TABLE 3.
Mean REd MD-corrected estimators | Mean REd FG-corrected estimators with d = 0.1 | Mean REd FG-corrected estimators with d = 0.75 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | n | K | PN (n) | CVa | PN (K) | CVb | CVc | (r, ρ)e Minimum | Mediane | (r, ρ)e Minimum | Mediane | (r, ρ)e Minimum | Mediane |
20 | 20 | 20 | 1 | 0.22 (0.11, 0.34) | 1 | 0.22 (0.12, 0.35) | 0.32 (0.17, 0.46) | (0.02, 0) 0.968 | 0.997 | (0.06, 0.01) 0.986 | 0.998 | (0.03, 0) 0.973 | 0.997 |
2 | 0.25 (0.10, 0.38) | 0.34 (0.17, 0.53) | (0.02, 0) 0.963 | 0.997 | (0.05, 0.01) 0.984 | 0.998 | (0.02, 0) 0.968 | 0.997 | |||||
3 | 0.56 (0.31, 0.72) | 0.61 (0.34, 0.87) | (0.02, 0) 0.889 | 0.996 | (0.05, 0) 0.940 | 0.997 | (0.03, 0) 0.902 | 0.996 | |||||
4 | 0.47 (0.37, 0.59) | 0.53 (0.37, 0.69) | (0.05, 0) 0.891 | 0.994 | (0, 0.01) 0.934 | 0.995 | (0.06, 0) 0.901 | 0.994 | |||||
5 | 0.58 (0.46, 0.70) | 0.63 (0.48, 0.79) | (0.05, 0) 0.853 | 0.994 | (0.07, 0) 0.906 | 0.995 | (0.05, 0) 0.865 | 0.994 | |||||
6 | 0.40 (0.29, 0.54) | 0.47 (0.26, 0.68) | (0.03, 0) 0.924 | 0.996 | (0, 0.01) 0.959 | 0.997 | (0.04, 0) 0.932 | 0.996 | |||||
2 | 0.25 (0.12, 0.38) | 1 | 0.22 (0.13, 0.35) | 0.34 (0.18, 0.55) | (0.03, 0) 0.964 | 0.996 | (0.06, 0.01) 0.983 | 0.997 | (0.03, 0) 0.970 | 0.996 | |||
2 | 0.25 (0.13, 0.38) | 0.40 (0.20, 0.61) | (0.03, 0) 0.962 | 0.996 | (0.03, 0.01) 0.981 | 0.997 | (0.04, 0) 0.970 | 0.996 | |||||
3 | 0.55 (0.42, 0.73) | 1 | 0.22 (0.12, 0.34) | 0.60 (0.36, 0.89) | (0.02, 0) 0.896 | 0.985 | (0.13, 0.01) 0.936 | 0.988 | (0.26, 0.01) 0.910 | 0.985 | |||
4 | 0.46 (0.36, 0.56) | 1 | 0.22 (0.12, 0.33) | 0.52 (0.38, 0.69) | (0.16, 0.01) 0.904 | 0.974 | (0.10, 0.01) 0.931 | 0.979 | (0.16, 0.01) 0.911 | 0.974 | |||
5 | 0.58 (0.45, 0.70) | 1 | 0.22 (0.11, 0.35) | 0.63 (0.44, 0.82) | (0.20, 0.01) 0.865 | 0.966 | (0.10, 0.01) 0.904 | 0.973 | (0.18, 0.01) 0.875 | 0.966 | |||
6 | 0.40 (0.25, 0.56) | 1 | 0.22 (0.12, 0.33) | 0.46 (0.28, 0.66) | (0.22, 0.01) 0.935 | 0.985 | (0.10, 0.01) 0.955 | 0.988 | (0.15, 0.01) 0.939 | 0.985 | |||
20 | 20 | 5 | 1 | 0.22 (0.11, 0.34) | 1 | 0.43 (0.25, 0.67) | 0.49 (0.23, 0.84) | (0.09, 0) 0.920 | 0.993 | (0.06, 0.01) 0.948 | 0.995 | (0, 0.01) 0.927 | 0.993 |
0.22 (0.11, 0.33) | 2 | 0.45 (0.27, 0.70) | 0.51 (0.25, 0.91) | (0.08, 0) 0.915 | 0.993 | (0.04, 0.01) 0.945 | 0.994 | (0.01, 0.01) 0.923 | 0.993 | ||||
0.22 (0.11, 0.32) | 3 | 0.64 (0.38, 1.00) | 0.68 (0.39, 1.02) | (0.08, 0) 0.855 | 0.989 | (0.04, 0.01) 0.904 | 0.991 | (0.12, 0) 0.871 | 0.989 | ||||
0.23 (0.14, 0.32) | 4 | 0.56 (0.41, 0.70) | 0.62 (0.41, 0.81) | (0.11, 0) 0.871 | 0.989 | (0.09, 0.01) 0.912 | 0.991 | (0.01, 0.01) 0.883 | 0.989 | ||||
0.23 (0.15, 0.32) | 5 | 0.64 (0.49, 0.85) | 0.69 (0.49, 0.92) | (0.11, 0) 0.840 | 0.987 | (0.06, 0.01) 0.891 | 0.989 | (0.13, 0) 0.856 | 0.987 | ||||
0.22 (0.13, 0.32) | 6 | 0.52 (0.33, 0.84) | 0.58 (0.32, 0.94) | (0.08, 0) 0.889 | 0.991 | (0.04, 0.01) 0.925 | 0.993 | (0, 0.01) 0.900 | 0.991 | ||||
2 | 0.25 (0.13, 0.38) | 1 | 0.43 (0.25, 0.66) | 0.51 (0.26, 0.89) | (0.07, 0) 0.915 | 0.992 | (0.02, 0.01) 0.945 | 0.994 | (0.01, 0.01) 0.923 | 0.992 | |||
2 | 0.45 (0.25, 0.68) | 0.55 (0.31, 0.95) | (0, 0.01) 0.912 | 0.991 | (0.02, 0.01) 0.942 | 0.993 | (0, 0.01) 0.918 | 0.991 | |||||
3 | 0.55 (0.42, 0.71) | 1 | 0.43 (0.25, 0.66) | 0.72 (0.43, 1.17) | (0.06, 0) 0.844 | 0.978 | (0.03, 0.01) 0.897 | 0.982 | (0.08, 0.01) 0.865 | 0.978 | |||
4 | 0.46 (0.37, 0.56) | 1 | 0.43 (0.25, 0.66) | 0.66 (0.43, 0.97) | (0.02, 0.01) 0.854 | 0.966 | (0.02, 0.01) 0.897 | 0.972 | (0.02, 0.01) 0.863 | 0.967 | |||
5 | 0.58 (0.45, 0.70) | 1 | 0.43 (0.24, 0.67) | 0.75 (0.48, 1.20) | (0.03, 0.01) 0.818 | 0.958 | (0, 0.01) 0.870 | 0.965 | (0.03, 0.01) 0.830 | 0.958 | |||
6 | 0.40 (0.25, 0.56) | 1 | 0.43 (0.24, 0.67) | 0.61 (0.39, 1.06) | (0, 0.01) 0.882 | 0.979 | (0.04, 0.01) 0.918 | 0.983 | (0, 0.01) 0.890 | 0.979 | |||
20 | 10 | 20 | 1 | 0.31 (0.18, 0.49) | 1 | 0.22 (0.11, 0.34) | 0.39 (0.21, 0.64) | (0.03, 0) 0.954 | 0.989 | (0.03, 0.01) 0.972 | 0.993 | (0.06, 0.01) 0.960 | 0.989 |
2 | 0.25 (0.13, 0.38) | 0.41 (0.23, 0.63) | (0.01, 0) 0.949 | 0.989 | (0.03, 0.01) 0.969 | 0.992 | (0.05, 0.01) 0.957 | 0.989 | |||||
3 | 0.55 (0.40, 0.73) | 0.64 (0.39, 0.95) | (0.02, 0) 0.874 | 0.987 | (0, 0.01) 0.926 | 0.990 | (0.02, 0) 0.891 | 0.987 | |||||
4 | 0.47 (0.38, 0.59) | 0.58 (0.40, 0.89) | (0.05, 0) 0.876 | 0.983 | (0.02, 0.01) 0.913 | 0.987 | (0.05, 0) 0.889 | 0.983 | |||||
5 | 0.58 (0.46, 0.71) | 0.68 (0.46, 0.91) | (0.03, 0) 0.837 | 0.983 | (0.01, 0.01) 0.890 | 0.986 | (0.05, 0) 0.854 | 0.983 | |||||
6 | 0.40 (0.29, 0.54) | 0.52 (0.32, 0.76) | (0.04, 0) 0.909 | 0.986 | (0.01, 0.01) 0.940 | 0.990 | (0.04, 0) 0.920 | 0.986 | |||||
2 | 0.34 (0.19, 0.51) | 1 | 0.22 (0.11, 0.34) | 0.41 (0.21, 0.64) | (0.02, 0) 0.950 | 0.988 | (0.03, 0.01) 0.968 | 0.991 | (0.05, 0.01) 0.955 | 0.988 | |||
2 | 0.25 (0.13, 0.38) | 0.46 (0.25, 0.70) | (0.03, 0) 0.949 | 0.987 | (0.02, 0.01) 0.965 | 0.991 | (0.04, 0.01) 0.951 | 0.987 | |||||
3 | 0.59 (0.40, 0.79) | 1 | 0.22 (0.11, 0.34) | 0.63 (0.36, 0.92) | (0.01, 0) 0.884 | 0.966 | (0.05, 0.01) 0.922 | 0.973 | (0.12, 0.01) 0.895 | 0.967 | |||
4 | 0.48 (0.39, 0.62) | 1 | 0.22 (0.11, 0.32) | 0.54 (0.37, 0.68) | (0.08, 0.01) 0.901 | 0.964 | (0.03, 0.01) 0.930 | 0.973 | (0.08, 0.01) 0.908 | 0.965 | |||
5 | 0.58 (0.47, 0.71) | 1 | 0.22 (0.11, 0.32) | 0.63 (0.49, 0.79) | (0.10, 0.01) 0.868 | 0.952 | (0.03, 0.01) 0.908 | 0.963 | (0.10, 0.01) 0.877 | 0.953 | |||
6 | 0.44 (0.30, 0.63) | 1 | 0.22 (0.11, 0.32) | 0.50 (0.33, 0.76) | (0.12, 0.01) 0.922 | 0.975 | (0.04, 0.01) 0.946 | 0.981 | (0.08, 0.01) 0.927 | 0.975 | |||
20 | 10 | 5 | 1 | 0.31 (0.18, 0.47) | 1 | 0.43 (0.24, 0.74) | 0.55 (0.28, 0.95) | (0.03, 0.01) 0.905 | 0.981 | (0.03, 0.02) 0.937 | 0.985 | (0.03, 0.01) 0.911 | 0.981 |
2 | 0.45 (0.26, 0.82) | 0.56 (0.32, 1.03) | (0.01, 0.01) 0.898 | 0.980 | (0.05, 0.02) 0.934 | 0.985 | (0.04, 0.01) 0.907 | 0.981 | |||||
0.31 (0.18, 0.49) | 3 | 0.64 (0.38, 0.94) | 0.73 (0.42, 1.30) | (0.06, 0) 0.839 | 0.974 | (0.04, 0.02) 0.892 | 0.979 | (0.02, 0.01) 0.855 | 0.974 | ||||
0.31 (0.21, 0.45) | 4 | 0.56 (0.40, 0.71) | 0.66 (0.42, 0.92) | (0.10, 0) 0.857 | 0.974 | (0.08, 0.02) 0.903 | 0.979 | (0.04, 0.01) 0.869 | 0.974 | ||||
0.32 (0.19, 0.46) | 5 | 0.64 (0.49, 0.94) | 0.74 (0.48, 1.13) | (0.12, 0) 0.824 | 0.969 | (0.10, 0.02) 0.880 | 0.975 | (0.07, 0.01) 0.842 | 0.970 | ||||
0.31 (0.18, 0.47) | 6 | 0.53 (0.32, 0.80) | 0.64 (0.39, 1.11) | (0.02, 0.01) 0.872 | 0.977 | (0.05, 0.02) 0.914 | 0.982 | (0.05, 0.01) 0.883 | 0.977 | ||||
2 | 0.33 (0.19, 0.50) | 1 | 0.43 (0.24, 0.74) | 0.56 (0.30, 1.05) | (0.02, 0.01) 0.898 | 0.979 | (0.04, 0.02) 0.934 | 0.984 | (0.02, 0.01) 0.907 | 0.979 | |||
2 | 0.45 (0.26, 0.82) | 0.60 (0.33, 1.13) | (0.01, 0.01) 0.894 | 0.978 | (0.04, 0.02) 0.931 | 0.983 | (0.06, 0.01) 0.904 | 0.978 | |||||
3 | 0.59 (0.40, 0.79) | 1 | 0.43 (0.24, 0.74) | 0.75 (0.43, 1.29) | (0.06, 0) 0.832 | 0.955 | (0.05, 0.02) 0.888 | 0.963 | (0.06, 0.01) 0.847 | 0.956 | |||
4 | 0.48 (0.39, 0.62) | 1 | 0.43 (0.26, 0.64) | 0.67 (0.46, 0.96) | (0.01, 0.01) 0.851 | 0.953 | (0.03, 0.02) 0.898 | 0.962 | (0.05, 0.01) 0.865 | 0.954 | |||
5 | 0.58 (0.47, 0.71) | 1 | 0.43 (0.26, 0.62) | 0.75 (0.48, 1.11) | (0.01, 0.01) 0.818 | 0.940 | (0.03, 0.02) 0.874 | 0.952 | (0.01, 0.01) 0.834 | 0.941 | |||
6 | 0.44 (0.30, 0.63) | 1 | 0.43 (0.25, 0.65) | 0.64 (0.36, 1.14) | (0.03, 0.01) 0.868 | 0.965 | (0.02, 0.02) 0.912 | 0.972 | (0.03, 0.01) 0.879 | 0.965 | |||
6 | 20 | 20 | 1 | 0.22 (0.03, 0.46) | 1 | 0.21 (0.03, 0.49) | 0.31 (0.04, 0.67) | (0, 0) 0.870 | 0.997 | (0.04, 0) 0.979 | 0.998 | (0, 0) 0.911 | 0.997 |
2 | 0.36 (0.12, 0.63) | 0.42 (0.08, 0.85) | (0, 0) 0.773 | 0.997 | (0.04, 0) 0.956 | 0.997 | (0, 0) 0.842 | 0.997 | |||||
3 | 0.54 (0.28, 0.84) | 0.58 (0.12, 1.07) | (0, 0) 0.633 | 0.996 | (0.03, 0) 0.917 | 0.996 | (0, 0) 0.733 | 0.996 | |||||
4 | 0.54 (0.32, 0.82) | 0.59 (0.36, 0.90) | (0, 0) 0.543 | 0.991 | (0.07, 0) 0.875 | 0.992 | (0, 0) 0.686 | 0.991 | |||||
5 | 0.74 (0.55, 0.92) | 0.78 (0.54, 1.11) | (0, 0) 0.308 | 0.989 | (0.07, 0) 0.797 | 0.990 | (0, 0) 0.510 | 0.989 | |||||
6 | 0.81 (0.50, 1.16) | 0.83 (0.30, 1.37) | (0, 0) 0.421 | 0.994 | (0.04, 0) 0.838 | 0.995 | (0, 0) 0.551 | 0.995 | |||||
2 | 0.36 (0.08, 0.64) | 1 | 0.21 (0.03, 0.49) | 0.42 (0.12, 0.88) | (0, 0) 0.770 | 0.992 | (0.23, 0.01) 0.959 | 0.993 | (0, 0) 0.840 | 0.992 | |||
3 | 0.54 (0.18, 0.86) | 1 | 0.21 (0.03, 0.49) | 0.58 (0.17, 1.10) | (0, 0) 0.633 | 0.985 | (0.29, 0.01) 0.921 | 0.986 | (0.01, 0) 0.732 | 0.985 | |||
4 | 0.53 (0.37, 0.69) | 1 | 0.21 (0.03, 0.49) | 0.57 (0.34, 0.85) | (0.01, 0) 0.573 | 0.946 | (0.10, 0.01) 0.891 | 0.960 | (0.01, 0) 0.700 | 0.951 | |||
5 | 0.73 (0.51, 0.95) | 1 | 0.21 (0.03, 0.48) | 0.76 (0.48, 1.12) | (0.01, 0) 0.327 | 0.918 | (0.12, 0.01) 0.814 | 0.936 | (0.01, 0) 0.522 | 0.925 | |||
6 | 0.82 (0.44, 1.15) | 1 | 0.21 (0.03, 0.49) | 0.83 (0.43, 1.41) | (0.02, 0) 0.422 | 0.963 | (0.32, 0.01) 0.842 | 0.967 | (0.01, 0) 0.547 | 0.964 | |||
6 | 20 | 5 | 1 | 0.22 (0.04, 0.46) | 1 | 0.41 (0.13, 0.85) | 0.47 (0.11, 1.14) | (0, 0) 0.722 | 0.994 | (0, 0.01) 0.937 | 0.994 | (0, 0) 0.804 | 0.994 |
0.22 (0.03, 0.46) | 2 | 0.49 (0, 1.02) | 0.54 (0.14, 1.08) | (0, 0) 0.650 | 0.993 | (0.01, 0.01) 0.918 | 0.993 | (0, 0) 0.752 | 0.993 | ||||
3 | 0.61 (0.13, 1.29) | 0.65 (0.13, 1.27) | (0, 0) 0.546 | 0.990 | (0.09, 0) 0.887 | 0.991 | (0, 0) 0.667 | 0.990 | |||||
0.22 (0.03, 0.42) | 4 | 0.58 (0.18, 1.03) | 0.62 (0.19, 1.14) | (0, 0) 0.541 | 0.988 | (0.17, 0) 0.882 | 0.989 | (0, 0) 0.677 | 0.988 | ||||
0.21 (0.04, 0.44) | 5 | 0.74 (0.40, 1.14) | 0.77 (0.47, 1.29) | (0, 0) 0.359 | 0.983 | (0.15, 0) 0.824 | 0.985 | (0, 0) 0.534 | 0.984 | ||||
0.22 (0.03, 0.46) | 6 | 0.83 (0.36, 1.39) | 0.85 (0.35, 1.58) | (0, 0) 0.406 | 0.986 | (0.09, 0) 0.824 | 0.987 | (0, 0) 0.538 | 0.986 | ||||
2 | 0.36 (0.08, 0.64) | 1 | 0.41 (0.13, 0.85) | 0.55 (0.10, 1.18) | (0, 0) 0.642 | 0.987 | (0.04, 0.01) 0.915 | 0.988 | (0, 0) 0.743 | 0.988 | |||
3 | 0.54 (0.18, 0.86) | 1 | 0.41 (0.13, 0.85) | 0.67 (0.15, 1.38) | (0, 0) 0.534 | 0.979 | (0.04, 0.01) 0.881 | 0.981 | (0, 0) 0.653 | 0.980 | |||
4 | 0.53 (0.37, 0.69) | 1 | 0.41 (0.13, 0.81) | 0.68 (0.35, 1.16) | (0.01, 0) 0.462 | 0.936 | (0.02, 0.01) 0.854 | 0.954 | (0.01, 0) 0.611 | 0.943 | |||
5 | 0.73 (0.51, 0.95) | 1 | 0.41 (0.13, 0.81) | 0.85 (0.43, 1.37) | (0.01, 0) 0.276 | 0.905 | (0, 0.01) 0.782 | 0.928 | (0.01, 0) 0.476 | 0.914 | |||
6 | 0.82 (0.44, 1.15) | 1 | 0.41 (0.13, 0.85) | 0.88 (0.24, 1.65) | (0, 0) 0.369 | 0.954 | (0.13, 0.01) 0.806 | 0.961 | (0.03, 0) 0.505 | 0.957 | |||
6 | 10 | 20 | 1 | 0.31 (0.06, 0.65) | 1 | 0.21 (0.03, 0.49) | 0.37 (0.07, 0.82) | (0, 0) 0.809 | 0.989 | (0.06, 0.01) 0.964 | 0.991 | (0, 0) 0.871 | 0.989 |
2 | 0.36 (0.12, 0.63) | 0.47 (0.08, 0.99) | (0, 0) 0.720 | 0.988 | (0.04, 0) 0.947 | 0.990 | (0, 0) 0.805 | 0.988 | |||||
3 | 0.54 (0.28, 0.84) | 0.61 (0.16, 1.19) | (0, 0) 0.597 | 0.986 | (0.04, 0) 0.909 | 0.988 | (0, 0) 0.705 | 0.987 | |||||
4 | 0.54 (0.32, 0.82) | 0.63 (0.38, 1.03) | (0, 0) 0.502 | 0.975 | (0.07, 0) 0.864 | 0.980 | (0, 0) 0.651 | 0.977 | |||||
0.30 (0.06, 0.65) | 5 | 0.74 (0.55, 0.92) | 0.81 (0.53, 1.29) | (0, 0) 0.289 | 0.970 | (0.07, 0) 0.789 | 0.975 | (0, 0) 0.495 | 0.972 | ||||
0.31 (0.06, 0.65) | 6 | 0.81 (0.50, 1.16) | 0.85 (0.25, 1.52) | (0, 0) 0.404 | 0.982 | (0.04, 0) 0.830 | 0.985 | (0, 0) 0.539 | 0.983 | ||||
2 | 0.42 (0.11, 0.80) | 1 | 0.21 (0.03, 0.49) | 0.47 (0.09, 1.02) | (0, 0) 0.721 | 0.978 | (0.08, 0.01) 0.942 | 0.982 | (0, 0) 0.803 | 0.979 | |||
3 | 0.57 (0.19, 1.02) | 1 | 0.21 (0.03, 0.49) | 0.60 (0.19, 1.22) | (0, 0) 0.603 | 0.963 | (0.10, 0.01) 0.907 | 0.970 | (0.01, 0) 0.711 | 0.966 | |||
4 | 0.54 (0.35, 0.85) | 1 | 0.21 (0.03, 0.49) | 0.57 (0.32, 0.96) | (0.01, 0) 0.586 | 0.943 | (0.07, 0.01) 0.898 | 0.958 | (0.01, 0) 0.704 | 0.949 | |||
5 | 0.69 (0.42, 0.96) | 1 | 0.22 (0.06, 0.48) | 0.73 (0.40, 1.18) | (0.03, 0) 0.393 | 0.911 | (0.04, 0.01) 0.842 | 0.933 | (0, 0) 0.563 | 0.919 | |||
6 | 0.81 (0.32, 1.32) | 1 | 0.21 (0.03, 0.49) | 0.83 (0.35, 1.48) | (0.03, 0) 0.424 | 0.932 | (0.13, 0.01) 0.837 | 0.945 | (0.01, 0) 0.548 | 0.937 | |||
6 | 10 | 5 | 1 | 0.31 (0.06, 0.65) | 1 | 0.41 (0.13, 0.85) | 0.52 (0.12, 1.27) | (0, 0) 0.676 | 0.980 | (0, 0.02) 0.923 | 0.984 | (0, 0) 0.768 | 0.982 |
2 | 0.49 (0, 1.02) | 0.58 (0.14, 1.23) | (0, 0) 0.609 | 0.978 | (0.04, 0.01) 0.904 | 0.982 | (0, 0) 0.718 | 0.980 | |||||
3 | 0.61 (0.13, 1.29) | 0.69 (0.16, 1.42) | (0, 0) 0.515 | 0.972 | (0.05, 0.01) 0.872 | 0.977 | (0, 0) 0.640 | 0.974 | |||||
0.31 (0.06, 0.59) | 4 | 0.58 (0.18, 1.03) | 0.66 (0.27, 1.27) | (0, 0) 0.508 | 0.968 | (0.11, 0.01) 0.870 | 0.975 | (0.01, 0) 0.649 | 0.971 | ||||
0.30 (0.09, 0.63) | 5 | 0.74 (0.40, 1.14) | 0.79 (0.45, 1.40) | (0, 0) 0.342 | 0.959 | (0.09, 0.01) 0.808 | 0.967 | (0, 0) 0.518 | 0.962 | ||||
0.31 (0.06, 0.65) | 6 | 0.83 (0.36, 1.39) | 0.87 (0.23, 1.72) | (0, 0) 0.386 | 0.963 | (0.02, 0.01) 0.811 | 0.970 | (0, 0) 0.520 | 0.966 | ||||
2 | 0.42 (0.11, 0.80) | 1 | 0.41 (0.13, 0.85) | 0.59 (0.12, 1.31) | (0, 0) 0.602 | 0.968 | (0, 0.01) 0.902 | 0.975 | (0, 0) 0.712 | 0.970 | |||
3 | 0.57 (0.19, 1.02) | 1 | 0.41 (0.13, 0.85) | 0.69 (0.20, 1.48) | (0, 0) 0.509 | 0.951 | (0, 0.01) 0.867 | 0.961 | (0.01, 0) 0.630 | 0.955 | |||
4 | 0.54 (0.35, 0.85) | 1 | 0.40 (0.13, 0.74) | 0.67 (0.32, 1.19) | (0, 0) 0.503 | 0.931 | (0.08, 0.02) 0.863 | 0.950 | (0.02, 0) 0.629 | 0.939 | |||
5 | 0.69 (0.42, 0.96) | 1 | 0.43 (0.13, 0.77) | 0.82 (0.39, 1.40) | (0, 0) 0.339 | 0.894 | (0.13, 0.02) 0.810 | 0.923 | (0.03, 0) 0.500 | 0.905 | |||
6 | 0.81 (0.32, 1.32) | 1 | 0.41 (0.13, 0.85) | 0.88 (0.20, 1.67) | (0, 0) 0.369 | 0.917 | (0.04, 0.01) 0.802 | 0.935 | (0.05, 0) 0.511 | 0.924 |
K: provider size; m: number of practices; n: practice size; PN: pattern.
CV of practice size, mean (min, max).
CV of provider size, mean (min, max).
CV of cluster size, mean (min, max).
The mean RE among 1000 simulations is calculated for each (r, ρ).
The minimum and median of mean RE including the corresponding (r, ρ)s are identified across all values of (r, ρ).
Proposed Algorithm