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Abstract

A biological host response to an external stimulus or intervention such as a disease or infection is

a dynamic process, which is regulated by an intricate network of many genes and their products.

Understanding the dynamics of this gene regulatory network allows us to infer the mechanisms

involved in a host response to an external stimulus and hence aids the discovery of biomarkers of

phenotype and biological function. In this article, we propose a modeling/analysis pipeline for

dynamic gene expression data, called Pipeline4DGEData, which consists of a series of statistical

modeling techniques to construct dynamic gene regulatory networks from the large volumes of

high-dimensional time course gene expression data that are freely available in the Gene
Expression Omnibus (GEO) repository. This pipeline has a consistent and scalable structure that

allows it to simultaneously analyze a large number of time course gene expression data sets, and

then integrate the results across different studies. We apply the proposed pipeline to influenza

infection data from nine studies and demonstrate that interesting biological findings can be

discovered with its implementation.
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Introduction

Gene regulation plays a fundamental role in biological activities, such as cell growth,

division, development and response to environmental stimulus. The dynamic gene regulatory

network (GRN) specifies the interactions between genes, which in turn determines the

expression level of each gene over time. Identifying these networks from genomic big data

can shed light on the genetic mechanisms that occur when the cellular processes are

impaired, for instance when they are subject to an infection or disease.
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It is widely recognized that there may be hundreds or thousands of genes that harbor

variations contributing to a specific illness, and there may also be a large genetic variability

in host responses to an external stimulus or disease. Thus dynamic GRNs inferred from a

single or a few gene expression data sets, may not be sufficient to understand the complexity

and heterogeneity of the dynamic interaction process between the host and external stimulus.

Fortunately, in this Big Data era, we have an abundance of high-dimensional time course

gene expression data from a variety of biological experiments and conditions. These data

sets are generated from microarray, next-generation sequencing and other forms of high-

throughput technologies, and are freely available in the Gene Expression Omnibus (GEO)
data repository at the National Center for Biotechnology Information (NCBI) (1; 2). As of

September 19, 2016, GEO has accumulated gene expression data from approximately 2

million samples from more than 73,000 studies (series) (3). As investigators must submit

their genomic data to a data-sharing repository in accordance with grant or journal

requirements, the number of data samples in GEO is growing rapidly (e.g., GEO obtained

the data from 81,415 new samples between 2015 and 2016 (3)).

While a variety of options exist for reconstructing a gene regulatory network (GRN) based

on a single experimental data set (see (4; 5) for an overview). There is limited methodology

available to examine a large number of time course data sets from many different

experiments to address important biological questions regarding a host genetic response to

an external stimulus or disease. Examples of some fundamental questions include: (i) how

do we identify genes that have a significant response over time at either population or

individual level; (ii) do genes respond differently to the external stimulus or can multiple

genes be grouped together based on their behavior over time? (iii) what are the similarities

and differences among the genetic time-course patterns for various hosts or experimental

conditions? (iv) what network of genetic interactions is formed for the host to respond to the

external stimulus? (v) what are the similarities and differences among these networks for

various hosts or experimental conditions?

We propose a pipeline for dynamic gene expression data, called Pipeline4DGEData, to

address the above questions. This pipeline constructs dynamic gene regulatory networks

from the large sets of time course gene expression data available on GEO for different

biological experiments under various disease and/or stimulation conditions. We believe that

this pipeline will allow us to better understand the pathogenesis of different diseases at both

individual and population level. We can examine each host response to a disease or condition

at a genetic level so that novel prevention and intervention targets can be discovered and

personalized or precision medicine can be achieved (6; 7). We can also integrate the results

from a large number of hosts that are responding to various diseases or conditions so that we

can gain a better understanding of the heterogeneity that is inherent in the real world

population and subsequently identify robust and reproducible signatures of disease

phenotypes.

Current approaches for identification of GRNs from gene expression data have pros and

cons. For example, information theory models (8; 9) are simple and easy to compute, but are

essentially correlation models and do not take into account that multiple genes can co-
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regulate a target gene. Boolean networks (10; 11) represent the state of a gene using a binary

variable, and as such do not account for the continuous nature of gene expressions. Bayesian

networks (12; 13; 14) represent conditional dependencies among the genes via a directed

graph, but the optimization of the network is computationally expensive, so applications are

mostly limited to small-scale systems.

Linear differential equation (LDE) models (15) quantify the rate of change (derivative) of

the expression level of one gene in the system as a function of the expression levels of all

related genes. Let gi represent the expression level of gene i and Dgi denote the rate of

change of this expression level, then Dgi = ∑j = 1
n βi, jgj for i = 1, …, n, where n denotes the

number of genes and βi,j quantifies the regulation effect of gene j on gene i. Some standard

statistical methods such as the least squares or maximum likelihood estimation can be used

to perform statistical inference for the parameters βi,j from time course gene expression data

for small-scale networks (15; 16). However, for LDE models that involve hundreds or even

thousands of genes, the standard statistical methods often fail due to the curse-of-

dimensionality.

In this article, we propose the Pipeline4DGEData which, consists of a series of cutting-edge

statistical analysis and inference techniques to identify dynamic GRNs from high-

dimensional time course gene expression data. The pipeline is designed to obtain time-

course data from GEO automatically, analyze the data to reconstruct the dynamic GRNs, and

output the results into the format of a manuscript for publication. As a consequence, a large

number of data sets from GEO can be analyzed and modeled in an effective manner, and the

results can be quickly disseminated. We demonstrate the utility of the Pipeline4DGEData by

applying it to time course gene expression data from nine studies on viral respiratory

infections that are available on GEO.

Dynamic Modelling for Genomic Big Data

The Pipeline for Dynamic Gene Expression Data is implemented in Matlab (R2016a) and is

available at https://github.com/j142857z/Pipeline. It obtains GRNs from a large number of

time course gene expression data sets. The pipeline has been specifically designed to have a

scalable structure that allows it to simultaneously analyze the large volumes of data that are

available on GEO. It consists of the following eight steps:

1. Obtain the time course gene expression data sets from GEO.

2. Pre-process the probe level data, i.e., background adjustment, normalization, and

summarization.

3. Detect the genes with expression levels that change significantly with respect to

time, which we call dynamic response genes (DRGs).

4. Cluster the DRGs into groups of co-expressed genes, which are referred to as

temporal “gene response modules” (GRMs).

5. Obtain the functional annotation (gene ontology terms, associated pathways and

a functional gene-enrichment analysis) of the GRMs.
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6. Construct the high-dimensional gene regulatory networks (GRNs) that determine

the interactions between the GRMs using LDE models.

7. Perform a network feature analysis on the established GRNs

8. Output the results in the form of a manuscript.

These steps are summarized in the flowchart in Figure (1). Each of these eight steps is

detailed in the subsequent subsections.

Step 1. Get the data from GEO

Our pipeline has been developed to model time course gene expression data and is expected

to produce reliable results if there are 7 or more time points available. The GEO database is

not designed to easily identify the number of time points for the microarray or RNA-Seq

experiments. Instead, the experimental design is documented in a text file for each study. We

have used text mining, natural language processing and ontology techniques to identify,

from the GEO database, potential time course data sets in addition to other characteristics or

metadata including the related diseases and cell types from which the data are generated. But

these text mining approaches are not the focus of this paper and will be reported elsewhere.

The first step of our pipeline is to identify the time course GEO data sets related to a

particular keyword, for example, influenza. The resulting GSE numbers, which identify

series records in GEO are saved to a file. See (1) and (2) for further details on GEO record

types. The pipeline automatically retrieves the data sets and meta information corresponding

to these GSE numbers.

Step 2. Pre-process the data

Affymetrix GeneChip arrays are currently among the most widely used high-throughput

technologies for the genome-wide measurement of expression profiles. To minimize mis-

and cross-hybridization problems, this technology includes both perfect match (PM) and

mismatch (MM) probe pairs as well as multiple probes per gene (17). As a result, significant

pre-processing is required before an absolute expression level for a specific gene can be

accurately assessed. In general, pre-processing probe-level expression data consists of three

steps: background adjustment (remove local artefact’s and “noise”), normalization (remove

array effects), and summarization at the probe set level (combine probe intensities across

arrays to obtain a measure of the expression level of corresponding messenger RNA

(mRNA)).

Most datasets in GEO are already pre-processed. By default, the Pipeline for Dynamic Gene
Expression Data proceeds with the pre-processing technique used in the original study.

However, if the .cell files are available, then the user can select from the following popular

pre-processing techniques to reprocess the data if necessary: Microarray Suite 5 (MAS5)

(18), Robust Multi-array Average (RMA) (19) and Guanine Cytosine Robust Multi-Array

Analysis (GCRMA) (20). Table 1 provides a brief overview of the three pre-processing

techniques. See (21; 22) for a detailed comparison.
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Step 3. Detect the Dynamic Response Genes (DRGs)

(a) Obtain the estimated gene expression curves—We assume that the centered

expression levels of the ith gene, belonging to subject j, denoted here by xi,j, is a smooth

function over time t and that the centered gene expression measurement yi, j is a discrete

observation from this smooth function, which has been distorted by noise, i.e.,

yi, j = xi, j tk + ϵi, j,

for i = 1, …, n, j = 1, …, N and k = 1, …, Ki,j, where n is the number of genes, N is the

number of subjects (or experimental conditions), Ki,j is the number of time points observed

for the ith gene, belonging to subject j. The noise ϵi,j is assumed to be an independently

identically distributed (i.i.d.) Gaussian random variable with mean 0 and variance σ2.

The Ki,j × 1 vector of the estimated centered expression levels evaluated at the points t, for

the ith gene, belonging to subject j, xi, j is obtained by spline smoothing (23; 24). This

approach approximates xi,j by a linear combination of L independent basis functions,

xi, j ≈ ∑l = 1
L bi, j, lci, j, l = Bi, jci, j, where the Ki,j × L matrix Bi,j denotes the basis functions

evaluated at time t and the vector ci,j provides the corresponding coefficients.

The coefficients ci,j can be estimated by minimizing

yi, j − Bi, jci, j ′ yi, j − Bi, jci, j + λjci, j′ Ri, jci, j′ (1)

where the first term defines the squared discrepancy between the observed centered gene

expression measurements yi, j and the estimated measurements xi, j, and the second term

contains the L × L matrix Ri,j which is the integral of the squared second derivative of Bi,j.

The second term penalizes the curvature of xi, j and hence requires it to be sufficiently

smooth. The parameter λj controls the trade-off between the fit to the data and the

smoothness requirement and hence ensures that xi, j has an appropriate amount of regularity.

All the genes for each subject are assumed to have the same λj.

We expect that only a small fraction of genes respond to the external stimulus and the

majority of the genes have no significant response with relatively flat expression levels over

time. Therefore, estimating the parameter λj using the conventional method of minimizing

the prediction error with generalized cross validation (GCV), see (25) for details, of all the

genes together is not ideal as GCV will tend to select a λj that is large to minimize the

prediction error of the majority of unresponsive genes. As we are interested in obtaining an

appropriate amount of regularity for the responsive genes, we apply an approach similar to

(26) and (27) and choose a subset of the genes that exhibit time course response patterns

with relatively smooth trajectories that do not fluctuate widely. Then we rank these genes by

their interquartile range and select 200 of the top ranking genes as our estimation subset.

The regularity parameter λj is estimated by minimizing the GCV of the responsive genes in

our estimation subset, this parameter is then used to smooth the time course data for all the

genes.
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(b) Perform a hypothesis test to identify the genes with expressions that
change significantly over time—Dynamic response genes (DRGs) can be defined as

genes with expressions that change significantly over time. In order to determine which

genes can be considered DRGs, we use an F-statistic which compares the goodness-of-fit of

the null hypothesis H0:xi, j = 0 versus the alternative hypothesis Ha:xi, j ≠ 0. The F-statistic

is given by,

Fi, j =

RSSi, j0 − RSSi, j1

dfi, j − 1

RSSi, j1

Ki, j − dfi, j

,

where dfi,j is the degrees of freedom of the estimated curve xi, j, RSSi, j
0 = yi, j′ yi, j and

RSSi, j
1 = yi, j − xi, j ′ yi, j − xi, j . are the residual sum of squares under the null and the

alternative models for the i-th gene, belonging to subject j. The genes with large F-ratios can

be considered as exhibiting notable changes with respect to time. If we wish to have an equal

amount of DRGs for each subject, we can rank the F-ratios and select nDRG the number of

top ranking dynamic response genes. By default the Pipeline4DGEData sets nDRG to 3000.

As an alternative, the functional principal component analysis (FPCA) approach (27) can

also be used to identify the DRGs. The FPCA method needs to borrow information across

genes to estimate the covariance and the results will be subject to the estimation accuracy of

the covariance matrix.

Step 4. Cluster the DRGs into temporal gene response modules (GRMs)

As many of the DRGs exhibit similar expression patterns over time, we wish to cluster them

into co-expressed modules (groups of genes which have similar gene expression patterns

over time). This step not only reduces the modeling dimension but also eases the

identifiability problem. It is widely recognized that many co-expressed genes may follow

similar temporal patterns, but at the same time, some genes may have very few or even no

co-expressed genes, and thus may exhibit unique temporal response patterns. Consequently,

the GRMs can vary greatly in size, with some being large and containing many genes and

others being small or even containing a single gene. To obtain these clusters, we adopt the

Iterative Hierarchical Clustering (IHC) method introduced in (28). This approach requires a

single parameter that controls the trade-off of the between- and within-cluster correlations.

In particular, the average within-cluster correlation will be approximately α, and the

between-cluster correlation will be below α. The IHC algorithm is outlined below:

Initialization: Cluster the data for the standardized DRGs using the hierarchical

agglomerative clustering approach. Let the distance metric be the Spearman rank

correlation with a threshold of α, and the linkage method be the average of the genes

in each cluster.
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Merge: Treat each of the cluster centers as ‘new genes’ and use the same rule as in

the initialization step to merge the centers into new clusters. The cluster centers

provide the average time-course pattern of the cluster members.

Prune: Let ci be the center of cluster i. If the correlation between the cluster center

and gene j, which will be denoted by ρi,j, is less than α, then remove genej from the

cluster i. Let P be the number of genes removed from the existing S clusters. Assign

all P genes into single-element clusters. Hence, there is now (S + P) clusters in total.

Repeat Merge-Prune Steps until the index of clusters converges.

Repeat Merge Step until the between-cluster correlations are less than α.

Step 5. Annotate the GRMs

The Pipeline for Dynamic Gene Expression Data outputs an annotation report which extracts

biological meaning from the DRGs contained in each GRM. Specifically, it provides the

gene ontology terms, associated pathways, and a functional gene enrichment analysis. This

is achieved by using the Database for Annotation, Visualization and Integrated Discovery
(DAVID) (29; 30).

Step 6. Construct the high-dimensional gene regulatory network (GRN) that determines the
interactions between the GRMs

High-dimensional gene regulatory networks map how the change in the expression of any

single gene is regulated by its own expression level and other gene expression levels. There

is an abundance of literature regarding the use of ordinary differential equation (ODE)

modeling to construct a high-dimensional gene regulatory network (GRN) (5; 31; 32). ODEs

model gene regulations using rate equations. Here we model the interactions between GRMs

using the following ODE

Dmq, j = ∑
p = 1

Q
βp, q, jmp, j,  for  q = 1, …, Q, (2)

where Dmq,j represents the instantaneous rate of change in qth gene response module,

βp, q, j p = 1
Q  quantifies the regulation effects of the pth gene response module on the rate of

change of the qth gene response module Dmq,j. The standard approach for estimating the

parameters of differential equations from noisy measurements is nonlinear least squares

(NLS) (33; 34). However, this method requires initial estimates of the regulation effects and

initial conditions for the expression levels of the gene response modules at time t0.

Differential equation models differ from the classical regression models as they capture not

only the direct effects that are strong interactions between two gene response modules but

they also include indirect effects high correlations that may exist between two gene response

modules that are not directly connected but influence each other via a third gene response

module they both directly interact with. In general, such indirect interactions may be

induced not only by the third gene response module, but equally by the entire collective

dynamics of a network.
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(a) Initial estimates of the regulation effects—The two-stage smoothing-based

estimation method (35; 36) decouples the system of differential equations in (2) and

approximates it by a set of pseudo-regression models as in (3). The first step obtains

estimates of the average trajectory of the GRMs mp, j and their derivative Dmq, j for p, q = 1,

…, Q. The estimated trajectories mq, j are the average of the smoothed trajectories attained

by the spline smoothing approach in part (a) of Step 3, for all the genes contained in the qth

GRM. Similarly, Dmq, j is estimated by averaging the derivative of the smoothed trajectories

obtained by the spline smoothing approach in part (a) of Step 3, for all the genes contained

in the qth GRM. The set of Q pseudo-regression models are then given by

Dmq, j = ∑
p = 1

Q
θp, q, jmp, j + ϵp, j q = 1, …, Q, (3)

where θp,q,j denotes the direct effects that is the strong relationships between the pth GRM

and the rate of change in the qth GRM.

It is widely accepted that gene regulatory networks are sparse, i.e., only a few of the

θp, q, j p = 1
Q  are non-zero. In order to determine which of the regulation effects are

significant (i.e., non-zero) our pipeline applies the least absolute shrinkage and selection

operator (LASSO) (37) approach or the adaptive LASSO (38) approach (36) to the pseudo-

regression model in (3). The LASSO approach requires minimizing

Dmq, j − ∑
p = 1

Q
θp, q, jmp, j

2
+ γ ∑

p = 1

Q
‖θp, q, j‖ q = 1, …, Q .

As the penalty term ∑p = 1
Q ‖θp, q, j‖ means that the LASSO increases, LASSO sets more

coefficients θp,q,j to zero. This means that the LASSO estimator is a smaller model, with

fewer predictors. The L1 regularization parameter γ enforces the amount of sparsity in θ and

can be chosen by minimizing either the generalized cross validation criterion, the Akaike

information criterion or the Bayesian information criterion. As such, LASSO is a model

selection and dimensionality reduction technique that determines the significant coefficients

θp,q,j or initial estimates of the weighted network edges by maximizing the prediction

accuracy (GCV) or the trade-off between the goodness of fit and the complexity (AIC/BIC)

of (3). Alternatively, the SCAD approach (31; 39) can also be used in this step. See more

details in (31).

(b) Refined estimation of the regulation effects—The parameter estimates from the

two-stage method in the above pseudo-regression model are not efficient in terms of

estimation accuracy when the model selection is performed simultaneously, and there can be

significant approximation error in mp, j and its derivatives. The estimation of significant

coefficients or network edges can be improved or refined using nonlinear least squares

(NLS), maximum likelihood or other more efficient estimation methods once the model

selection from part (a) of Step 6 is completed. Our pipeline adopted the NLS approach
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which minimizes the squared discrepancy between the numerical approximation to the

solution of the differential equation (2) and the observations. The non-zero estimates of

θ p, q, j p = 0
Q  from part (a) of Step 6 are used as initial estimates for the regulation effects

βp, q, j p = 1
Q  in equation (2). Given the initial estimates, β0 = θ p, q, j p = 0

Q  and a set of p

initial values, mp, j, which are attained by the spline smoothing approach in part (a) of Step

3, an initial numerical approximation of the solution to differential equation (2) can be

computed as mp, j t, β0 . Using a linearization of the discrepancy between the data and the

numerical solution, the estimated parameters β can be refined iteratively. In Lu et al. (31),

the mixed-effects modeling approach is used for parameter refinement.

The variability in the GRN is assessed by calculating the confidence intervals of the

parameters β using the delta method see (40) for details.

Step 7. Perform a network feature analysis on the GRN.

The reconstructed biological networks are significantly different from random networks and

often exhibit ubiquitous properties in terms of their structure and organization. Many metrics

have been developed to characterize biological networks, see (41) and (42) for an overview.

We use these network metrics to identify influential GRMs and to provide insight on the

organization of the GRN describing the host response to the external stimulus or disease.

These metrics are divided into two groups: node metrics and network metrics. Node metrics

provide information on the modules within each GRN and are useful for identifying GRMs

that are likely to be hubs or groups of modules that are strongly interconnected. On the other

hand network metrics identify properties or features of each GRN and are useful for

comparing different GRNs. The Pipeline for Dynamic Gene Expression Data uses the

Matlab SBEToolbox (43) to compute the network metrics for each of the GRNs. This

toolbox includes many metrics, some of the most relevant are listed in Table 2. The

interaction network between GRMs was represented as as a directed graph with the gene

response modules as nodes and interactions as directed edges which are given by the point

estimates β obtained in step 6. The variability in the network metrics can be estimated by

evaluating each metric at the lower endpoint of the 95% confidence interval and the upper

endpoint of the 95% confidence interval for β.

Step 8. Output the results: reporting and manuscript drafting.

As GSE numbers can often contain data sets on more than one experimental condition, for

example, GSE52428 contains time course gene expression data following intranasal

influenza A H1N1 and H3N2 inoculation, for 24 and 17 subjects respectively. The pipeline

determines if there is more than one experimental condition (subject/virus strain), and then

runs steps 2–8 on each condition/subject. For example, one of the experimental conditions

for the GSE52428 study was H1N1 Subject 1. Step 8 creates six folders to store the results

from Steps 2–7. The folders are organized in the following hierarchal fashion: GSE number,

experimental condition, and steps 2–7. Figure 2 provides a schematic of the folders and

Table 3 details the contents of each folder. The folder structure allows for different

experimental conditions to be computed in parallel. We have developed and tested a parallel
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computing version of the pipeline from which the results can be automatically saved on the

OneDrive cloud. The experimental condition folder also contains a TEX document (if ran on

a Mac, Linux, or Windows machine) and a Word document (if ran on a Windows machine),

in the format of a biomedical journal article detailing the results. This article includes: a

methods section describing the data and techniques implemented by the Pipeline for
Dynamic Gene Expression Data and a draft of the results section which contains tables and

figures which are automatically generated by the pipeline. The aim of this document is to

facilitate with the drafting of a manuscript for publication, based on the results produced by

the pipeline. An example of this article draft is provided in the supplementary material.

The Pipeline for Dynamic Gene Expression Data Applied to Influenza

Studies

We demonstrate the utility of the Pipeline for Dynamic Gene Expression Data by applying it

to time course gene expression data from nine studies on various influenza viruses. These

viruses represent respiratory pathogens that cause either seasonal, endemic infections or

unpredictable pandemics. Influenza occurs globally with an annual attack rate estimated at

5% to 10% in adults and 20% to 30% in children (58). Illnesses can result in hospitalization

and death mainly among high-risk groups (the very young, elderly or chronically ill).

Worldwide, these annual epidemics are estimated to result in about 3 to 5 million cases of

severe illness, and about 250,000 to 500,000 deaths (58). We expect that our biological

findings on these influenza virus strains, produced by the proposed Pipeline4DGEData, will

have a high impact on public health.

The nine studies that we have chosen as examples for the application of the Pipeline for
Dynamic Gene Expression Data consist of 58 time course data sets corresponding to

different experimental conditions (hosts inoculated with various virus strands) with 1, 554

samples from either blood, epithelial cells, dendritic cells or adenocarcinoma cells (59; 60;

61; 62; 63; 64; 65; 66). Unlike a single cohort experiment study where the goal is to control

as many confounding factors as possible, our analysis includes data sets with a broad

biological and technical heterogeneity. These data sets include healthy controls, individuals

with various types of viral or bacterial infections, and individuals that were vaccinated for

influenza. These studies can be grouped into 19 virus subtypes, and Table 4 provides

detailed information on these subtypes for each of the nine studies. The majority of the

studies (89%) involve human subjects, and their most common (63%) bio-samples are

bronchial epithelial cells. The dominating virus subtypes are seasonal influenza virus strains,

H1N1 (41% of the data sets) and H3N2 (29% of the data sets). Figure 3 show the

distributions of the number of time-points, the number of genes/probes from which

expression-level measurements are available and the pre-processing techniques used in the

original study. The number of time points range from 7 − 15, with 69% of the data sets

containing more than ten time-points. The number of genes or probes range from 11, 961 –

54, 675. Here we choose to analyze the time course gene expression data using the pre-

processing techniques employed in the original study. The 58 data sets were pre-processed

with one of the following techniques, RMA, GCRMA, MAS5 and LIMMA. The most

popular pre-processing technique is RMA (67% of the studies selected this method). The
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design of the pipeline allows for the systematic integration of the results at various levels.

More specifically, results of the pipeline analysis can be examined on an individual by

individual basis, e.g., by examining each subject’s DRGs, GRMs and GRN separately. Also,

results can be examined across several subjects and experimental conditions (e.g., virus

subtypes). This can be achieved by finding the DRGs that are common across groups of

subjects, the similarities/differences between the patterns of the GRMs in the groups and the

similarities/differences between GRNs across the groups. The following subsections

examine the population level similarities/differences between the DRGs, GRMs, and GRN

for all 58 time course data sets across the 19 virus subtypes.

Dynamic Response Genes for Influenza

The F-test statistic in Step 3 of the pipeline was used to identify the top 3, 000 dynamic

response genes (DRGs) for each of the 58 datasets. We cut the number of DRGs nDRG = 3,

000 for all experimental conditions to avoid introducing bias due to different sample sizes

for different conditions. Alternatively, one could select the number of significant DRGs for

each experimental condition using a p-value (with a multiple testing adjustment), but as the

number of significant DRGs can vary considerably for different conditions, it can be difficult

to draw reliable comparisons between groups of experimental conditions. After careful

consideration (e.g., visual inspection of the DRGs for each of the 58 datasets), we felt that

3000 was an appropriate threshold for the number of DRGs. The DRGs are genes that show

a strong reaction over time after inoculation with the various virus strands. These genes

might translate into clinically valuable biomarkers. The annotation of the DRGs is analysed

at both virus subtype and population level in the following subsections.

Virus Subtype-Level Results: Table 5 provides the annotation for the most significant

DRG’s for each of the 19 virus subtypes based on the ranking of the F-test statistic in Step 3

of our pipeline. Many of these genes have been previously identified as been significantly

related to influenza infection such as, 2’-5’-oligoadenylate synthetase-like, is part of a

system activating RNase L, which is an important unspecific antiviral immune response and

is also thought to play a role in the control of cell growth and differentiation (67); DnaJ

(Hsp40) homolog, has been implicated in positive regulation of virus replication through co-

option by influenza A virus (68); glucan (1,4-alpha-), is related to anti-infectious immunity

(69) and N-acyl phosphatidylethanolamine phospholipase D, is an endogenous lipid that

modulates pain and inflammation (70).

Population-Level Results: As the 58 data sets have a broad biological and technical

heterogeneity, we do not expect that the annotation for the 3000 DRGs identified for each

data set will contain genes that are common among all 58 data sets. Interestingly, there are

19 data sets out of the 58 that all contain the following three genes in the annotation of the

DRG lists: TRADD* which is an apothic pathway activated by TNF and linked to the H1N1

virus (71), ELMO2 which is involved in cytoskeletal rearrangements required for

phagocytosis of apoptotic cells and cell motility, and STAT1† which has been shown to be

*adapter molecule for TNFRSF1A/TNFR1 that specifically associates with the cytoplasmic domain of activated TNFRSF1A/TNFR1
mediating its interaction with FADD
†signal transducer and activator of transcription that mediates signaling by interferons IFNs
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required for ISG induction and resistance to influenza infection (72). As 19 out of the 58

data sets (32% of the population) have identified these genes as having a significant response

over time, we can regard them as potential bio-markers for influenza infection response at a

population level. Additionally, we found that 17 out of the 58 data sets shared 15 common

DRGs (fbx11, Fau, APEH, nadK, Necap1, nsfl1c, RAB6C, YCR015C, CTSS, Cdc25b,

COL2A1, CRYAB, SERPING1, RTEL1, POLR2E) that are related to the regulation of cell

death, proteins secreted into the cell surroundings and protein binding. Table 6 provides the

official gene symbols and the functions of these DRGs. As these represent 29% of the

population, they can also be regarded as potential bio-markers for influenza infection

response at a population level.

Additionally, the annotation in step 5 provides the functional enrichment of the DRGs for all

58 data sets. The most enriched pathways are: Spliceosome (hsa03040), it is well known that

influenza viruses have developed accurate regulation mechanisms to utilize the host

spliceosome to enable the expression of specific spliced influenza virus products throughout

infection (73); Proteasome (hsa03050) which has been shown to effectively block the

influenza virus (74); p53 signaling pathway (hsa04115), the influenza virus infection is

known to increases p53 activity (75); and other classical pathways such as cell cycle

(hsa04110) and Ribosome (hsa03010) protein synthesis.

Gene Response Modules for Influenza

We use the Pipeline4DGEData Step 4, i.e., the IHC method with a correlation threshold of α
= 0.7 to group the 3,000 DRGs for each of the 58 data sets, into between 15 and 476

temporal gene response modules (GRMs).

Virus Subtype-Level Results: Table 7 shows the number of GRMs for a single data set

or the range of the number of GRMs for multiple data sets, for each of the 19 virus subtypes.

It also provides a brief description of the time-course patterns of the GRMs. For most virus

subtypes, the time-course patterns of the GRMs have either a distinctive up/down regulated

feature or multiple features denoting peaks and troughs at various time-points.

Population-Level Results: Figure 4 shows the time-course patterns from two different

datasets. One with the distinctive up/down regulated time-course patterns (experimental

condition Mock from GSE37571) and one with time course patterns that denote peaks and

troughs at various time-points (experimental conditions BAT from GSE47961). In this

manner, Figure 4 illustrates the different time-course patterns identified in Table 7. These

preliminary results indicate that there are two categories of gene response modules for

influenza infection. The first is composed of modules of approximately the same size

containing genes that have different time course behaviors. The second is composed of

modules of a greater size containing genes that have a similar behavior over time

(dominating up/down regulated feature).

Gene Regulatory Networks for Influenza

Steps 6 and 7 of our pipeline are applied to the GRMs attained from each data set contained

in the 9 influenza-related studies, the gene response networks for these data sets are
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established and their network features are analyzed. In this section, we analyze the network

features of the 58 gene regulatory networks. The nodes of these networks are the GRMs, and

the edges are the regulation effects β. The results are summarized as follows.

Virus Subtype-Level Results: Here we use the network centrality measures to compare

the features of the GRNs for each of the 19 virus subtypes. Figure 5 illustrates the virus

subtypes with GRNs that have relatively large centrality measures by showing the

standardized clustering coefficient, density, bridging centrality and closeness centrality of

the GRNs grouped by their virus subtype. For virus subtypes with multiple GRNs, we obtain

the average of the metric for all experimental conditions pertaining to that particular virus

subtype.

The virus subtypes with relatively high clustering coefficients are: In the GSE19392 study,

cells treated with IFNb, treated with media alone, treated with LTX transfection reagent,

vRNA LTX+RNA, and PR8 post trypsin. This suggests that there is a strong

interconnectivity between the modules in the GRNs for these studies. Figure 6 illustrates the

GRN for the cells treated with interferon beta (IFNb), which has a relatively high clustering

coefficient (top), and the GRN for the cells infected with PR8 virus lacking the NS1 gene

(DNS1), which has a relatively low clustering coefficient (bottom). The size of the nodes

indicates the number of genes contained in the modules, (i.e., the larger the node, the greater

the number of genes contained in that module). It is clear that both GRNs only have two

very large modules containing many genes and that these modules are not closely related to

each other as they have a large distance between one another. The GRN for the cells treated

with interferon beta (IFNb) has a closer-knit community of modules than the cells infected

with the PR8 virus lacking the NS1 gene (DNS1), which has a dispersed community of

modules.

The studies with relatively high densities are GSE37572 Mock, GSE40844 Mock,

GSE37571 A/CA/04/2009, GSE47961 H1N1 and dORF6. As Table 2 describes, this metric

provides a measure of the general interdependence between all nodes in the network. GRNs

with higher densities are those where the GRMs tend to be closely dependent on each other.

In such networks, the expression of each module tends to be affected by many or all of the

other modules. Figure 7 illustrates the GRN for GSE37571 A/CA/04/2009, which has a

relatively high density (top), and the GRN for GSE52428 H3N2 Subject 9, which has a

relatively low density (bottom). The GRN for GSE37571 A/CA/04/2009 contains a few

GRMs, but these modules are highly connected to one another. While the GRN for

GSE52428 H3N2 Subject 9 has many GRMs, but each module only regulates a relatively

small proportion of the other modules.

The studies with relatively high bridging centralities are GSE19392 treated with LTX

transfection reagent, GSE37572 A/CA/04/2009, and GSE47961 H1N1. This suggests that

these studies have modules that regulate highly-connected groups of GRMs. Figure 6 shows

the GRN for GSE37571 A/CA/04/2009. The GRM that is shaped like a dodecahedron is the

module with the largest bridging centrality, from Figure 6, it is clear that this module

connects different groups of highly connected GRMs. We analyzed the functional

enrichment of the DRGs in this GRM. The most enriched pathways are Pathogenic
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Escherichia coli infection (hsa05830), Gap junction (hsa04540) and Phagosome (hsa04666),

in particular, these all reference the tubulin protein superfamily as being significantly related

to these DRGs. This supports recent research showing that influenza A virus induces the

disruption of the microtubule network β with and α-tubulin (76; 77)

The studies with relatively high closeness centralities are GSE52428 H3N2/Wisconsin

Subject 7, 4 and 9, GSE19392 study, cells treated with IFNb, treated with LTX transfection

reagent, and PR8 post trypsin. Figure 7 shows the GRNs for GSE37571 A/CA/04/2009 and

GSE52428 H3N2/Wisconsin Subject 9. The GRN for GSE37571 A/CA/04/2009 has a

relatively low closeness centrality metric with a few modules that are relatively far apart or

dispersed, while the GRN for GSE52428 H3N2/Wisconsin Subject 9 has a high closeness

centrality metric with many of the modules in close proximity to one another.

Population-Level Results: Clustering is an important property of any network as it

measures the interconnectivity of the network. Our results suggest that a lower clustering

coefficient may indicate an expanded response to the influenza infection. The evidence to

support this claim comes from 22 data sets in the GSE19392 and GSE30550 studies which

account for 43% of the population. The data sets in GSE19392 concern cells infected by the

influenza virus but under five different conditions, each highlighting a distinct aspect of the

response: i) cells were infected with the wild-type PR8 influenza virus that can mount a

complete replicative cycle (PR8 post trypsin); ii) cells were transfected with viral RNA

isolated from influenza particles. This does not result in the production of viral proteins or

particles (vRNA LTX+RNA); iii) cells were treated with interferon beta, to distinguish the

portion of the response which is mediated through Type I IFNs (treated with IFNb IFN); iv)

cells were infected with a PR8 virus lacking the NS1 gene (delNS1 post trypsin); v) cells

were treated with media alone as a control. All the conditions except for condition (iv) have

an unusually high clustering coefficient (this is also true for diameter and mean distance, two

alternative measures of inter-connectivity). The NS1 protein normally inhibits vRNA- or

IFNb-induced pathways, and its deletion can reveal an expanded response to infection (61).

We suspect that a lower clustering coefficient is an indication of an increase in a host

response to influenza infection. This is further supported by the data sets in the GSE30550

study. These data sets are divided into two groups according to the clinical symptom chart

based on the standardized symptom scoring (78): symptomatic (Sx) group with nine subjects

(subjects 1,5,6,7,8,10,12,13,15) and asymptomatic (Asx) group with eight subjects (subjects

2,3,4,9,11,14,16,17). Interestingly, the majority of the Asx group (subjects 2,3,4,9,11,14,16),

which we would expect to have a high response to influenza infection as they are not

experiencing symptoms, have the lowest average clustering coefficients among all the

studies.

In summary, we have briefly discussed some of the results from our analysis of several virus

infection studies using Pipeline4DGEData. The primary goal of this article is to propose the

methodology for the Pipeline4DGEData, a tool for the construction of gene regulatory

networks from large amounts of high-dimensional time course gene expression data. Here

we demonstrate the pipeline’s ability to identify potential bio-markers for influenza infection

and to discern interesting characteristics of the dynamic interaction process between the host
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and influenza virus. More detailed biological findings from these viral infection studies will

be reported elsewhere in the near future.

The Pipeline for Dynamic Gene Expression Data Applied to Simulated Data

Sets

The accuracy of the results provided by Pipeline4DGEData was evaluated by examining its

performance on simulated expression data. Simulation 1 is derived from previously

discovered GRMs, i.e., the estimated GRMs were used to simulate the underlying time

course data. The pipeline analysis was run on the simulated data in order to confirm if the

new results are consistent with the original results. Simulation 2 adds various levels of

random noise to the the time course gene expression data set GSE52428, subject 1. The

pipeline analysis was run on the simulated data in order to confirm if the new results are

consistent with the original results.

Simulation 1

The simulated data was obtained as follows. Let ci be the average standardized expression

level over time of the genes in the ith cluster attained from Step 4 of the Pipeline. The

simulated time course data for the jth dynamic response gene in the ith cluster can be

generated as follows:

DRGi, j t = ci t + σϵi, j t

for j = 1, …, Qi, where Qi is the number of genes in the ith cluster, also provided by the step

4, ϵi,j(t) is normally distributed random variable with mean 0 and variance 1 whereas σ
quantifies the magnitude of the measurement error. This produces simulated time course

measurements for the 3000 DRGs. The remaining non-responsive genes (NRG) were

generated by

NRGi, j t = σϵi, j t .

The simulated data sets for the DRGs and the non-responsive genes are combined to form

the test data set. The simulated data were generated for three measurement error levels: σ =

0.1, σ = 0.2 and σ = 0.3 and each simulation was performed 1000 times.

The method described above was used to simulate time course data based on the pipeline

results from the data set GSE52428, subject 1. This data set contains time course

measurements for 22, 277 genes. Step 3 of the pipeline identifies 3000 of these genes as

DRGs and the remaining 19, 277 genes are considered non-responsive genes (NRGs). Step 4

subsequently groups these DRGs into 128 clusters. Using the method described above,

simulated expression data of the 22, 277 genes were obtained from the 128 modules. The

results obtained from the application of the pipeline to this simulated data is described as

follows.
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Dynamic Response Genes: The F-test statistic in Step 3 of the pipeline was used to

identify the top 3,000 dynamic response genes (DRGs) for each of the simulated datasets.

We computed a binary vector that is one if the gene has been selected as a DRG and zero

otherwise. Then we computed the difference between this binary vector and a binary vector

corresponding to the true DRG assignment. If the difference is negative then the gene has

been identified as DRGs but in fact is a non-responsive gene (false positive) and if its is

positive then the gene has been identified as a non-responsive gene but is in fact a DRG

(false positive). Table 8 shows the average percentage of false positives and percentage of

false negatives. As is evidenced in Table (8) Step 3 provides an accurate identification of the

top 3,000 dynamic response genes with an error which ranges from 3.74% for σ = 0.1 to

5.24% for σ = 0.3.

Gene Response Modules: The IHC clustering method in Step 4 of the pipeline was used

to group the top 3,000 DRGs into gene response modules for each of the simulated datasets.

The adjusted rand index (ARI) (79) provides an overall similarity measure between two

clustering assignments taking into account that the agreement between partitions could arise

by chance alone. Thus, the ARI provides a measure of the similarity of two clustering

methods. This index has an expected value of zero for independent clusterings and

maximum value 1 for identical clusterings. Table 9 shows the adjusted rand index for the

true cluster assignment and the cluster assignment identified by Step 4 of the pipeline.

Overall, step 4 provides clusters that are very similar to the true cluster assignment with an

similarity which ranges from 82% for σ = 0.1 to 75% for σ = 0.3.

Gene Response Network: Step 6 attains the gene response networks for each simulation

data set. As these networks are likely to have differing number of nodes as different

simulations can generate a different number of clusters, we cannot compare these networks

directly. Instead we compare the edge weights in terms of the DRGs as opposed to the

clusters by computing a 3000 × 3000 matrix which assigns the edge of each cluster to each

of the DRGs in that cluster. Table 9 uses one minus the Hamming distance to compare the

percentage of coordinates (i.e., nodes) that are the same. Step 6 provides networks that are

very similar to the true networks with a similarity which ranges from 79% for σ = 0.1 to

73% for σ = 0.3.

Simulation 2

The simulated data was obtained as follows. Let η be a matrix size 22, 277 × 15 containing

the time course gene expression data set GSE52428, subject 1. The simulated time course

data can be generated as follows:

yj ti = ηj ti + σjϵj ti

for j = 1, …, 22, 277, indexing each gene and i = 1, …, 15, indexing each time point, ϵj(ti) is
normally distributed random variable with mean 0 and variance 1 whereas σj quantifies the

magnitude of the measurement error. The simulated data were generated for three

measurement error levels: σj = 0.1κj, σj = 0.2κj and σj = 0.3κj, where κj represents the

sample standard deviation of the jth gene and each simulation was performed 1000 times.
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The results obtained from the application of the pipeline to this simulated data is described

as follows.

Dynamic Response Genes: The F-test statistic in Step 3 of the pipeline was used to

identify the top 3,000 dynamic response genes (DRGs) for each of the simulated datasets.

Table 8 shows the average percentage of genes that were identified as DRGs but were in fact

non-responsive genes (false positives) and average percentage of genes that were identified

as non-responsive genes but were in fact DRGs (false negatives). As is evidenced in Table

(8) Step 3 provides an accurate identification of the top 3,000 dynamic response genes with

an error which ranges from 2% for σ = 0.1 to 5.68% for σ = 0.3.

Gene Response Modules: The IHC clustering method in Step 4 of the pipeline was used

to group the top 3,000 DRGs into gene response modules for each of the simulated datasets.

The ARI provides a measure of the similarity of two clustering methods. This index has an

expected value of zero for independent clusterings and maximum value 1 for identical

clusterings. Table 9 shows the adjusted rand index for the true cluster assignment and the

cluster assignment identified by Step 4 of the pipeline. Overall, step 4 provides clusters that

are very similar to the true cluster assignment with an similarity which ranges from 90% for

σ = 0.1 to 74% for σ = 0.3.

Gene Response Network: Step 6 attains the gene response networks for each simulation

data set. Table 9 uses one minus the Hamming distance to compare the percentage of

coordinates (i.e., nodes) that are the same. Step 6 provides networks that are very similar to

the true networks with a similarity which ranges from 81% for σ = 0.1 to 80% for σ = 0.3.

These results indicate that there is consistency in the output returned by the pipeline. In

other words, given a set of genomic time course data with underlying behavioural patterns

shared by groups of dynamically-responsive genes, the pipeline is able to identify these

groups of genes as DRGs, cluster them into GRMs based on their expression patterns and

determine the GRN that describes the interactions between these modules. This consistency

is manifest in the objective correspondence between the results (DRGs, GRMs, and GRN)

obtained from the original data and those obtained from the simulated data sets. Table 8

shows that rates of false positives and negatives between DRGs from real and simulated are

low. In other words, if a group of genes within the dataset are dynamically responsive, then

the pipeline will correctly class them, on average, as DRGs. Similarly, the high rand indices

(close to 1) observed when comparing real and simulated modules, and displayed in Table 9,

show that the clustering method used by the pipeline performs well. Finally, correspondence

was observed between the GRNs from real and simulated data, as shown in Table 11. The

coherence between the results from real and simulated data serves as strong evidence that

the output returned by the pipeline is truly representative of the dynamic response patterns

hidden in a large data set, such as those provided by the GEO.

The Pipeline for Dynamic Gene Expression Data Sensitivity Analysis

Various steps of the Pipeline for Dynamic Gene Expression Data have tuning parameters

that must be provided by the user or set to default for instance: step 3 either uses spline
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smoothing (default) or functional principal component analysis to estimate the trajectory of

the genes and subsequently selects a fixed number of dynamic response genes, nDRG
(default is 3000); step 4 selects the average within cluster correlations and the higher bound

for the within cluster corelations (default α = 0.7); step 6 uses either LASSO (default) or

SCAD to do variable selection and selects the corresponding regulation parameter γ using

either GCV, AIC or BIC (default approach selects γ by minimizing GCV). In this section,

we examine the sensitivity of the results to each of these parameters.

Dynamic Response Genes:

The F-test statistic in Step 3 of the pipeline was used to identify the dynamic response genes

(DRGs) for the time course gene expression data set GSE52428, subject 1. We compare

three different numbers of the top ranking dynamic response genes nDRG set to 2000, 4000

or 5000 to the default for that approach namely, nDRG = 3000 for both spline smoothing

(SS) and functional principal components analysis (FPCA). We also compare the difference

between the different approaches SS vrs FPCA for nDRG set to 2000, 4000 or 5000. Table 8

shows the sum of the percentage of genes that were identified as DRGs but were in fact non-

responsive genes (false positives) and the percentage of genes that were identified as non-

responsive genes but were in fact DRGs (false negatives) for each scenario. As is evidenced

in Table (8) Step 3 provides an stable identification of the top dynamic response genes with

a variation which ranges from 4.48% for nDRG = 2000 to 8.97% for nDRG = 5000 for SS

and FPCA. As expected there are some differences between the DRGS identified by the SS

and FPCA approaches with an agreement regarding DRG selection of 90.40% for nDRG =

2000 and 79.66% for nDRG = 5000.

Gene Response Modules:

The IHC clustering method in Step 4 of the pipeline was used to group the top 3,000 DRGs

into gene response modules for the time course gene expression data set GSE52428, subject

1. Table 9 shows the adjusted rand index for the cluster assignment identified by Step 4 of

the pipeline with α = 0.7 and the cluster assignment identified by Step 4 of the pipeline with

α set to 0.6, 0.8 or 0.9 for both the SS and FPCA approaches. Overall, step 4 provides

clusters that are robust to the selection of the parameter α as the ARI of the clusters is 99%

for all levels of α for both the SS and FPCA approaches. As expected theres is not much

similarity between clusters identified by the SS and FPCA approches with an agreement

regarding cluster assignment of 39% for all levels of α.. The FPCA approach borrows

information across genes to attain an estimate the trajectories of the genes, thus the

estimated trajectories will be more similar to one another for this approach than SS approach

where the trajectories for each gene are attained from smoothing the observations from each

gene individually. In light of this the FPCA is likely to produce less clusters containing more

genes.

Gene Response Network:

Step 6 attains the gene response networks for each simulation data set. Here we use one

minus the Hamming distance to compare the percentage of coordinates (i.e., nodes) that are

the same. Table 9 shows the percentage of common coordinates for the various approaches

for selecting the regulation parameter γ, namely, GCV, AIC and BIC. For the SS approach
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Step 6 provides networks that are robust to the technique used to select the regulation γ
parameter with an average agreement of 0.87. However, for the FPCA approach there is a

considerable variability in the variable selection for various values of γ with an average

agreement of 0.68. We also compare the two proposed approaches LASSO vs SCAD for the

SS and FPCA. For the SS approach Step 6 provides networks that are robust to the model

selection technique used with an average agreement of 0.87. However, for the FPCA

approach there is a considerable variability in networks wit respect to the model selection

technique used with an average agreement of 0.35.

Conclusions

In this article, we propose the Pipeline4DGEData for the statistical modeling and analysis of

the time course gene expression data sets that are available on GEO. Pipeline4DGEData
identifies dynamic gene regulatory networks that determine the host response to an external

stimulus or disease. This pipeline incorporates the following eight steps: (i) obtain the data

from GEO; (ii) pre-process the data; (iii) detect the dynamic response genes; (iv) cluster the

dynamic response genes into gene response modules; (v) annotate these gene response

modules; (vi) construct a gene regulatory network that describes the interactions between

these gene response modules using differential equations; (vii) perform a network feature

analysis to identify influential GRMs and to characterize various properties of the network

and (viii) output the results in a manner that make the publication process more efficient,

i.e., provide a manuscript file for a biological journal that contains all tables and figures

automatically generated by the pipeline and a template for the descriptions of the studies

analyzed and methodologies implemented. Furthermore, the pipeline has a consistent and

scalable structure that facilitates comparative analysis across large groups of data sets.

We demonstrate the utility of the Pipeline for Dynamic Gene Expression Data by using it to

analyze time course gene expression data from nine studies on various influenza viruses.

The goal of our analysis is to simultaneously analyze multiple heterogeneous sources of time

course gene expression data on various influenza viruses to (i) identify robust bio-markers

for influenza infection and (ii) determine virus-specific bio-markers. These two goals

facilitate the diagnosis of virus strains and the identification of vaccine responders at a

population level.

We detect the most significant dynamic response genes for each of the 19 virus subtypes (see

Table 5). Furthermore, we establish the following potential bio-markers for influenza

infection response at population level (37% of the data sets reporting these genes as having a

significant response over time): TRADD, an adapter molecule for TNFRSF1A/TNFR1 that

specifically associates with the cytoplasmic domain of activated TNFRSF1A/TNFR1

mediating its interaction with FADD; ELMO2 involved in cytoskeletal rearrangements

required for phagocytosis of apoptotic cells and cell motility; and STAT1 A signal transducer

and activator of transcription that mediates signaling by interferons IFNs.

Additionally, we determine that there are two types of gene response modules for influenza

infection: (i) there are approximately the same number of genes in each module and each

module’s time course behavior is different (modules with many features); (ii) there are a lot
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of genes in each module and these have a similar behavior over time (dominating up/down

regulated feature).

The network feature analysis can help identify key gene response modules in the gene

regulatory network while also providing insight into the structure of the network allowing us

to make comparisons across various virus subtypes. We find that a lower clustering

coefficient may indicate an expanded response to the influenza infection with 43% of the

data sets supporting this claim.

While the Pipeline for Dynamic Gene Expression Data is shown to produce interesting

biological results, this approach does have some limitations which may warrant more

research in the future. In the network construction step (Step 6), the linear ODE model is

used, but for some applications, nonlinear ODE models or other network models may be

more appropriate. The two-stage approach for linear ODE model selection is highly

dependent on the accuracy of the estimated time course gene expression trajectories and

their derivatives and can produce inaccurate results if these estimates are poor. As a result, a

more robust approach to model selection would be favorable. Finally, we also need to

develop more comparative tools to allow us to produce more in-depth across-study analyses.

In summary, the Pipeline for Dynamic Gene Expression Data allows us to take advantage of

the vast amounts of publicly available data sets and investigate gene regulatory networks for

different biological conditions efficiently. We can examine the dynamic interaction processes

between many hosts and external stimulus across multiple conditions. We believe that these

types of analyses will lead to a better understanding of the heterogeneity of the real world

population. This approach also provides an examination of each host response to a disease or

experimental condition at a genetic level, so that novel prevention and intervention targets

can be discovered at an individual level and personalized or precision medicine can be

achieved.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This research was partially supported by the NIH grants HHSN272201000055C and R01 AI087135. The authors
are grateful to the students, postdoctoral fellows and faculty members who are participating in the GEO-BigData
project at the University of Texas Health Science Center at Houston. The authors would like to thank Canglin Wu
for providing us with the list of GSE numbers and Dr. Nan Deng for helpful discussions.

References

[1]. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and
hybridization array data repository. Nucleic acids research. 2002;30(1):207–210. [PubMed:
11752295]

[2]. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO:
archive for functional genomics data setsupdate. Nucleic acids research. 2013;41(D1):D991–
D995. [PubMed: 23193258]

[3]. NCBI. GEO Summary; 2016. Available from: http://www.ncbi.nlm.nih.gov/geo/summary/.

Carey et al. Page 20

Stat Methods Med Res. Author manuscript; available in PMC 2021 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov/geo/summary/


[4]. De Jong H Modeling and simulation of genetic regulatory systems: a literature review. Journal of
computational biology. 2002;9(1):67–103. [PubMed: 11911796]

[5]. Hecker M, Lambeck S, Toepfer S, Van Someren E, Guthke R. Gene regulatory network inference:
data integration in dynamic modelsa review. Biosystems. 2009;96(1):86–103. [PubMed:
19150482]

[6]. Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine.
Nature Reviews Clinical Oncology. 2011;8(3):184–187.

[7]. Khoury MJ, Gwinn ML, Glasgow RE, Kramer BS. A population approach to precision medicine.
American journal of preventive medicine. 2012;42(6):639–645. [PubMed: 22608383]

[8]. Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information: detecting and evaluating
dependencies between variables. Bioinformatics. 2002;18(suppl 2):S231–S240. [PubMed:
12386007]

[9]. Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global discovery of
conserved genetic modules. science. 2003;302(5643):249–255. [PubMed: 12934013]

[10]. Thomas R Boolean formalization of genetic control circuits. Journal of theoretical biology.
1973;42(3):563–585. [PubMed: 4588055]

[11]. Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic Boolean networks: a rule-based
uncertainty model for gene regulatory networks. Bioinformatics. 2002;18(2):261–274. [PubMed:
11847074]

[12]. Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian networks to analyze expression data.
Journal of computational biology. 2000;7(3–4):601–620. [PubMed: 11108481]

[13]. Kim SY, Imoto S, Miyano S. Inferring gene networks from time series microarray data using
dynamic Bayesian networks. Briefings in bioinformatics. 2003;4(3):228–235. [PubMed:
14582517]

[14]. Perrin BE, Ralaivola L, Mazurie A, Bottani S, Mallet J, dAlche Buc F. Gene networks inference
using dynamic Bayesian networks. Bioinformatics. 2003;19(suppl 2):ii138–ii148. [PubMed:
14534183]

[15]. Holter NS, Maritan A, Cieplak M, Fedoroff NV, Banavar JR. Dynamic modeling of gene
expression data. Proceedings of the National Academy of Sciences. 2001;98(4):1693–1698.

[16]. Sakamoto E, Iba H. Inferring a system of differential equations for a gene regulatory network by
using genetic programming. In: Evolutionary Computation, 2001. Proceedings of the 2001
Congress on vol. 1. IEEE; 2001. p. 720–726.

[17]. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, et al. Characterization of single-
nucleotide polymorphisms in coding regions of human genes. Nature genetics. 1999;22(3):231–
238. [PubMed: 10391209]

[18]. Affymetririx. Statistical Algorithms Description Document. Affymetrix white papers. 2002;.

[19]. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration,
normalization, and summaries of high density oligonucleotide array probe level data.
Biostatistics. 2003;4(2):249–264. [PubMed: 12925520]

[20]. Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F. A model-based background
adjustment for oligonucleotide expression arrays. Journal of the American statistical Association.
2004;99(468):909–917.

[21]. Millenaar FF, Okyere J, May ST, van Zanten M, Voesenek LA, Peeters AJ. How to decide?
Different methods of calculating gene expression from short oligonucleotide array data will give
different results. BMC bioinformatics. 2006;7(1):137. [PubMed: 16539732]

[22]. Lim WK, Wang K, Lefebvre C, Califano A. Comparative analysis of microarray normalization
procedures: effects on reverse engineering gene networks. Bioinformatics. 2007;23(13):i282–
i288. [PubMed: 17646307]

[23]. Green PJ, Silverman BW. Nonparametric regression and generalized linear models: a roughness
penalty approach. CRC Press; 1993.

[24]. Silverman B, Ramsay J. Functional Data Analysis. Springer; 2005.

[25]. Golub GH, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good
ridge parameter. Technometrics. 1979;21(2):215–223.

Carey et al. Page 21

Stat Methods Med Res. Author manuscript; available in PMC 2021 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[26]. Yao F, Müller HG, Wang JL. Functional data analysis for sparse longitudinal data. Journal of the
American Statistical Association. 2005;100(470):577–590.

[27]. Wu S, Wu H. More powerful significant testing for time course gene expression data using
functional principal component analysis approaches. BMC bioinformatics. 2013;14(1):6.
[PubMed: 23323795]

[28]. Carey M, Wu S, Gan G, Wu H. Correlation-based iterative clustering methods for time course
data: the identification of temporal gene response modules for influenza infection in humans.
Infectious Disease Modelling, in press, http://dxdoiorg/101016/jidm201607001. 2016;.

[29]. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists
using DAVID bioinformatics resources. Nature protocols. 2009;4(1):44–57. [PubMed: 19131956]

[30]. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the
comprehensive functional analysis of large gene lists. Nucleic acids research. 2009;37(1):1–13.
[PubMed: 19033363]

[31]. Lu T, Liang H, Li H, Wu H. High-dimensional ODEs coupled with mixed-effects modeling
techniques for dynamic gene regulatory network identification. Journal of the American
Statistical Association. 2011;106(496).

[32]. Wu S, Liu ZP, Qiu X, Wu H. High-Dimensional Ordinary Differential Equation Models for
Reconstructing Genome-Wide Dynamic Regulatory Networks. In: Topics in Applied Statistics.
Springer; 2013. p. 173–190.

[33]. Hemker P Numerical methods for differential equations in system simulation and in parameter
estimation. Analysis and Simulation of biochemical systems. 1972;p. 59–80.

[34]. Bard Y, Bard Y. Nonlinear parameter estimation; 1974.

[35]. Voit EO, Almeida J. Decoupling dynamical systems for pathway identification from metabolic
profiles. Bioinformatics. 2004;20(11):1670–1681. [PubMed: 14988125]

[36]. Liang H, Wu H. Parameter estimation for differential equation models using a framework of
measurement error in regression models. Journal of the American Statistical Association.
2008;103(484).

[37]. Tibshirani R Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B (Methodological). 1996;p. 267–288.

[38]. Zou H The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical
Association. 2006;101(476):1418–1429.

[39]. Fan J, Li R. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties.
Journal of the American Statistical Association. 2001;96(456):1348–1360.

[40]. Bates DM, Watts DG. Nonlinear regression: iterative estimation and linear approximations.
Nonlinear regression analysis and its applications. 1988;p. 32–66.

[41]. Huber W, Carey VJ, Long L, Falcon S, Gentleman R. Graphs in molecular biology. BMC
bioinformatics. 2007;8(6):1. [PubMed: 17199892]

[42]. Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P. Coexpression analysis of human genes across many
microarray data sets. Genome research. 2004;14(6):1085–1094. [PubMed: 15173114]

[43]. Konganti K, Wang G, Yang E, Cai JJ. SBEToolbox: a Matlab toolbox for biological network
analysis. Evolutionary Bioinformatics. 2013;9:355. [PubMed: 24027418]

[44]. Nieminen J On the centrality in a graph. Scandinavian journal of psychology. 1974;15(1):332–
336. [PubMed: 4453827]

[45]. Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks.
Nature. 2001;411(6833):41–42. [PubMed: 11333967]

[46]. Koschützki D, Schreiber F. Centrality analysis methods for biological networks and their
application to gene regulatory networks. Gene regulation and systems biology. 2008;2:193.
[PubMed: 19787083]

[47]. Bavelas A Communication patterns in task-oriented groups. The Journal of the Acoustical
Society of America. 1950;22(6):725–730.

[48]. Hage P, Harary F. Eccentricity and centrality in networks. Social networks. 1995;17(1):57–63.

Carey et al. Page 22

Stat Methods Med Res. Author manuscript; available in PMC 2021 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dxdoiorg/101016/jidm201607001


[49]. Barrenas F, Chavali S, Holme P, Mobini R, Benson M. Network properties of complex human
disease genes identified through genome-wide association studies. PloS one. 2009;4(11):e8090.
[PubMed: 19956617]

[50]. Hwang W, Cho Yr, Zhang A, Ramanathan M. Bridging centrality: identifying bridging nodes in
scale-free networks. In: Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining; 2006. p. 20–23.

[51]. Hallinan JS. Cluster analysis of the p53 genetic regulatory network: Topology and biology. In:
Computational Intelligence in Bioinformatics and Computational Biology, 2004. CIBCB’04.
Proceedings of the 2004 IEEE Symposium on IEEE; 2004. p. 1–8.

[52]. Palumbo MC, Colosimo A, Giuliani A, Farina L. Functional essentiality from topology features
in metabolic networks: a case study in yeast. FEBS letters. 2005;579(21):4642–4646. [PubMed:
16095595]

[53]. Watts DJ, Strogatz SH. Collective dynamics of small-worldnetworks. nature.
1998;393(6684):440–442. [PubMed: 9623998]

[54]. Wasserman S, Faust K. Social network analysis: Methods and applications. vol. 8. Cambridge
university press; 1994.

[55]. Cai JJ, Borenstein E, Petrov DA. Broker genes in human disease. Genome biology and evolution.
2010;2:815–825. [PubMed: 20937604]

[56]. Huang CH, Chen TH, Ng KL. Graph theory and stability analysis of protein complex interaction
networks. IET systems biology. 2016;10(2):64–75. [PubMed: 26997661]

[57]. Grewal N, Singh S, Chand T. Effect of Aggregation Operators on Network-based Disease Gene
Prioritization: A Case Study on Blood Disorders. IEEE/ACM Transactions on Computational
Biology and Bioinformatics. 2016;.

[58]. (WHO) WHO. Influenza (Seasonal) fact-sheet; 2016. Available from: http://www.who.int/
mediacentre/factsheets/fs211/en/.

[59]. Woods CW, McClain MT, Chen M, Zaas AK, Nicholson BP, Varkey J, et al. A host
transcriptional signature for presymptomatic detection of infection in humans exposed to
influenza H1N1 or H3N2. PLoS One. 2013;8(1):e52198. [PubMed: 23326326]

[60]. Djavani M, Crasta OR, Zhang Y, Zapata JC, Sobral B, Lechner MG, et al. Gene expression in
primate liver during viral hemorrhagic fever. Virology Journal. 2009;6(1):1. [PubMed: 19126194]

[61]. Shapira SD, Gat-Viks I, Shum BO, Dricot A, de Grace MM, Wu L, et al. A physical and
regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell.
2009;139(7):1255–1267. [PubMed: 20064372]

[62]. Jin S, Li Y, Pan R, Zou X. Characterizing and controlling the inflammatory network during
influenza A virus infection. Scientific reports. 2014;4.

[63]. Huang Y, Zaas AK, Rao A, Dobigeon N, Woolf PJ, Veldman T, et al. Temporal dynamics of host
molecular responses differentiate symptomatic and asymptomatic influenza a infection. PLoS
Genet. 2011;7(8):e1002234. [PubMed: 21901105]

[64]. Thakar J, Hartmann BM, Marjanovic N, Sealfon SC, Kleinstein SH. Comparative analysis of
anti-viral transcriptomics reveals novel effects of influenza immune antagonism. BMC
immunology. 2015;16(1):46. [PubMed: 26272204]

[65]. Niu Z, Chasman D, Eisfeld AJ, Kawaoka Y, Roy S. Multi-task Consensus Clustering of Genome-
wide Transcriptomes from Related Biological Conditions. Bioinformatics. 2016;p. btw007.

[66]. Mitchell HD, Eisfeld AJ, Sims AC, McDermott JE, Matzke MM, Webb-Robertson BJM, et al. A
network integration approach to predict conserved regulators related to pathogenicity of influenza
and SARS-CoV respiratory viruses. PloS one. 2013;8(7):e69374. [PubMed: 23935999]

[67]. Itkes A. Oligoadenylate and cyclic AMP: interrelation and mutual regulation. In: Biological
Response ModifiersInterferons, Double-Stranded RNA and 2, 5-Oligoadenylates. Springer; 1994.
p. 209–221.

[68]. Cao M, Wei C, Zhao L, Wang J, Jia Q, Wang X, et al. DnaJA1/Hsp40 is co-opted by influenza A
virus to enhance its viral RNA polymerase activity. Journal of virology. 2014;88(24):14078–
14089. [PubMed: 25253355]

[69]. Bohn JA, BeMiller JN. (1 3)-β-D-Glucans as biological response modifiers: a review of structure-
functional activity relationships. Carbohydrate polymers. 1995;28(1):3–14.

Carey et al. Page 23

Stat Methods Med Res. Author manuscript; available in PMC 2021 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.who.int/mediacentre/factsheets/fs211/en/
http://www.who.int/mediacentre/factsheets/fs211/en/


[70]. LoVerme J, La Rana G, Russo R, Calignano A, Piomelli D. The search for the
palmitoylethanolamide receptor. Life sciences. 2005;77(14):1685–1698. [PubMed: 15963531]

[71]. Yuan S Drugs to cure avian influenza infection–multiple ways to prevent cell death. Cell death &
disease. 2013;4(10):e835. [PubMed: 24091678]

[72]. Davidson S, Crotta S, McCabe TM, Wack A. Pathogenic potential of interferon αβ in acute
influenza infection. Nature communications. 2014;5.

[73]. Dubois J, Terrier O, Rosa-Calatrava M. Influenza viruses and mRNA splicing: doing more with
less. MBio. 2014;5(3):e00070–14. [PubMed: 24825008]

[74]. Dudek SE, Luig C, Pauli EK, Schubert U, Ludwig S. The clinically approved proteasome
inhibitor PS-341 efficiently blocks influenza A virus and vesicular stomatitis virus propagation
by establishing an antiviral state. Journal of virology. 2010;84(18):9439–9451. [PubMed:
20592098]

[75]. Turpin E, Luke K, Jones J, Tumpey T, Konan K, Schultz-Cherry S. Influenza virus infection
increases p53 activity: role of p53 in cell death and viral replication. Journal of virology.
2005;79(14):8802–8811. [PubMed: 15994774]

[76]. Husain M, Harrod KS. Enhanced acetylation of alpha-tubulin in influenza A virus infected
epithelial cells. FEBS letters. 2011;585(1):128–132. [PubMed: 21094644]

[77]. Han X, Li Z, Chen H, Wang H, Mei L, Wu S, et al. Influenza virus A/Beijing/501/2009 (H1N1)
NS1 interacts with β-tubulin and induces disruption of the microtubule network and apoptosis on
A549 cells. PLoS One. 2012;7(11):e48340. [PubMed: 23139776]

[78]. JACKSON GG, DOWLING HF, SPIESMAN IG, BOAND AV. Transmission of the common cold
to volunteers under controlled conditions: I. The common cold as a clinical entity. AMA
Archives of Internal Medicine. 1958;101(2):267–278. [PubMed: 13497324]

[79]. Hubert L, Arabie P. Comparing partitions. Journal of classification. 1985;2(1):193–218.

Carey et al. Page 24

Stat Methods Med Res. Author manuscript; available in PMC 2021 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1.
Summary of the eight steps implemented by the Pipeline4DGEData
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Figure 2.
Schematic for the structure of the folders created by the Pipeline for Dynamic Gene
Expression Data
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Figure 3.
Distribution of the number of time-points and the number of genes/probes
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Figure 4.
Typical Time-Course Patterns of the GRMs
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Figure 5.
The standardized clustering coefficient, density, bridging centrality and closeness centrality

of the GRNs for the 19 virus subtypes.
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Figure 6.
The GRNs for two experimental conditions in the study of GSE19392: cells treated with

IFNb (top) and PR8 virus lacking the NS1 gene (bottom)
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Figure 7.
The GRNs for GSE37571 A/CA/04/2009 (top) and GSE52428 H3N2 Subject 9 (bottom)
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Table 1.

A brief overview of the pre-processing techniques: Microarray suite 5 (MAS5), Robust Multi-array Average

(RMA) and Guanine Cytosine Robust Multi-Array Analysis (GCRMA).

Technique Background adjustment Normalization Summarization

MAS5 Ideal (full or partial) MM subtraction Constant Turkey biweight

RMA Signal (exponential) and noise (normal) close-form transformation Quantile Median polish

GCRMA Optical noise, probe affinity and MM adjustment Quantile Median polish
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Table 2.

The node metrics which identify influential modules and the network metrics which provide insight on the

organization of the host response to the external stimulus or disease.

Node Metrics

Degree centrality is the number of links that a node has with other nodes in the network (44).

Biological interpretation: GRMs with high metrics are likely to be hubs since they play central regulatory roles (45;
46).

Closeness centrality is the average distance from a given node to all other nodes in the network (47).

Biological interpretation: A measure of a GRM’s proximity to other GRMs. Identifies groups of GRMs (46).

Eccentricity is the greatest geodesic distance between a node and any other node in the network (48).

Biological interpretation: A GRM with a high metric may be more influential or more easily influenced by other
GRMs and a GRM with a low metric is influenced or influencing neighbouring GRMs. (49).

Bridging centrality measures the extent to which a node or an edge is located between well-connected regions (50).

Biological interpretation: Identifies GRMs that are located between large groups of GRMs (51; 52).

Clustering Coefficient measures the degree of interconnectivity in the neighborhood of a node (53).

Biological interpretation: measures the extent to which the GRMs regulated by a given GRM also regulate each
other. Identifies GRM cliques or groups (50).

Network Metrics

Density The proportion of direct ties in a network relative to the total number possible (54).

Biological interpretation: Measures the sparsity or denseness of a GRN (55).

Diameter is the shortest distance between the two most distant nodes in the network (54).

Biological interpretation: Lets us compare GRNs based on size and indicates how quickly something might spread
through the GRN (56; 57).
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Table 3.

The contents of each folder produced by Steps 2–7 of the Pipeline for Dynamic Gene Expression Data

File name Description

Step 2

raw_data.mat A Matlab file containing the raw unprocessed data (if .cell files are available)

processed_data.mat A Matlab file containing the processed data (if .cell files are available)

Step 3

Matlab_Workspace3.mat A Matlab file containing all the variables that the pipeline has required thus far.

Derivative_Fitted_Curves.csv The first derivative of the estimated smooth trajectories of each gene expression over time.

DRG.csv The probe set ids and the time course genes expression of each of the Dynamic Response Genes.

F_value.csv The F-value for each gene.

Fitted_curves.csv The estimated smooth trajectories of each gene expression over time.

Index_Ftest_DRGs.csv The index of the DRGs ranked by their F-Statistic.

Index_Ftest.csv The index of the probe set ids ranked by their F-Statistic.

Probe_set_ID_Ftest_DRG.csv The probe set ids of the DRGs ranked by their F-Statistic.

Step 4

Matlab_Workspace4.mat A Matlab file containing all the variables that the pipeline has required thus far.

Cluster_IDX.csv The cluster index for each of the DRGs.

Cluster_MT.csv The probe set ids for each of the DRGs and a number indicating which type of module this probe set belongs
to SGM (1), SSM (2), MSM (3) and LSM (4).

GRMs.pdf A file containing a plot of the time-course patterns for all the genes in each GRM.

Step 5

Matlab_Workspace5.mat A Matlab file containing all the variables that the pipeline has required thus far.

M1/Chart_report_of_M1.csv The annotation and enrichment analysis which highlights the most relevant terms associated with the genes
contained in GRM 1. There is a folder and file for each GRM.

M1/Table_report_of_M1.csv The annotation and enrichment analysis which highlights the most relevant terms associated with the genes
contained in GRM 1. There is a folder and file for each GRM.

Step 6

Matlab_Workspace6.mat A Matlab file containing all the variables that the pipeline has required thus far.

Coefficients.xls
The estimated regulation effects β p, q, j p = 0

Q

Dependency_matrix.xls The GRMs inward and outward connections.

Step 7

Matlab_Workspace7.mat A Matlab file containing all the variables that the pipeline has required thus far.

Adjacency_matrix.xls
The estimated regulation effects αp, q, j p = 1

Q

Dependency_matrix.xls The GRMs inward and outward connections.

Network_Statistics.xls The Network metrics for the GRN.

Node_metrics.xls The Network metrics for the GRMs.

Network_plot.pdf A plot of the GRNs.
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Table 4.

The details for each of the 19 virus subtypes for the nine influenza-related studies containing genome-wide

time course gene expression data obtained from the GEO database.

GSE number Virus Subtype No. Hosts Bio Sample Organism

GSE52428 H1N1/Brisbane 24 peripheral blood Homo sapiens

GSE12254 WE (LCMV-WE) 1 liver sample Macaca mulatta

GSE19392 delNS1 post trypsin 1 bronchial epithelial cells Homo sapiens

GSE19392 PR8 post trypsin 1 bronchial epithelial cells Homo sapiens

GSE19392 vRNA LTX+RNA 1 bronchial epithelial cells Homo sapiens

GSE19392 treated with media alone 1 bronchial epithelial cells Homo sapiens

GSE19392 treated with IFNb IFN 1 bronchial epithelial cells Homo sapiens

GSE19392 treated with LTX transfection reagent 1 bronchial epithelial cells Homo sapiens

GSE37571 A/CA/04/2009 1 Calu-3 lung adenocarcinoma cell line Homo sapiens

GSE37571 Mock 1 Calu-3 lung adenocarcinoma cell line Homo sapiens

GSE30550 H3N2/Wisconsin 17 peripheral blood Homo sapiens

GSE40844 Mock 1 Calu-3 lung adenocarcinoma cell line Homo sapiens

GSE41067 H1N1 influenza A/New Caledonia/20/1999 1 monocyte-derived dendritic cells Homo sapiens

GSE47960 dORF6 1 bronchial epithelial cells Homo sapiens

GSE47960 iSARs 1 bronchial epithelial cells Homo sapiens

GSE47960 Mock 1 bronchial epithelial cells Homo sapiens

GSE47961 BAT 1 bronchial epithelial cells Homo sapiens

GSE47961 dORF6 1 bronchial epithelial cells Homo sapiens

GSE47961 H1N1 1 bronchial epithelial cells Homo sapiens
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Table 5.

The most significant DRGs for each of the 19 virus subtypes.

GSE number Virus Strand Most Significant DRG’s

GSE52428 H1N1/Brisbane,
H3N2/Wisconsin

2’-5’-oligoadenylate synthetase-like, KH domain containing, RNA binding, signal transduction
associated 3

GSE12254 WE (LCMV-WE) CHK1 checkpoint homolog, RAD58 homolog (RecA homolog, E. coli), RAD52 homolog

GSE19392 delNS1 post trypsin DnaJ (Hsp40) homolog, subfamily A, member 1, cyclin A1, inhibitor of DNA binding 2, dominant
negative helix-loop-helix protein

GSE19392 PR8 post trypsin glucan (1,4-alpha-), branching enzyme 1, matrix metallopeptidase 1 (interstitial collagenase),
ornithine decarboxylase 1

GSE19392 vRNA LTX+RNA STAM binding protein, cysteine and glycine-rich protein 2, polymerase (RNA) III (DNA directed)
polypeptide K

GSE19392 treated with media
alone

bone marrow stromal cell antigen 2, interferon stimulated exonuclease gene, proteasome (prosome,
macropain) subunit

GSE19392 treated with IFNb IFN N-myc (and STAT) interactor, PHD finger protein 11, interferon-induced protein 44-like, tripartite
motif-containing 22

GSE19392 treated with LTX
transfection reagent

interferon induced transmembrane protein 1, interferon stimulated exonuclease gene, radical S-
adenosyl methionine domain containing 2

GSE37571 A/CA/04/2009 CCAAT/enhancer binding protein (C/EBP), complement factor B, PCSK9, TUBB8, kinesin family
member 4A

GSE37571 Mock major histocompatibility complex, class I, E, complement factor B, major histocompatibility
complex, class I, A, HLA-G

GSE30550 H3N2/Wisconsin Anaphase-promoting complex subunit MND2, Bud site selection protein 22, C-8 sterol isomerase,
Vacuolar-sorting protein SNF7

GSE40844 Mock tetraspanin 8, kelch-like 24 (Drosophila), hect domain and RLD 5, DEAD (Asp-Glu-Ala-Asp) box
polypeptide 60

GSE41067 H1N1 influenza
A/New
Caledonia/20/1999

HLA complex P5, DEXH (Asp-Glu-X-His) box polypeptide 58, interferon, alpha-inducible protein
6

GSE47960 dORF6 XIAP associated factor 1, interferon-induced protein 44-like, interferon induced transmembrane
protein 1 (9–27)

GSE47960 iSARs trafficking protein, kinesin binding 1, RAD23 homolog B (S. cerevisiae), chemokine (C-X-C
motif) ligand 10

GSE47960 Mock tribbles homolog 1 (Drosophila), tumor necrosis factor, alpha-induced protein 2, PR domain
containing 1, with ZNF domain

GSE47961 BAT eyes absent homolog 3, BAI1-associated protein 2, cardiotrophin-like cytokine factor 1, endothelin
2

GSE47961 dORF6 N-acyl phosphatidylethanolamine phospholipase D, LIM and senescent cell antigen-like domains
3, zinc finger protein 564

GSE47961 H1N1 interferon, alpha-inducible protein 27, nterferon induced transmembrane protein 4 pseudogene,
MHC class I polypeptide-related seq B
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Table 6.

The identified DRGs that are common across 17 or more data sets

Gene Symbol Function

fbx11 Substrate recognition component of the a (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates
the ubiquitination and subsequent proteasomal degradation of target proteins

Fau This protein is synthesized with ribosomal S30 as its C-terminal extension.

APEH This enzyme catalyzes the hydrolysis of the N-terminal peptide bond of an N-acetylated peptide to generate an N-acetylated
amino acid and a peptide with a free N-terminus.

nadK Belongs to the NAD kinase family

Necap1 Involved in endocytosis.

nsfl1c Reduces the ATPase activity of VCP. Necessary for the fragmentation of Golgi stacks during mitosis and for VCP-mediated
reassembly of Golgi stacks after mitosis.

RAB6C Protein transport. Regulator of membrane traffic from the Golgi apparatus towards the endoplasmic reticulum (ER).

YCR015C Belongs to the UPF0655 family.

CTSS Thiol protease.

Cdc25b Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression.

COL2A1 Type II collagen is specific for cartilaginous tissues. It is essential for the normal embryonic development of the skeleton, for
linear growth and for the ability of cartilage to resist compressive forces.

CRYAB May contribute to the transparency and refractive index of the lens., mass spectrometry

SERPING1 Activation of the C1 complex is under control of the C1-inhibitor. It forms a proteolytically inactive stoichiometric complex
with the C1r or C1s proteases. May play a potentially crucial role in regulating important physiological pathways including
complement activation, blood coagulation, fibrinolysis and the generation of kinins.

RTEL1 ATP-dependent DNA helicase required to sup-press inappropriate homologous recombination, thereby playing a central role
DNA repair and in the maintenance of genomic stability

POLR2E DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates
as substrates.
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Table 7.

GRMs from different studies.

GSE number Virus Strand Number of GRMs Time Course Pattern

GSE19392 delNS1 post trypsin 57 Two dominating features up/down regulation

GSE19392 PR8 post trypsin 63 Two dominating features up/down regulation

GSE19392 vRNA LTX+RNA 36 Two dominating features up/down regulation

GSE12254 WE (LCMV-WE) 57 Two dominating features up/down regulation

GSE37571 Mock 18 Two dominating features up/down regulation

GSE40844 Mock 17 Two dominating features up/down regulation

GSE41067 H1N1 influenza A/New
Caledonia/20/1999

17 Two dominating features up/down regulation

GSE47960 dORF6 47 Two dominating features up/down regulation

GSE47960 Mock 83 Two dominating features up/down regulation

GSE47961 H1N1 19 Two dominating features up/down regulation

GSE19392 treated with media alone 53 A few features all denoting peaks and troughs at different timings

GSE19392 treated with LTX transfection
reagent

34 A few features all denoting peaks and troughs at different timings

GSE52428 H1N1/Brisbane, H3N2/Wisconsin 200–467 Many features all denoting peaks and troughs at different timings

GSE19392 treated with IFNb IFN 56 Many features all denoting peaks and troughs at different timings

GSE37571 A/CA/04/2009 15 Many features all denoting peaks and troughs at different timings

GSE30550 H3N2/Wisconsin 291–400 Many features all denoting peaks and troughs at different timings

GSE47960 iSARs 75 Many features all denoting peaks and troughs at different timings

GSE47961 BAT 36 Many features all denoting peaks and troughs at different timings

GSE47961 dORF6 32 Many features all denoting peaks and troughs at different timings
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Table 8.

Accuracy of the DRG Identification

Error Level False Positives False Negatives

Simulation 1

0.10 1.87% 1.87%

0.20 2.19% 2.19%

0.30 2.62% 2.62%

Simulation 2

0.10 1.00% 1.00%

0.20 2.05% 2.05%

0.30 2.84% 2.84%
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Table 9.

Accuracy of the GRM identification.

Error Level Adjusted rand index (ARI)

Simulation 1

0.10 0.82

0.20 0.79

0.30 0.75

Simulation 2

0.10 0.90

0.20 0.81

0.30 0.74
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Table 10.

Accuracy of the GRN Identification

Error Level 1-Hamming Distance

Simulation 1

0.10 0.79

0.20 0.78

0.30 0.73

Simulation 2

0.10 0.81

0.20 0.81

0.30 0.80
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Table 11.

Sensitivity of the GRN Identification

Step 3

SS vrs SS FPCA vrs FPCA SS vrs FPCA

% of DRGs that differ

nDRG : 2000 vs 3000 4.48% 4.48% 11.76%

nDRG : 4000 vs 3000 4.48% 4.48% 15.76%

nDRG : 5000 vs 3000 8.97% 8.97% 18.59%

Step 3

Adjusted Rand Index (ARI)

α : 0.60 vs 0.7 0.99 0.99 0.39

α : 0.80 vs 0.7 0.99 0.99 0.39

α : 0.90 vs 0.7 0.99 0.99 0.39

Step 6

LASSO

γ : AIC vs GCV 0.87 0.64 0.90

γ : BIC vs GCV 0.88 0.77 0.91

γ : AIC vs BIC 0.87 0.64 0.90

SCAD

γ : AIC vs GCV 0.87 0.64 0.87

γ : BIC vs GCV 0.87 0.77 0.88

Y : AIC vs BIC 0.88 0.64 0.87

LASSO vs SCAD

γ = GCV 0.87 0.35
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