two-

hour print time to allow concentrations to reach steady state. Currently, there are 

discrepancies in the methods across the literature that make PNER comparisons difficult. A 

standard and more precise accounting of influx and loss terms is needed when considering 

design setup and PNER analysis in future studies.

4.3.2. Particle number emission rate analysis limitations—Our results indicate 

that assumptions about particle influxes and losses can influence the resultant PNER means 

and peaks for the same PNC data. However, additional experimental factors such as the 

geometry of the chambers (which affects particle mixing), the position of particle counting 

devices, temperature, and humidity also differ across studies. Given this heterogeneity in 

experimental conditions, there is limited ability to understand how experiment 

characteristics can influence PNC data and subsequent PNER data.

4.4. The impact of VOCs on PCDs, PNCs and PNERs

Several authors found that ABS released different and greater amounts of VOCs than PLA 

when used in 3D printer studies (Kim et al., 2015; Stefaniak et al., 2017; Vance et al., 2017). 

Zhang et al. (2017) and Vance et al. (2017) found that over the printing time, VOCs may be 

condensing and creating larger particles later in the print cycle. VOCs adhering to walls and 

larger particles may also partition back into the gas phase when leaving through the chamber 

outflow, affecting PNC values. The increase in PNCs at higher nozzle temperatures may be 

in part to the desorption of VOCs at higher nozzle temperatures. In a thermal degradation 

study, it was found that ABS released greater amounts of VOCs than PLA (Wojtyla et al., 

2017). At higher temperatures, there was greater partitioning of VOCs into the gas phase, 

which could result in increased PNCs as they condense into particles (Wei et al., 2018). 

Operators of FDM 3D printers using filaments at higher nozzle temperatures may be 

exposed to larger amounts of VOCs. The use of ABS or PLA may also result in differing 

compositions of VOCs in the environment, which could lead to different health effects. The 

relative health risks of using PLA or ABS, however, is not fully understood (Vance et al., 

2017).

To lessen the effect of VOC absorption onto larger particles when calculating PNERs, 

negative PNERs are removed before calculating total aerosol emissions in Vance et al. 

(2017) and Azimi et al. (2016). Azimi et al. (2016) attempted to estimate individual 

emission rates for a variety of VOCs; however, the effect of VOC partitioning between 

phases on overall PNERs has not been quantified in these 3D printer studies. The effects of 

VOC partitioning between phases on reported PNCs is not considered in the dynamic mass 

balances throughout the 3D printing literature leading to incomplete mass balance models 

which, along with other unrecorded losses, can lead to negative PNERs.

Peak PNERs generally had closer values than mean PNERs but still had large deviations 

from each other. These peak PNERs seem to occur at the same time in each PNC dataset 

(Fig. 6). As suggested by Zhang et al. (2017) as PNC increases, more semi-volatile 

compounds will adhere to larger particle surfaces and reach equilibrium with the gas phase. 
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Thus, this extra loss may not yet be affecting peak PNERs early in the printing process as 

PNC increase and fits with our hypothesis that loss terms may be the overall factor 

determining differences in PNER values from the same PNC data.

4.5. Ultrafine particles emitted from laser printers as compared to 3D printers

PNERs across the selected literature were not found to be directly comparable because of 

differences in PNER calculation methods. However, currently available data can be used to 

draw broad conclusions when compared to other known particle emission sources. Several 

European countries have set emission standards for 2D office printers including the emission 

of volatile organic compounds (VOCs), formaldehyde, dust and ozone (Li et al., 2016). In 

addition, there have been many publications on the emissions of aerosols from traditional 2D 

printers such as laser printers. A recent 2017 study compared 110 different laser printer 

models in a simulated office setting and found PNERs to be between 3.39 × 108 particles 

min−1and 1.61 × 1012 particles min−1 (Scungio et al., 2017). Our collected data for 3D 

printers showed that mean PNERs varied between 107 particles min−1 and 2 × 1012 particles 

min−1. Although it was suggested that the ultrafine particle exposure for laser printer 

operation was relatively low compared to other typically encountered sources, it was further 

suggested that low ventilation, close proximity and constant operation could significantly 

increase the exposure to ultrafine particles (Scungio et al., 2017).

4.6. Reporting of printing parameters

During the operation of 3D printers, there are a number of factors in addition to nozzle 

temperature that may affect PCDs and PNCs. However, many of these printing parameters 

including print speed (or extruder speed), printer nozzle size, printed layer height, and in 

some cases, bedplate temperature were not reported in many of the studies examined. These 

values are typically set by the operator or are left as manufacturer defaults. It is usually 

assumed that nozzle temperature plays the largest role in particle number concentrations 

from 3D printers and, thus, nozzle temperature was commonly reported across the literature. 

However, nozzle temperature has not been proven to be the most important parameter to 

affect printer emissions and other parameters such as bed temperature may also influence 

emissions (Azimi et al., 2016). The lack of data for these printing parameters makes it 

impossible to determine how they influence emissions. With this report, we encourage future 

publications regarding 3D printer emissions to provide greater detail of printer parameters.

5. Conclusions

Our investigation into the characteristics of particles emitted from FDM 3D printers resulted 

in several findings. Presently, there is a large amount of heterogeneity in terms of reporting 

of parameters and methods used for measuring 3D printer emissions between studies. 

Despite this heterogeneity, the majority of particles released were ultrafine in size (i.e., <100 

nm) indicating that 3D printers using ABS and PLA may result in inhalation of ultrafine 

particles for 3D printer operators. Although the literature suggests that exposures to ultrafine 

particles may lead to deleterious health effects, the particle concentration that one may be 

exposed to during 3D printer operation depends on a number of factors such as room size, 

ventilation, printer enclosure, etc.

Byrley et al. Page 14

Sci Total Environ. Author manuscript; available in PMC 2021 August 09.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Mean PNCs emitted in 3D printing tests ranged over several orders of magnitude across 

publications with overall means of 300,980 particles/cm3 for ABS and 65,482 particles/cm3 

for PLA. The linear mixed model for mean PNCs suggests association with filament (p 
0.0802) and the difference (235,498 particles/cm3) in overall means to be substantive after 

adjusting for nozzle temperature. This indicates that use of ABS as a 3D printing filament 

may result in exposure to larger numbers of particles than when using PLA and that nozzle 

temperature does affect the number of particles emitted in these studies.

PNERs were generally higher when using ABS than PLA filaments. However, because 

PNERs were calculated across studies using different methods, further investigation is 

needed for methods used to report these values. The calculation of particle influxes and 

losses varied widely across studies and directly impacted the PNERs reported. Using PNC 

data requested from three authors, we report that using different published calculation 

methods for PNERs on each set of PNC data resulted in values for PNER that in some cases 

were orders of magnitude different. To strengthen direct comparability of results going 

forward, it is recommended that standard emissions testing protocols be developed for FDM 

3D printers and particle influxes and losses be more carefully considered including the 

partitioningof VOCs between the gas phase and adhering to surfaces. Finally, it was shown 

that 3D printer PNERs are comparable to those released by 2D laser printers across a wide 

variety of conditions despite heterogeneity in particle sizes and methods and that reporting 

of more 3D printing parameters is encouraged for future studies to understand their impacts 

on emissions.
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Fig. 1. 
Identification, used a key word search (3D printers, nozzle, Fused Deposition Modeling, 

emissions, FDM, filaments, ABS and PLA). Screening criteria involved an indication of the 

measurement of particulate emissions during printer operation. Eligibility criteria for studies 

included in the overall analysis were: (1) the study collected and analyzed emissions from an 

operating FDM printer using ABS or PLA filament; (2) the study provided data on size, 

concentration and/or emission rates of emitted particles and (3) the study was peer-reviewed. 

Studies included in the meta-analysiseither directly reported mean particle number 

concentrations for PLA and ABS polymer filaments or this value could be calculated from 

available data. In addition, these studies had three or more observations for both ABS and 

PLA.
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Fig. 2. 
The relationship of particle count diameter to nozzle temperature across selected studies. 

(Left) Contains mean particle count diameters from authors that reported these. (Right) 

Contains mode particle count diameter from authors that reported these. Each symbol 

represents a different author that an individual run was taken from.
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Fig. 3. 
The relationship of mean particle number concentration to nozzle temperature across 

selected studies. (Left) Contains mean particle number concentrations from authors that 

reported them. (Right) Contains peak particle number concentrations from authors that 

reported them. Each symbol represents a different author that an individual run was taken 

from.
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Fig. 4. 
Forest plot of mean particle number concentrations and their 95% confidence intervals left-

truncated at zero. (Left) Includes mean particle number concentrations for ABS filament. 

(Right) Includes mean particle number concentrations for PLA filament.
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Fig. 5. 
The relationship of particle number emission rate to nozzle temperature across selected 

studies. (Left) Contains mean particle number emission rates from authors that reported 

them. (Right) Contains peak particle number emission rates from authors that reported them. 

Each symbol represents a different author that an individual run was taken from.
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Fig. 6. 
The relationship between the effect of different particle number emission rate calculations 

on three different recorded concentrations across 3D printer studies. (Upper left) The results 

of particle number emission rate calculations using raw data from Stefaniak et al. (2017). 

(Upper right) The results of particle number emission rate calculations using raw data from 

Zhang et al. (2017). (Bottom left) The results of emission rate calculations using raw data 

from Azimi et al. (2016). Each symbol and color represents a different calculation method 

found in Table 4. (Bottom right) A table that summarizes mean and peak values across the 

previous 3 figures.
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Table 1

Particle number emission rate equations.

Emission Rate Equation Loss Assumptions Study

PER t
= V

Δt
C t

+ Δt
− C t
+ R
∗ C
mean

∗ Δt

(1)

Particles lost in chamber are negligible; particles 
flowing into chamber are negligible; particles lost 

through outflow are significant

(Stefaniak, LeBouf, 
Yi. et al., 2017)

EUFP
tn + 1
= V

∗

(
CUFP, in tn + 1 − CUFP, in tn

Δt

− LUFPCUFP, bg

+ LUFPCUFP, in

tn

)

(2)

Particles lost in chamber and outflow are 
significant; particles flowing into chamber are 

significant

(Azimi et al., 2016)

E tn
=

V C tn − C tn − 1
tn − tn − 1

+ βV
C
tn − 1
+ QC
tn − 1

(3)

Particles lost in chamber are significant; particles 
lost through outflow are calculated separately and 

significant; particles flowing into chamber are 
negligible

(Vance et al., 2017)

Ep − Δt
= V
∗

(
Ct + 1 − Ct

Δt
+ KLCt

)

(4)

Particles lost in chamber and outflow are 
significant; particles flowing into chamber are 

negligible

(Floyd et al., 2017)

E t
= V

∗

(
C t − C t−Δt ∗ e−βΔt

Δt ∗ e−βΔt

)

(5)

Particles lost in chamber are significant; particles 
flowing into chamber are negligible

(Barthel et al., 2013)
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Table 2

Study characteristics.

Study Test 
environment 
volume (m3)

Test 
environment 
description

Printer model Filament Size range of 
particles 

measured (nm)

Instruments used to 
measure particle number 

and/or count diameter

Stephens et al., 
2013

45.0 Office space Not given ABS/PLA 10–420 TSI NanoScan SMPS 
3910

Kim et al., 2015 1.0 Acrylic chamber Cube 3D ABS/PLA 10–420, 20–1000 TSI NanoScan SMPS 
3910, TSI P-Trak CPC 

85251.0 Acrylic chamber 3DISON Plus PLA 10–420, 20–1000

Zhou et al., 
2015

60.0 Clean room Flashforge 
Creator

ABS 250–320 Grimm 1.109

Azimi et al., 
2016

3.6 Stainless steel 
chamber

Flashforge 
Creator

ABS/PLA 10–1000 TSI CPC 3007, TSI 
NanoScan SMPS 3910

3.6 Stainless steel 
chamber

Dremel 3D idea 
builder

PLA 10–1000

3.6 Stainless steel 
chamber

xyzprinting da 
Vinci 1.0

ABS 10–1000

3.6 Stainless steel 
chamber

Lulzbot Mini ABS/PLA 10–1000

3.6 Stainless steel 
chamber

Makerbot 
Replicator 2X

ABS 10–1000

Deng et al., 
2016

8.0 Clean room Flashforge 
Creator

ABS/PLA 2.5–3000 TSI CPC 3776

Stabile et al., 
2017

40.0 Room, closed 
door

RepRap Prusa i3 PLA 6–220, 4–3000 TSI SMPS 3936, TSI CPC 
3775

Steinle, 2016 0.1 Acrylic glass 
chamber

Cube 2nd 
generation

ABS/PLA 7–400, 180–
20,000

Electrical Diffusion 
Battery, DiSCmini, Promo 

mobile ASM

Yi et al., 2016 0.5 Stainless steel 
chamber

Makerbot 
Replicator 2X

ABS/PLA 20–1000, 300–
20,000, 24–9380, 

14.6–660, 10–
360

TSI P-Trak 8525, Grimm 
1.108, ELPI Classic, TSI 

SMPS 3910, TSI 
NanoScan SMPS 3910

Zontek et al., 
2017

600.0 Laboratory Makerbot 
Replicator 2X

PLA 10–1000, 2–300, 
300–10,000

TSI CPC 3007, TSI SMPS 
3080 with TSI nano DMA 
3085 or TSI DMA 3081, 

TSI OPS147.0 Storage room xyzprinting da 
Vinci 1.03D

ABS 10–1000, 2–300, 
300–10,000

Floyd et al., 
2017

0.0 Transparent glass 
box

RepRap Prusa i3 ABS/PLA 16.8–532.8, 500–
20,000

TSI SMPS 3936, TSI APS 
3314

Kwon et al., 
2017

2.5 Chamber 3DISON Multi 2 ABS/PLA 10–420, 300–
10,000

TSI NanoScan 3910, TSI 
OPS 3330

Mendes et al., 
2017

0.2 Chamber miniFactory Oy-
model 3

ABS/PLA 1–3, 2.02–
63.8/4.45–140.7, 

5.5–350, 10–
1000, 10–700

PSM A11 nCNC, TSI 
3080N classifier with TSI 

UCPC 3776, Grimm 
SMPS+C series 5.400, TSI 

CPC 3007, DiSCmini
81.0 Room, stainless 

steel and glass 
walls

miniFactory Oy-
model 3

ABS/PLA 1–3, 2.02–
63.8/4.45–140.7, 

5.5–350, 10–
1000, 10–700

Rao et al., 2017 0.1 Chamber Up Plus2 ABS <25,000 Hanwang Co. haze 
detector

Stefaniak et al., 
2017

0.5 Stainless steel 
chamber

Makerbot 
Replicator 2X

ABS/PLA 14.6–660, 650–
20,000, 24–9380

TSI SMPS 3910, Grimm 
OPS 1.108, ELPI Classic
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Study Test 
environment 
volume (m3)

Test 
environment 
description

Printer model Filament Size range of 
particles 

measured (nm)

Instruments used to 
measure particle number 

and/or count diameter

Vance et al., 
2017

0.5 Polyethylene 
chamber

H480 Afinia 3D ABS/PLA 14.6–680 TSI SMPS 3936NL

777.0 Office space Makerbot 
Replicator 2X

ABS 14.6–680

36.2 Office space H480 Afinia 3D ABS 14.6–680

140.5 Laboratory Makerbot 
Replicator 2X

ABS 14.6–680

57.9 Laboratory Cubify Cube ABS 14.6–680

286.0 Classroom Makerbot 
Replicator 2X

ABS 14.6–680

Zhang et al., 
2017

1.0 Stainless steel 
chamber

Five different 
printers labeled 
A, B, C, D, E, 

and F

ABS/PLA 7–3000, 7–300, 
300–25,000

TSI CPC 3022A, TSI 
SMPS 3080 with DMA 

3081 and TSI CPC 3785, 
TSI AeroTrak 9306–01
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Table 3

Overall descriptive statistics for mean particle count diameters and mean particle number concentrations.

Study Filament Mean particle count diameter (nm) Mean particle number concentration (#/cm3)

n Mean SD Min Max n Mean SD Min Max

Stefaniak et al., 2017 ABS 4 53.0 7.6 45.3 63.1

PLA 4 36.7 0.7 36.1 37.7

Stephens et al., 2013 ABS 1 39.3 NA 39.3 39.3 0 NA NA NA NA

PLA 1 56.7 NA 56.7 56.7 1 13,900 NA 13,900 13,900

Floyd et al., 2017 ABS 1 47.4 NA 47.4 47.4 1 654,000 NA 654,000 654,000

PLA 1 44.7 NA 44.7 44.7 1 641,000 NA 641,000 641,000

Yi et al., 2016 ABS 4 66.0 14.8 44.6 78.9 8 126,975 72,735 38,900 240,000

PLA 4 29.6 2.2 27.5 32.4 11 115,173 71,955 38,234 302,292

Mendes et al., 2017 ABS 10 10.5 2.7 7.8 15.5 10 533,800 912,900 26,000 2,800,000

PLA 3 14.0 10.8 7.6 26.4 4 93,608 184,267 290 370,000

Kwon et al., 2017 ABS 4 48.0 6.8 43.0 58.0 4 68,175 59,205 14,100 128,000

PLA 2 42.2 21.2 27.2 57.2 2 21,635 28,518 1470 41,800

Azimi et al., 2016 ABS 7 347,286 204,164 112,000 647,000

PLA 4 1600 418 1280 2190

Steinle, 2016 ABS 1 10,600 NA 10,600 10,600

PLA 1 89,000 NA 89,000 89,000

Zhang et al., 2017 ABS 8 88.5 24.3 40.7 118.3

PLA 9 38.0 14.3 16.8 63.2

Zontek et al., 2017 ABS 2 37,640 47,885 3780 71,500

PLA 1 76,300 NA 76,300 76,300

Deng et al., 2016 ABS 5 52,698 58,518 4890 153,000

PLA 5 6736 7949 2420 20,900

Kim et al., 2015 ABS 1 32.6 NA 32.6 32.6 1 1,740,000 NA 1,740,000 1,740,000

PLA 2 108.1 113.3 27.9 188.2 2 49,000 4243 46,000 52,000

Zhou et al., 2015 ABS 2 18 1 18 19

PLA 0 NA NA NA NA

Overall ABS 33 48.5 32.6 7.8 118.3 41 287,827 541,546 18 2,800,000

PLA 26 40.4 33.0 7.6 188.2 32 82,590 132,981 290 641,000

Note: “NA” indicates values that could not be calculated because there was only one statistic or no statistics reported. Vance et al. (2017) and 
Stabile et al. (2017) did not directly report mean PCD or mean PNC and were not included in Table 2.
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Table 4

Mean particle count diameters across studies.

Study Filament Mean particle count 
diameter (nm)

Particle count diameter range measured by instrumentation (nm)

Stephens et al., 2013 PLA 56.7 10–420

ABS and PLA 39.3 10–420

Kim et al., 2015 PLA 27.9 10–420

PLA 188.2 10–420

ABS 32.6 10–420

Yi et al., 2016 ABS 70.2 14.6–660

ABS 78.9 14.6–660

ABS 70.1 14.6–660

ABS 44.6 14.6–660

PLA 28.3 14.6–660

PLA 27.5 14.6–660

PLA 30.1 14.6–660

PLA 32.4 14.6–660

Floyd et al., 2017 ABS 47.4 16.8–532.8

PLA 44.7 16.8–532.8

Kwon et al., 2017 ABS 45.6 10–420

ABS 58 10–420

ABS 43 10–420

ABS 45.2 10–420

PLA 57.2 10–420

PLA 27.2 10–420

Mendes et al., 2017 ABS 8.8 1–3, 2–63.8/4.45–140.7, 5.5–350

ABS 15.5 1–3, 2–63.8/4.45–140.7, 5.5–350

ABS 7.9 1–3, 2–63.8/4.45–140.7, 5.5–350

ABS 12.8 1–3, 2–63.8/4.45–140.7, 5.5–350

ABS 10.5 1–3, 2–63.8/4.45–140.7, 5.5–350

PLA 7.9 1–3, 2–63.8/4.45–140.7, 5.5–350

ABS 8.2 1–3, 2–63.8/4.45–140.7, 5.5–350

ABS 14 1–3, 2–63.8/4.45–140.7, 5.5–350

ABS 7.8 1–3, 2–63.8/4.45–140.7, 5.5–350

ABS 9.6 1–3, 2–63.8/4.45–140.7, 5.5–350

ABS 9.9 1–3, 2–63.8/4.45–140.7, 5.5–350

PLA 26.4 1–3, 2–63.8/4.45–140.7, 5.5–350

PLA 7.6 1–3, 2–63.8/4.45–140.7, 5.5–350

Stefaniak et al., 2017 ABS 53.7 24–9380

ABS 63.1 24–9380
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Study Filament Mean particle count 
diameter (nm)

Particle count diameter range measured by instrumentation (nm)

ABS 49.9 24–9380

ABS 45.3 24–9380

PLA 36.4 24–9380

PLA 36.1 24–9380

PLA 36.5 24–9380

PLA 37.7 24–9380

Zhang et al., 2017 ABS 98.6 7–300, 300–25,000

ABS 90.4 7–300, 300–25,000

ABS 40.7 7–300, 300–25,000

ABS 103 7–300, 300–25,000

ABS 92 7–300, 300–25,000

ABS 118.3 7–300, 300–25,000

ABS 66 7–300, 300–25,000

ABS 99.2 7–300, 300–25,000

PLA 16.8 7–300, 300–25,000

PLA 38.9 7–300, 300–25,000

PLA 63.2 7–300, 300–25,000

PLA 50.6 7–300, 300–25,000

PLA 49.5 7–300, 300–25,000

PLA 35.4 7–300, 300–25,000

PLA 27.9 7–300, 300–25,000

PLA 31.2 7–300, 300–25,000

PLA 28.1 7–300, 300–25,000

Note: Majority of mean particle count diameters fell below 99.2 nm. The “/” indicates the instrument could be set to measure either particle range.
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