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While it is widely accepted that motor sequence learning (MSL) is supported by a prefrontal­

mediated interaction between hippocampal and striatal networks, it remains unknown whether the 

functional responses of these networks can be modulated in humans with targeted experimental 

interventions. The present proof-of-concept study employed a multimodal neuroimaging approach, 

including functional magnetic resonance (MR) imaging and MR spectroscopy, to investigate 

whether individually-tailored theta-burst stimulation of the dorsolateral prefrontal cortex can 

modulate responses in the hippocampus and the basal ganglia during motor learning. Our results 

indicate that while stimulation did not modulate motor performance nor task-related brain activity, 

it influenced connectivity patterns within hippocampo-frontal and striatal networks. Stimulation 

also altered the relationship between the levels of gamma-aminobutyric acid (GABA) in the 

stimulated prefrontal cortex and learning-related changes in both activity and connectivity in 

fronto-striato-hippocampal networks. This study provides the first experimental evidence, to the 

best of our knowledge, that brain stimulation can alter motor learning-related functional responses 

in the striatum and hippocampus.

Keywords

Theta-burst stimulation; Motor learning; Prefrontal cortex; Hippocampus; Striatum; GABA

1. Introduction

The neural responses underlying motor sequence learning (MSL) have been thoroughly 

investigated and various models propose that this process is supported by cortico-cerebellar, 

-striatal and -hippocampal networks (Doyon et al., 2009; Penhune and Steele, 2012; Albouy 

et al., 2013a). Interestingly, these brain systems present different dynamical patterns of 

activity during the learning process (Albouy et al., 2013a). Whereas activity in hippocampo­

fronto-parietal networks, which form loops with associative regions of the striatum and the 

cerebellum, decreases as a function of learning, activity in sensorimotor circuits, including 

the sensorimotor parts of the striatum, the cerebellum and motor cortical areas, increases 

with learning (Hikosaka et al., 2002; Albouy et al., 2013a; Doyon et al., 2018). Importantly, 

functional connectivity between these networks reveals a competitive interaction pattern 

during initial learning (Albouy et al., 2013a, 2013b). Crucial to the present study, the 

interaction between hippocampal and striatal systems is orchestrated by the dorsolateral 

prefrontal cortex (DLPFC) (Albouy et al., 2012, 2013a,b; Freedberg et al., 2020).

As the hippocampal and striatal neural signatures described above are thought to support 

motor memory acquisition and also predict successful motor memory retention (Albouy et 

al., 2008, 2013b; Steele and Penhune, 2010), investigating whether these learning-related 

brain responses can be altered by experimental interventions is of the utmost importance. 

One experimental approach that has shown promise to modulate neural responses in the 

striatum and hippocampus is the application of transcranial magnetic stimulation (TMS) to 

cortical regions that are functionally connected to these deeper areas. It has been shown that 

the application of repetitive TMS to the DLPFC or the parietal cortex can alter hippocampal 

activity and connectivity patterns which, in turn, influences performance on declarative 

memory tasks (Bilek et al., 2013; Wang et al., 2014; Kim et al., 2018; Hermiller et al., 2020; 
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Thakral et al., 2020). As the role of the hippocampus in motor memory has been over-looked 

in the past [for discussion, see (Albouy et al., 2013a)], research aiming at modulating the 

motor learning process via hippocampal-targeted brain stimulation is lacking. Furthermore, 

prefrontal TMS has also been shown to influence striatal activity and connectivity during 

reward processing (van Holstein et al., 2018) and probabilistic learning (Ott et al., 2011). 

However, no such evidence is available in the motor memory domain, which is surprising 

given the critical role the striatum plays in this process. Based on the aforementioned 

evidence that the DLPFC mediates the interaction between the striato- and hippocampo­

cortical systems during initial MSL and that prefrontal stimulation can influence functional 

responses in these networks, the DLPFC is a promising cortical stimulation target in order to 

alter brain responses in motor learning-relevant networks.

The goal of the present proof-of-concept study was therefore to use an extensive and 

multimodal neuroimaging approach, including functional Magnetic Resonance Imaging 

(fMRI) and MR Spectroscopy (MRS), to test whether stimulation of the DLPFC 

can modulate motor-learning-related functional responses in the basal ganglia and the 

hippocampus. Based on evidence that the neuromodulatory effects of TMS can be optimized 

by defining stimulation targets via data-driven approaches and tailoring the stimulation 

targeting procedures to each individual (Sack et al., 2009; Fox et al., 2012a,b; Beynel et 

al., 2019), the TMS target in the present study was identified using a functional-data-driven 

approach tailored to each individual. To do so, we analyzed fMRI data from a sample of 

individuals independent from the current sample and identified a cortical cluster functionally 

connected to both the striatum and hippocampus at rest. The spatial location of this cortical 

cluster was used to guide the individualized TMS targeting procedure used in the present 

study.

Repetitive TMS was applied with a theta burst stimulation (TBS) procedure to the 

individually-identified prefrontal cortical target before participants were trained on a 

sequential serial reaction time task (SRTT; (Nissen and Bullemer, 1987)) or a control 

random condition (random SRTT). Using a region of interest (ROI) approach, we examined 

the effect of intermittent versus continuous TBS (i.e., iTBS and cTBS, respectively; (Huang 

et al., 2005)) of the DLPFC on (i) task-related activity and connectivity patterns in fronto­

striato-hippocampal networks measured with fMRI during post-stimulation task practice 

and (ii) DLPFC neurochemistry through the quantification of gamma-aminobutyric acid 

(GABA), the brain’s primary inhibitory neurotransmitter, pre- and post-intervention using 

MRS.

Based on previous behavioral research showing that disruptive DLPFC stimulation can 

effectively impair motor learning processes (Pascual-Leone et al., 1996; Robertson et al., 

2001; Burke and Coats, 2016; Dayan et al., 2018), we expected inhibitory cTBS of the 

DLPFC to disrupt motor sequence learning as compared to facilitatory iTBS. At the brain 

level, as stimulation-induced effects of TBS on neural excitability have been shown to be 

similar in the prefrontal cortex as in the primary motor cortex (M1; (Chung et al., 2017)), we 

hypothesized that facilitatory iTBS and inhibitory cTBS of the DLPFC would respectively 

strengthen and disrupt activity and connectivity in hippocampo-prefrontal networks during 

sequence learning as compared to random practice. Based on models suggesting that 
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hippocampo-prefrontal networks exert control processes over sensorimotor-striato-cortical 

networks during MSL (Albouy et al., 2013a), we expected that facilitatory iTBS and 

inhibitory cTBS of the DLPFC would repress and facilitate, respectively, the development of 

striato-motor activity during sequence learning. With respect to GABA measures, which are 

thought to reflect activity of inhibitory GABAergic interneurons in the neocortex (Tremblay 

et al., 2016), previous MRS studies have shown that M1 GABA levels can be altered by 

both M1 brain stimulation (Stagg et al., 2009b,a, 2011a; Marjańska et al., 2013; Bachtiar 

et al., 2015, 2018) and motor learning (Floyer-Lea et al., 2006; Sampaio-Baptista et al., 

2015; Kolasinski et al., 2018). However, less is known about effects of motor learning and 

brain stimulation on prefrontal GABA (Hone-Blanchet et al., 2016; Iwabuchi et al., 2017). 

Similar to previous M1 studies, we hypothesized that facilitatory iTBS and inhibitory cTBS 

of the DLPFC would result in a decrease and increase in DLPFC GABA, respectively; and 

these effects would be more pronounced for sequence learning as compared to the control 

task. As GABA levels are typically inversely related to BOLD signal (Duncan et al., 2014), 

we expected that the intervention-related modulation of activity and connectivity described 

above would be negatively correlated to the hypothesized changes in DLPFC GABA levels.

2. Methods

2.1. Ethics statement

This experiment was approved by the local Ethics Committee (UZ / KU Leuven). All 

participants gave their written informed consent before taking part in the study and were 

compensated for their participation. Procedures were executed in conformity with the 

approved guidelines.

2.2. Participants

Twenty-one young (range: 19–26 years) right-handed (Oldfield, 1971) participants took part 

in this study. All participants had normal or corrected-to-normal vision, were nonsmokers, 

free of psychoactive (e.g., anti-depressant or -anxiety) medications, reported no known 

psychological, psychiatric or neurological disorders [including anxiety (Beck et al., 1988) 

and depression (Beck et al., 1961)], and had no contra-indications for MRI or TMS. 

Furthermore, none of the participants were considered musicians or professional typists. 

The quality and quantity of sleep during the month preceding the experiment was normal as 

assessed by the Pittsburgh Sleep Quality Index (Buysse et al., 1989). Two participants were 

excluded because of incidental findings on the acquired imaging data. Nineteen participants 

were eventually included in the final analyses (see participants‘ characteristics in Table 

1, and Supplemental Table S1 for within condition sleep and vigilance scores). Due to 

technical problems, one experimental session (out of four) is missing for one participant. 

Behavioral, MRS and MRI data of two experimental sessions were excluded for another 

participant as he/she failed to appropriately perform the motor task (i.e., > 3 SD below 

the mean for accuracy). One session of another participant was excluded from the fMRI 

analyses due to excessive head motion (i.e., > 2 voxels). Motor Evoked Potential (MEP) data 

are missing for one participant. Consequently, behavioral, MEP, MRS and MRI analyses 

included 16 to 18 participants depending on the contrasts and conditions tested. Note that 

due to the multimodal nature of the present study, the choice of a specific outcome (among 
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motor behavior, task-related activity, task- and resting-state-related connectivity, GABA 

levels) to perform sample size computation could be considered arbitrary. Consequently, our 

sample size estimation was based on previous studies that also sought to alter functional 

responses in deep areas via non-invasive brain stimulation applied to cortical targets. 

Previous research included on average 20 participants per group (van der Werf et al., 2010; 

Ott et al., 2011; Bilek et al., 2013; Esslinger et al., 2014; Wang et al., 2014; Hanlon et al., 

2016; van Holstein et al., 2018; Alkhasli et al., 2019; Freedberg et al., 2019), thus, this was 

our targeted sample size.

2.3. General experimental procedure

Participants were invited to complete five experimental sessions (one baseline and four 

TBS sessions) at the University Hospital of KU Leuven. All sessions occurred between 

9am and 6pm. Moreover, all five sessions completed by each participant took place at 

approximately the same time of the day (± 2 h) to minimize the influence of circadian 

phase variation on behavior (Smarr et al., 2014), brain function (Muto et al., 2016) and 

brain excitability (de Beukelaar et al., 2016). TBS sessions were separated by at least 6 

days (mean time between stimulation sessions: 7.9 ± 2.9 days) to avoid carry-over effects. 

Participants were instructed to have a good night of sleep before each experimental session 

and to avoid alcohol consumption the day before and the day of the experimental session. 

Sleep quality and quantity of the nights before each experimental session were assessed with 

the St. Mary’s Hospital Sleep Questionnaire ((Ellis et al., 1981), see Table 1). Vigilance 

at the time of testing was assessed subjectively at the beginning of each session using the 

Stanford Sleepiness Scale (SSS; (Maclean et al., 1992)). There were no differences in sleep 

quantity and quality of the night preceding each condition (all Fs < 3.647, all ps > .073, see 

Supplemental Table S2) and differences in subjective vigilance (see Supplemental Table S2) 

did not influence performance speed in any condition (all ps > .353, see Supplemental Table 

S3 and Supplemental Results).

During the baseline MR session, a high-resolution T1-weighted image (to be subsequently 

used for neuronavigated TMS), RS functional data (to identify individual TBS targets, 

see below) as well as diffusion-weighted images (not reported in this manuscript) were 

acquired. Participants were also trained - for habituation purposes - on a random version 

of the serial reaction time task (see below). The session ended with a series of measures 

using the TMS equipment (determining the hot spot, resting and active motor thresholds, 

and corticospinal excitability through MEPs, see “TMS administration” section). The next 

four experimental sessions were organized according to a stimulation (2 levels: intermittent 

TBS [iTBS] vs. continuous TBS [cTBS]) by task (2 levels: sequence [SEQ] vs. random 

[RND]) within-subject design (Fig. 1; see below for details on the stimulation and task 

conditions). In each session, participants first underwent pre-TBS RS and MRS scans of the 

DLPFC and the hippocampus (see below for acquisition details) that were followed by T1­

neuronavigated TBS applied to an individually-defined DLPFC target (see individual target 

identification below) outside the scanner. MEPs were measured pre- and post-stimulation 

as described below. Immediately following the end of the stimulation session, participants 

were placed in the MRI scanner where they were trained on the motor task while BOLD 

images were acquired (mean delay between start TBS and start task: 15.71 min, range 12–
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22; mean duration of the task training: 11.5 min, range 9.33–13.43). After task completion, 

post-TBS/task RS and MRS data of the DLPFC and hippocampus were acquired (intervals 

between TBS and post-TBS/task DLPFC and hippocampus MRS were 40.2 min, range: 

36–46 and 51.85 min, range: 48–57, respectively; intervals between end of the task and 

post-TBS/task DLPFC and hippocampus MRS were 12.65 min, range: 12–15 and 24.29 

min, range: 24–26, respectively). The order of the four experimental conditions [cTBS/SEQ 

(cSEQ), cTBS/RND (cRND), iTBS/SEQ (iSEQ), iTBS/RND (iRND)] was counterbalanced 

across the 21 participants. It is important to note however that due to participant / data 

exclusion during data analyses (see participant section), the distribution of the different 

conditions per visit was not balanced in the analyzed sample (see Supplemental Table S4 

for the distribution of the different conditions per visit). This was taken into account in 

additional control behavioral, MRS and MRI data analyses (see below).

2.4. Serial reaction time task

An explicit bimanual version of the serial reaction time task (SRTT; (Nissen and Bullemer, 

1987)) previously used in our group (King et al., 2019) that was coded and implemented 

with the Psychophysics Toolbox in Matlab (Brainard, 1997) was used in this study. 

Participants were lying in the scanner with a specialized MR-compatible keyboard placed 

on their lap. During the task, eight squares were presented on the screen via a mirror above 

the participant’s head. Each square corresponded spatially to one of the eight keys on the 

keyboard and to one of eight fingers (excluding thumbs). The color of the outline of the 

squares alternated between red and green, indicating rest and practice blocks, respectively. 

After each rest block (15 s), the outlines of all squares changed from red to green, indicating 

that participants should prepare to perform the task. Subsequently, one of the eight squares 

was colored (i.e., filled) green, and participants were instructed to press the corresponding 

key with the corresponding finger as fast and as accurately as possible. As soon as a key 

was pressed, regardless of whether the response was correct or not, the next square in a 

sequence changed to green (response to stimulus interval = 0ms). Each block of practice 

included 48 key presses and each training session included 16 blocks. Depending on the 

specific experimental condition, the order in which the squares were filled green (and thus 

the order of finger movements) followed either a pseudorandom (RND) or a fixed, repeating 

sequential pattern (SEQ). During the sequence conditions, participants performed one of two 

eight-element sequences (whereby each of the eight fingers was pressed once in a sequence) 

that was repeated six times per block. The sequences were 4–7-3–8-6–2-5–1 and 7–2-8–4-1–

6-3–5 with 1 representing the left little finger and 8 representing the right little finger, 

respectively. Note that due to experimental error, one participant was trained on sequences 

4–7-3–8-6–2-5–1 and 2–6-1–5-8–3-7–4 and one participant was trained on 7–2-8–4-1–6-3–5 

and 2–6-1–5-8–3-7–4. In the pseudorandom condition, there was no repeating sequence, but 

each key was pressed once every eight elements (i.e., no repeating elements); thus, each 

finger was also used six times per block. Participants were explicitly informed when the 

stimuli would follow a random pattern or a repeating sequential pattern but, in the latter 

case, they were not given any additional information such as what the pattern was or how 

many elements the sequence was composed of.
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Mean response time for correct responses (RT, reflecting performance speed) and percentage 

of correct responses (percentage correct, reflecting movement accuracy) were computed for 

each block. Data were analyzed using repeated measures analyses of variance (ANOVAs; α 
= .05) with stimulation (cTBS and iTBS), task (SEQ and RND) as well as block (1–16) as 

within-subject factors. Greenhouse-Geisser corrections were applied in case of violation of 

the sphericity assumption. Additional control analyses were performed using linear mixed 

models in order to take into account any potential visit effect (see Supplemental Results).

2.5. TMS administration

Based on evidence that TMS effects can be optimized by (i) the definition of stimulation 

targets using data-driven approaches and by (ii) individualized targeting procedures (Sack 

et al., 2009; Fox et al., 2012a,b; Beynel et al., 2019), the TMS target in the present study 

was identified using a 2 step-approach. First, we analyzed fMRI data from a sample of 

young healthy individuals independent from the sample of the current study and identified 

a cortical cluster functionally connected to both the striatum and hippocampus at rest (see 

details in “Group target identification on an independent sample of participants” section 

below). In a second step, the spatial location of this cortical cluster was used to guide the 

individualized TMS targeting procedure used in the current study (see “Individual target 

identification using baseline RS data”).

2.6. Group target identification on an independent RS fMRI dataset

RS fMRI data already available in the lab (King et al., 2018) from a sample of 29 young 

healthy individuals (independent from the current sample) were analyzed in order to identify 

a cortical target to be used in the current experiment. Information on participants and RS 

fMRI data acquisition and analyses can be found in the Supplemental Material. Briefly, 

the goal of the connectivity analyses performed on this dataset was to identify cortical 

regions reachable using TBS that were functionally and commonly connected to both the 

striatum and the hippocampus. To do so, we performed whole-brain FC analyses using 

the hippocampus and caudate nucleus (bilaterally, as defined anatomically according to 

the AAL brain atlas; (Tzourio-Mazoyer et al., 2002)) as seeds. Note that the striatal seed 

was restricted to the caudate nucleus, as this region exhibits functional and anatomical 

connectivity with the DLPFC (Lehéricy et al., 2004; Albouy et al., 2012), the TBS target 

region. For each individual and for each seed, the time-series across all voxels within 

the seed were averaged and Pearson correlation coefficients with all the voxels of the 

brain were computed. To ensure normality, each correlation coefficient was Fishers r-to-z 

transformed using the formula z = arctanh(r). Statistical analyses were performed on the 

z-values and were based on comparisons of the correlation coefficients to a value of 0. 

Statistical probabilities were considered significant if surviving the false discovery rate 

(FDR) method for multiple comparisons (pFDR < .05). A conjunction analysis testing the 

“Conjunction Null Hypothesis” was performed between the hippocampal and striatal FDR­

corrected connectivity Z-maps (Fig. 2A and Supplemental Table S5, hippocampus: Z ≥ 2.03, 

pFDR < .05; caudate: Z ≥ 1.996, pFDR < .05) using the easythresh_conj function (Nichols, 

2007) rendering the conjunction map onto an average brain template provided by FSL 

(www.fmrib.ox.ac.uk/fsl, avg152T1) and thresholded at the highest Z score of both RSFC 

maps (Z = 2.03). The resulting statistical map showed that a network including ventral 
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medial prefrontal, dorsolateral prefrontal, parietal and subcortical regions was significantly 

and commonly connected to both seed regions. Based on evidence reviewed above that 

(i) the DLPFC plays a pivotal role in the interaction between hippocampal and striatal 

systems during MSL (Albouy et al., 2013a) and that (ii) repetitive TMS of the DLPFC can 

influence brain responses in these deep regions (e.g. (Ott et al., 2011; Bilek et al., 2013)), 

we constrained our TBS target search on the conjunction map to a mask including the 

middle and superior frontal segments of the AAL atlas (Tzourio-Mazoyer et al., 2002). The 

resulting masked statistical map is shown in Fig. 2B and the list of identified frontal peaks 

is presented in Supplemental Table S6. The stimulation target - to be used in the present 

experiment to guide the individualized targeting pipeline - was defined as the peak maxima 

in the masked conjunction map and was located in the left DLPFC (−30 22 48 mm, encircled 

in black in Fig. 2B).

2.7. Individual target identification using baseline RS data

Individual TBS targets were identified using each participant’s RS data collected during 

the baseline session. RS fMRI data were acquired on a Philips Achieva 3.0T MRI system 

equipped with a 32-channel head coil using an ascending gradient EPI pulse sequence for 

T2*-weighted images (TR = 1000 ms; TE = 33 ms; multiband factor 3; flip angle = 80°; 

42 transverse slices; interslice gap = 0.5 mm; voxel size = 2.15 × 2.14 × 3 mm3; field of 

view = 240 × 240 × 146.5 mm3; matrix= 112 × 110; 300 dynamic scans). Note that due to 

multiband capacity failure, the baseline RS data of one participant had different parameters: 

TR = 2500 ms; TE = 30 ms; flip angle = 90°; 45 transverse slices; slice thickness = 3 

mm; interslice gap = 0.25 mm; voxel size 2.5 × 2.56 × 3 mm3; field of view = 200 × 200 

× 146 mm3; matrix= 80 × 78; 162 dynamic scans. During data acquisition, a dark screen 

(i.e., no visual stimuli) was presented; participants were instructed to remain still, close 

their eyes and to not think of anything in particular for the duration of the scan (5 min). 

High-resolution T1-weighted structural images were acquired with a MPRAGE sequence 

(TR/TE = 9.6/4.6 ms; voxel size = 0.98 × 0.98 × 1.2 mm3; field of view = 250 × 250 

× 228 mm3; 190 coronal slices). Four participants were scanned with a high-resolution 

T1-weighted structural MPRAGE sequence with the following parameters: TR/TE = 9.6/4.6 

ms; voxel size = 0.98 × 0.98 × 1.2 mm3; field of view = 250 × 250 × 192 mm3; 160 coronal 

slices. RS data of each individual were preprocessed as described for the independent RS 

fMRI dataset (see Supplemental Material). None of the subjects included in the analysis 

moved more than 1 voxel during the full duration of the scan. The absolute average ± SD 

of the maximum displacements across all resting state volumes and 3 planes of movement 

was 0.39 ± 0.16 mm for linear translations and 0.38° ± 0.24° for rotations. To minimize the 

impact of excessive motion on the correlations between voxels, volumes in which the scan­

to-scan displacement exceeded 0.5 mm were removed and replaced via interpolation (mean: 

0.82 ± 1.04%, range: 0 – 3.33% of acquired volumes discarded). The individual’s TBS 

target was characterized using the same procedure as above but applied at the individual 

level (i.e., conjunction between the individuals’ hippocampus and striatum RSFC maps) and 

using a 15-mm radius sphere mask centered on the group DLPFC coordinate identified on 

the independent RS dataset rather than the AAL frontal mask for the target search (see 

Supplemental Table S7 for a list of individual TBS targets and Supplemental Fig. S1 for a 

depiction of the individual targets).
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2.8. Theta-burst stimulation

TMS was applied, outside the MRI scanner, with a theta-burst stimulation (TBS) procedure 

(a burst of 3 pulses given at 50 Hz, repeated every 200 ms; (Huang et al., 2005)) 

on the individually-identified DLPFC target using a DuoMAG XT-100 rTMS stimulator 

(DEYMED Diagnostics s.r.o., Hronov, Czech Republic). Online spatial monitoring of 

the coil position was performed using neuronavigation (BrainSight, Rogue Research Inc, 

Montreal, Quebec, CA). We applied intermittent (iTBS, 2 s TBS trains repeated every 10 

s for 190 s, 600 pulses) and continuous TBS (cTBS, 40 s uninterrupted train of TBS, 

600 pulses) at 80% active motor threshold (MT, (Huang et al., 2005)). Active MT was 

characterized using single pulse stimulation of the M1 hotspot and motor evoked potentials 

(MEPs) measured with a belly-tendon EMG montage on the right flexor dorsal interosseous 

(FDI) muscle. Active MT was probed using a procedure similar to previous reports (Tambini 

et al., 2018; van Polanen et al., 2020). Specifically, active MT was defined as the lowest 

intensity at which at least 5 out of 10 MEPs could be distinguished from background EMG 

during voluntary submaximal FDI contraction. During DLPFC TBS, the 70 mm DuoMAG 

butterfly coil was placed at a 45° angle with the handle pointing posteriorly. Subjects 

rested for 5 min post-TBS to not introduce any interfering effects of voluntary movements 

(Huang et al., 2008). Twenty-one MEPs at 120% resting MT were measured pre- and 5 min 

post-TBS (see Fig. 1) as readout of corticospinal excitability (CSE) changes of M1. The first 

MEP of each time point was discarded from the analyses in each session as its amplitude is 

usually higher than subsequent MEPs due to startle or reflex responses. Thus, analyses were 

performed on the remaining 20 MEPs, which has been shown to provide a reliable measure 

of MEP amplitude (Goldsworthy et al., 2016). Resting MT was defined using single pulse 

stimulation of the M1 hotspot as the lowest intensity at which at least 5 out of 10 MEPs 

measured on the FDI were larger than 50 μV. For each participant and within each session, 

pre-TBS MEPs that were not within the range of the mean ± 3 SD were excluded (< 1% 

of all trials). For each experimental session, post-TBS MEPs were normalized to pre-TBS 

MEPs and a two-tailed paired t-test (α = .05) was performed to test for a stimulation effect 

(cTBS vs. iTBS).

2.9. Magnetic Resonance Spectroscopy

2.9.1. Acquisition—In-vivo proton (1H) MRS (Puts and Edden, 2012; Mullins et al., 

2014) was used to assess GABA+ levels in the DLPFC TBS target and the hippocampus. 

Before each MRS acquisition session, a low resolution T1-weighted structural image was 

acquired for MRS voxel positioning with a MPRAGE sequence (TR/TE = 9.6/4.6 ms; 

voxel size = 1.2 × 1.2 × 2.0 mm3; field of view = 250 × 250 × 222 mm3; 111 coronal 

slices). Lower- rather than higher-resolution scans were acquired due to time constraints 

but images showed sufficient quality to position the MRS voxel accurately. For each of the 

time points (pre-TBS and post-TBS/task) and for each condition, MRS data were acquired 

using the MEscher–GArwood Point RESolved Spectroscopy (MEGA-PRESS) sequence 

(Mescher et al., 1998) over the individual DLPFC target (30 × 30 × 30 mm3 voxel) and 

the hippocampus (40 × 25 × 25 mm3 voxel) with parameters similar to previous research 

(Hermans et al., 2018; Maes et al., 2018): 320 averages, scan duration of 11 min, 14 ms 

editing pulses applied at an offset of 1.9 ppm in the ON experiment and 7.46 ppm in the 
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OFF experiment, TR/TE = 2000/68 ms, 2-kHz spectral width, MOIST water suppression. 

Sixteen water-unsuppressed averages were acquired at each time point from the same voxel 

and interleaved to allow for real-time frequency correction (Edden et al., 2016), which is of 

special importance after fMRI scans (Harris et al., 2014). Scan parameters were identical for 

all MRS time points.

Before each MRS session, the TBS target was marked for each individual using a fiducial 

glycerin marker fixated on the participant’s head. The specific location on the skull was 

defined using the nudge tool of the Brainsight software that allows the projection of the 

individual MNI target coordinate onto the skull. All MRS voxels were positioned according 

to the MRS time point-specific, low-resolution T1 image. Specifically, the left DLPFC MRS 

voxel was positioned under this glycerin marker with one surface parallel to the cortical 

surface in the coronal and sagittal views (see Fig. 3A for an example of voxel positioning 

and 3B for MRS spectra). The hippocampus voxel was positioned on the coronal view on 

the center of the left hippocampus and was aligned on the sagittal view parallel to the 

antero-posterior long axis. Note that we opted to not counterbalance the order of MRS voxel 

acquisitions and prioritized timing for the DLPFC voxel, as hippocampal MRS data analyses 

were considered as more exploratory. Therefore, the DLPFC voxel was always acquired 

before the hippocampus voxel so that the post-TBS/task measurement would be closer in 

time from the interventions (see Fig. 1). Time constraints prevented us to acquire striatal 

MRS data as effects of TBS are thought to last on the order of 60 min (Huang et al., 2005). 

DLPFC and hippocampus voxel placement across sessions and participants are presented in 

Supplemental Fig. S3. Spatial overlap between sessions and participants was very high for 

the hippocampus voxel whereas consistency was lower for the DLPFC voxel as placement 

depended on the individually optimized TBS target.

2.9.2. Preprocessing and analyses—The Gannet software 3.0 toolkit (Edden et al., 

2014) was used for MRS data analysis similar to previous research in our group (Hermans 

et al., 2018; Maes et al., 2018; King et al., 2020). We corrected the individual frequency­

domain spectra for frequency and phase using spectral registration in the time domain (Near 

et al., 2015). A 3 Hz exponential line broadening filter was applied subsequently. An edited 

difference spectrum was derived from the averaging and subtracting of individual ON and 

OFF spectra. The GABA signal from this difference spectrum was modelled at 3 ppm with 

a single Gaussian peak and a 5-parameter Gaussian model using the combined GABAGlx 

model. A Gaussian-Lorentzian model was used to fit the unsuppressed water signal that 

was used as the reference compound (Mikkelsen et al., 2019). Uncorrected GABA levels 

were quantified from the integrals of the modelled data. It is worth noting that this approach 

edits GABA as well as macromolecules at 3 ppm (Rothman et al., 1993; Edden et al., 

2012) and thus GABA levels are reported as GABA+ (GABA plus macromolecules). The 

high-resolution T1-weighted image acquired during baseline was co-registered to the 8 (2 

pre- and post-intervention time points x 4 conditions) low-resolution images using SPM12, 

so that the high-resolution structural image could be used for data processing for each MRS 

time point in each condition. MRS voxels were co-registered to the high-resolution T1­

weighted image and were segmented into different tissue fractions (gray matter [GM], white 

matter [WM], and cerebrospinal fluid [CSF]) to adjust GABA+ levels for heterogeneity in 
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voxel tissue composition. It was assumed that GABA+ levels are negligible in CSF and 

twice as high in GM relative to WM (Harris et al., 2015) to compute tissue-corrected 

GABA+. Tissue-specific relaxation as well as water visibility values were also considered 

(Harris et al., 2015). Last, GABA+ levels were normalized to the average voxel composition 

in the sample (Harris et al., 2015). Therefore, the reported GABA+ values correspond to the 

“QuantNormTissCorrGABAiu” variable in Gannet 3.0, specified in institutional units [i.u.].

Due to low hippocampal MRS data quality, presumably due to difficulties associated with 

shimming in deep brain regions and participant movement between the low-resolution T1 

(measured just before the RS, see Fig. 1) and the hippocampal MRS scans, the fitting step 

as part of the Gannet pipeline failed in 15 out of 150 measurements during preprocessing. 

This resulted in 12 missing conditions, with a complete condition consisting of both the pre 

and post MRS time points for that particular experimental session (6 participants with 1 

condition missing and 3 participants with 2 conditions missing). As too few measurements 

were left for appropriate statistical analyses of the hippocampal MRS data (only 10 

participants with complete data sets), MRS analyses presented in this paper were limited 

to the DLPFC voxel.

Quality of the DLPFC MRS data was assessed by examining GABA signal-to-noise 

(SNR) ratio, fit error, and frequency offset. MRS voxel tissue fractions, quality metrics 

and corresponding statistical analyses to assess potential effects of MRS time point 

and experimental condition can be found in Supplemental Table S8 and S9 and in the 

Supplemental Results.

For each experimental session, post-TBS/task GABA+ levels were normalized to pre-TBS 

GABA+ levels (GABA+pre/GABA+post, referred to as ΔGABA, see Supplemental Table S10 

for raw data) and the data were analyzed using repeated measures analyses of variance 

(ANOVAs; α = .05) with stimulation (cTBS and iTBS) and task (SEQ and RND) as within­

subject factors. Exploratory follow-up two-tailed paired t-tests (α = .05) were performed on 

all possible pairs. Additional control analyses were performed on the ΔGABA with linear 

mixed models taking into account visit effects (see Supplemental Results). The individual 

normalized GABA+ data (ΔGABA) of each condition were also used as covariates for fMRI 

regression analyses (see details below).

2.10. Task-related fMRI data acquisition and analysis

2.10.1. Acquisition—Task-related fMRI data were acquired using an ascending gradient 

EPI pulse sequence for T2*-weighted images (TR = 2000 ms; TE = 29.8 ms; multiband 

factor 2; flip angle = 90°; 54 transverse slices; slice thickness = 2.5 mm; interslice gap = 0.2 

mm; voxel size = 2.5 × 2.5 × 2.5 mm3; field of view = 210 × 210 × 145.6 mm3; matrix=84 × 

82; 345.09 ± 22.37 dynamical scans).

2.10.2. Spatial pre-processing—Task-based functional volumes of each participant 

were realigned to the first image of each session and then realigned to the across-session 

mean functional image using rigid body transformations. The mean functional image was 

co-registered to the high-resolution T1-weighted anatomical image using a rigid body 

transformation optimized to maximize the normalized mutual information between the 
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two images. The resulting co-registration parameters were then applied to the realigned 

functional images. The structural image was segmented into gray matter, white matter, 

cerebrospinal fluid (CSF), bone, soft tissue, and background. We created an average subject­

based template using DARTEL in SPM12, registered to the Montreal Neurological Institute 

(MNI) space. All functional and anatomical images were then normalized to the resulting 

template. Functional images were spatially smoothed using an isotropic 8 mm full-width at 

half-maximum (FWHM) Gaussian kernel.

2.10.3. Activation analyses—The analysis of task-based fMRI data, based on a 

summary statistics approach, was conducted in 2 serial steps accounting for intra-individual 

(fixed effects) and inter-individual (random effects) variance, respectively. Changes in brain 

regional responses were estimated for each participant with a model including responses to 

the motor task and its linear modulation by performance speed (mean RT on correct button 

presses per block) in each session (cSEQ, cRND, iSEQ and iRND). Performance speed, 

rather than accuracy, was chosen as a parametric modulator because performance accuracy 

remained stable during practice (see results section) and was therefore not modulated by task 

practice. These regressors consisted of box cars convolved with the canonical hemodynamic 

response function. The 15-second rest blocks occurring between each block of motor 

practice served as the baseline condition modeled implicitly in the block design. Movement 

parameters derived from re-alignment as well as erroneous key presses were included as 

covariates of no interest. Movements were minimal during scanning; only the data of one 

session in one participant were excluded for excessive movement (> 2 voxels; note that for 

another participant, the last 46 scans of one session were excluded from analyses because of 

movements but the truncated session was kept in the analyses). The average ± SD translation 

and rotation across axis and sessions was: 1.07 ± 0.62 mm and 1.10 ± 0.61° (maximum 

absolute movement in translation = 3.7 mm and in rotation = 2.9°). High-pass filtering was 

implemented in the design matrix using a cutoff period of 128s to remove slow drifts from 

the time series. Serial correlations in the fMRI signal were estimated using an autoregressive 

(order 1) plus white noise model and a restricted maximum likelihood (ReML) algorithm.

Linear contrasts tested the main effect of practice and its linear modulation by performance 

speed in each session as well as between sessions. Contrasts testing for the stimulation by 

task interaction [(iTBS vs. cTBS) x (SEQ vs. RND)] and the stimulation effect within each 

task condition [iSEQ vs. cSEQ] and [iRND vs. cRND] were generated at the individual 

level. To examine whether the dynamics of brain responses were influenced by stimulation 

conditions, contrasts tested for the stimulation effect on the modulation regressors. As 

performance levels remained – as expected - constant in the random conditions (see results), 

this set of analyses focused on the sequence conditions only [iSEQmod vs. cSEQmod]. 

Additional contrasts presented in the Supplemental Information tested for the modulation 

effect across stimulation conditions within the sequence task [iSEQmod+cSEQmod] (see 

Supplemental Table S11). The resulting contrast images were further spatially smoothed 

(Gaussian kernel 6 mm FWHM) and were entered in a second level analysis for statistical 

inference at the group level (one sample t-tests), corresponding to a random effects model 

accounting for inter-subject variance.
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To assess the relationship between any effect highlighted in the contrasts described above 

and the pre- to post-intervention changes in GABA+ levels (referred to as ΔGABA), 

we performed regression analyses at the second level using one sample t-test with 

multiple covariates. Specifically, we regressed the individual contrast images testing for 

the stimulation by task interaction [(iSEQ - iRND) - (cSEQ - cRND)] against individual 

ΔGABA measured in the four conditions (4 covariates). The multiple regression therefore 

tested whether stimulation by task-related activity patterns correlated with stimulation by 

task-related changes in GABA levels in the DLPFC [(ΔGABAiSEQ - ΔGABAiRND) – 

(ΔGABAcSEQ - ΔGABAcRND)]. A separate multiple regression analysis tested whether 

the stimulation effect on dynamical activity within the SEQ task condition [iSEQmod vs. 

cSEQmod] correlated with the stimulation effect on ΔGABA in the corresponding conditions 

[ΔGABAiSEQ vs. ΔGABAcSEQ]. In these regression analyses, any significant brain response 

is differently related to ΔGABA between stimulation (or stimulation by task; for the 

interaction contrast) conditions.

2.10.4. Functional connectivity analyses—Psychophysiological interaction (PPI) 

analyses were computed to test the functional connectivity of the individual DLPFC 

targets and sub-cortical a priori regions of interest (i.e. the striatum and the hippocampus) 

highlighted by the activation-based contrasts. Seed coordinates for the DLPFC connectivity 

analyses consisted of the individual TBS targets as identified with the RS pipeline (see 

above). Note that the group, rather than the individual, target was used in two participants as 

their individual coordinates were located close to the cortex’s edge which did not allow the 

extraction of enough seed signal (see procedure below). Two putamen, but no hippocampal, 

seed regions were identified based on activation analyses. PPI analyses were performed 

using the peak coordinate of the two significant putamen clusters highlighted in the group 

level activation maps (iSEQmod+cSEQmod, see Supplemental Table S11: [24 12 4 mm] and 

[−16 6 −6 mm]). For each participant, experimental session and seed region of interest, 

the first eigenvariate of the signal was extracted using Singular Value Decomposition of 

the time series across the voxels included in a 10 mm radius sphere centered around the 

seed of interest. A new linear model was generated at the individual level, using three 

regressors for each experimental session. The first regressor corresponded to the BOLD 

activity in the reference area. The second regressor represented the practice of the learned 

sequence or the practice of the learned sequence modulated by performance speed. The 

third regressor represented the interaction of interest between the first (physiological) and 

the second (psychological) regressors. To build this regressor, the underlying neuronal 

activity was first estimated by a parametric empirical Bayes formulation, combined with the 

psychological factor, and subsequently convolved with the hemodynamic response function 

(Gitelman et al., 2003). The design matrix also included movement parameters. A significant 

PPI indicated a change in the regression coefficients (i.e. a change in the strength of the 

functional interaction) between any reported brain area and the reference region, related to 

the practice of the task or to the change in performance speed during the practice of the 

task. Linear contrasts testing the stimulation by task interaction [(iTBS vs. cTBS) x (SEQ 

vs. RND)] as well as the main effect of stimulation on modulation within SEQ conditions 

[iSEQmod vs. cSEQmod] were generated at the individual level. The resulting contrast images 

were further spatially smoothed (Gaussian kernel 6 mm FWHM) and were entered in 
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a second level analysis for statistical inference at the group level (one sample t-tests), 

corresponding to a random effects model accounting for inter-subject variance. Furthermore, 

we assessed the relationship between DLPFC connectivity patterns and ΔGABA levels 

in the DLPFC with regression analyses at the second level using one sample t-test with 

multiple covariates. As no significant responses were observed for the DLPFC connectivity 

analyses on the interaction contrast (see results), regression analyses were only performed 

on the DLPFC PPI analyses testing for the stimulation effect within SEQ conditions. 

Specifically, we regressed the individual contrast images testing for the difference in 

dynamical connectivity between the two SEQ conditions [iSEQmod vs. cSEQmod] against 

the ΔGABA in these two conditions [ΔGABAiSEQ vs. ΔGABAcSEQ]. In these analyses, any 

significant brain response shows connectivity patterns with the DLPFC during sequence 

learning that are differently related to the change in DLPFC GABA between stimulation 

conditions.

In order to control for potential confounds due to the post-processing unbalancing in 

conditions per visit (see Supplemental Table S4), the activity and connectivity second-level 

analyses described above were repeated using visit as a covariate of no-interest coded with 

dummy variables (see Supplemental Results).

2.10.5. Statistical inferences—The set of voxel values resulting from each analysis 

described above (activation and functional connectivity) constituted maps of the t statistics 

[SPM(T)], thresholded at p < .005 (uncorrected for multiple comparisons). Statistical 

inferences were performed on a priori defined ROIs including the DLPFC search sphere, 

the hippocampi and the basal ganglia (putamen, caudate nucleus and globus pallidus), at a 

threshold of p < .05 after family-wise error (FWE) correction for multiple comparisons over 

small volume within the ROIs (small volume correction (SVC) approach; (Poldrack, 2007; 

Poldrack et al., 2008)), followed by Holm-Bonferroni correction to correct for multiple ROI 

testing within each contrast (p < .05) (Holm, 1979). For SVC, spheres (10 mm radius) were 

centered on coordinates of our ROIs taken from the literature (see Supplemental Table S12). 

All reported activations in the main text survived SVC and Holm-Bonferroni correction for 

multiple comparisons on the contrast level. For the sake of completeness, results of whole 

brain analyses are reported in Supplemental Tables S11, S13, S14, S15 and Supplemental 

Results.

3. Results

Results related to corticospinal excitability, sleep and vigilance can be found in the 

Supplemental Information. In summary, corticospinal excitability was not modulated by 

the different stimulation conditions. There were no differences in sleep quantity and quality 

between experimental sessions and the differences in subjective vigilance observed between 

sessions did not influence behavior (see Supplemental Results for details).

3.1. Behavior

Performance speed across the 16 blocks of task practice was faster during the SEQ as 

compared to the RND task condition (main effect of task; F(1,16) = 40.435, Ƞp
2 = .716, p < 

.001) and improved over the course of training across task conditions (main effect of block; 
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F(3.419,54.7) = 16.325, Ƞp
2 = .505, p < .001). This increase was more pronounced in the 

SEQ as compared to the RND task (task by block interaction; F(3.838,61.415) = 21.492, Ƞp
2 = 

.573, p < .001; Fig. 4, upper panel). No effects of stimulation (F(1,16) = 1.639, Ƞp
2 = .093, 

p = .219), stimulation by task (F(1,16) = 2.102, Ƞp
2 = .116, p = .166), stimulation by block 

(F(7.396,118.341) = .446, Ƞp
2 = .027, p = .88) or stimulation by task by block (F(6.155,98.477) 

= .566, Ƞp
2 = .034, p = .76) were observed for performance speed (but see Supplemental 

Information for exploratory analyses on the effect of stimulation within the random task).

Performance accuracy was higher during SEQ compared to RND practice (main effect of 

task; F(1,16) = 6.919, Ƞp
2 = .302, p = .018; Fig. 4, lower panel). No effects of stimulation 

(F(1,16) = 2.367, Ƞp
2 = .129, p = .143), block (F(4.815,77.033) = 1.552, Ƞp

2 = .088, p = .186), 

stimulation by task (F(1,16) = .31, Ƞp
2 = .019, p = .585), stimulation by block (F(5.635,90.163) 

= .662, Ƞp
2 = .04, p = .671), task by block (F(15,240) = .643, Ƞp

2 = .039, p = .837) or 

stimulation by task by block (F(3.476,55.619) = .759, Ƞp
2 = .045, p = .54) were observed for 

performance accuracy.

Results of control analyses modelling the visit effect were similar to those reported above 

for both performance speed and accuracy (see Supplemental Results for details).

Altogether, the behavioral results demonstrated that participants learned the motor sequence 

and that the stimulation intervention did not impact motor sequence learning nor overall 

motor performance.

3.2. MRS of GABA

Fitting of the GABA peak failed in a high proportion of measurements for the hippocampal 

MRS data, leaving only 10 complete data sets (see methods for further information). As too 

few measurements remained for appropriate statistical analyses of the hippocampal MRS 

data, results presented in this paper are limited to the DLPFC voxel (see Fig. 3A for a 

depiction of DLPFC MRS voxel positioning and Supplemental Fig. S3 for voxel placements 

across sessions and participants).

Post-TBS/task GABA+ levels were normalized to pre-TBS GABA+ levels in order to assess 

intervention-related GABA+ changes (referred to as ΔGABA, see Supplemental Table S10 

for raw data and Fig. 3B for spectra of all DLPFC MRS measurements). ΔGABA was 

not significantly influenced by the task (F(1,16) = 2.181, Ƞp
2 = .12, p = .159), stimulation 

(F(1,16) = .025, Ƞp
2 = .002, p = .876) or by an interaction between task and stimulation 

(F(1,16) = 2.975, Ƞp
2 = .157, p = .104). However, exploratory paired t-tests indicated that 

GABA+ levels were significantly reduced after sequence learning as compared to random 

practice under the influence of iTBS (iSEQ vs. iRND; t(1,17) = −2.508, dz = - .59, p = .023 

(uncorrected for multiple comparisons; Fig. 3C). None of the other paired comparisons were 

significant (all ps > .05). Results of control analyses modelling the visit effect were similar 

to those reported above (see Supplemental Results for details).

3.3. Functional brain imaging data

Using an ROI approach including the basal ganglia, the hippocampus and the DLPFC TMS 

target, we investigated the effects of stimulation and task conditions on the amplitude and 
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dynamics of task-related activity and connectivity. Additionally, we performed regression 

analyses between ΔGABA and the above-mentioned activity and DLPFC connectivity maps 

to assess the relationships between changes in prefrontal GABA pre- to post-intervention 

and BOLD responses during task performance.

3.3.1. Stimulation by task interaction—Results show that stimulation and task 

conditions did not interact with brain activity or connectivity patterns in our ROIs and 

did not modulate the relationship between BOLD signal in the ROIs and DLPFC GABA 

changes (but see Supplemental Table S13, Supplemental Fig. S4 and Supplemental Results 

for results of the whole brain analyses showing stimulation by task interaction effects in the 

intraparietal sulcus, the cerebellar lobule and the frontal cortex). To mirror the exploratory 

analyses on GABA+ levels described above, we tested whether the responses between iSEQ 

and iRND and the corresponding ΔGABA were related but did not observe any significant 

responses in the ROIs (see Supplemental Table S13).

3.3.2. Learning-related modulation of brain responses—We used parametric 

modulation analyses to test whether brain activity changed as a function of learning, i.e. 

the block-to-block performance improvements, in the SEQ conditions. This allowed us 

to examine whether the different stimulation conditions influenced the learning-related 

dynamics of brain responses.

3.4. Activity

Consistent with previous research (Albouy et al., 2012), activity in bilateral putamen 

increased as a function of learning regardless of the type of stimulation (i.e., 

iSEQmod+cSEQmod, Supplemental Table S11). Between-stimulation-condition contrasts 

showed no significant results within the ROIs (but see Supplemental Table S14 for results of 

the whole brain analyses showing between-stimulation-condition effects in superior frontal 

areas, central sulcus and cingulum).

We then conducted regression analyses assessing whether between-condition differences in 

dynamical brain activity during training were related to differences in DLPFC ΔGABA 

between conditions. Results show that a between-condition difference (iSEQmod-cSEQmod) 

in dynamical activity in the hippocampus was related to the difference in DLPFC ΔGABA 

between stimulation conditions (ΔGABAiSEQ-ΔGABAcSEQ, Table 2; Fig. 5A). Interestingly, 

between-condition differences in dynamical activity in putamen activity were also related 

to the difference in DLPFC ΔGABA between stimulation conditions, but in the opposite 

direction (ΔGABAcSEQ-ΔGABAiSEQ, Table 2) as compared to the hippocampus. The effects 

reported above were similar when controlling for the visit effect (see Supplemental Table 

S16).

These results collectively indicate that the DLPFC stimulation conditions differently 

influenced the relationship between changes in DLPFC GABA levels and learning-related 

changes in activity patterns in the hippocampus and the striatum.
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3.5. Connectivity

Connectivity analyses were performed using, as seed regions, the putamen clusters described 

above that exhibited increases in activity as a function of learning across the two stimulation 

conditions (Supplemental Table S11). Functional connectivity between these bilateral 

putamen seeds and sensorimotor parts of the putamen increased as a function of learning 

more in the iSEQ as compared to the cSEQ condition (iSEQmod-cSEQmod, Table 2; Fig. 

6A upper panel). In contrast, the right putamen showed a greater learning-related increase 

in connectivity with the caudate nucleus, a more associative territory of the striatum, in 

the cSEQ as compared to the iSEQ condition (cSEQmod-iSEQmod, Table 2; Fig. 6A lower 

panel).

Functional connectivity analyses using the DLPFC TMS target as a seed region indicate 

that the dynamical connectivity patterns between the DLPFC and the hippocampus 

were different between stimulation conditions. These differences in fronto-hippocampal 

connectivity were explained by antagonistic dynamical patterns between conditions; 

specifically, connectivity decreased and increased as a function of learning in the iTBS 

and cTBS conditions, respectively (iSEQmod-cSEQmod contrast, Table 2; Fig. 6B; and see 

Supplemental Table S14 for whole brain analyses).

Regression analyses linking between-condition differences in DLPFC connectivity 

(iSEQmod-cSEQmod) to ΔGABA (ΔGABAiSEQ vs. ΔGABAcSEQ) showed that the dynamical 

connectivity patterns between the DLPFC and the putamen as well as the hippocampus were 

differently related to the DLPFC ΔGABA between stimulation conditions (Table 2, Fig. 5B; 

and see Supplemental Table S14 for whole brain analyses showing additional cerebellar and 

parietal regions).

All the functional connectivity results reported above were similar when controlling for the 

visit effect (see Supplemental Table S16).

Altogether, our results indicate that iTBS, as compared to cTBS, applied to the DLPFC 

before motor sequence learning promoted learning-related increases in connectivity in 

sensorimotor-striatal networks. In contrast, cTBS of the DLPFC resulted in progressive 

connectivity increases in fronto-hippocampal and associative-striatal networks. Additionally, 

our findings show that the stimulation conditions differently altered the relationship between 

the learning-related changes in DLPFC-striatum-hippocampus connectivity and DLPFC 

ΔGABA.

4. Discussion

In this proof-of-concept study, we used a multimodal neuroimaging approach in order 

to investigate whether functional-data-driven pre-frontal stimulation tailored to each 

individual can alter neural responses in hippocampal and striatal networks during motor 

sequence learning. Our results showed that while the different stimulation conditions 

did not modulate motor behavior or brain activity in our ROIs, they altered the 

dynamical connectivity patterns in fronto-hippocampal and striatal networks during learning. 

Importantly, stimulation conditions differently influenced the relationship between changes 
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in DLPFC GABA+ levels and both dynamical activity and connectivity patterns of the 

hippocampus and striatum during motor sequence learning. This research is, to our 

knowledge, the first to demonstrate that brain stimulation can influence motor learning­

related responses in the striatum and the hippocampus.

4.1. DLPFC stimulation influenced connectivity in fronto-hippocampal and striatal 
networks during motor sequence learning

Brain imaging analyses revealed that DLPFC stimulation before learning altered 

connectivity in fronto-hippocampal and striatal networks during motor sequence learning. 

These results are in line with previous research in both the motor (Herz et al., 2014) and the 

declarative memory domain (Bilek et al., 2013; Esslinger et al., 2014; Davis et al., 2017) 

showing that frontal stimulation can alter task-related connectivity patterns of frontal areas 

with other cortical areas as well as with deep regions including the basal ganglia and the 

hippocampus.

Connectivity analyses using the stimulated DLPFC as a seed region indicated that after 

inhibitory cTBS and facilitatory iTBS, fronto-hippocampal connectivity increased and 

decreased, respectively, as a function of sequence learning. Interestingly, both activity and 

connectivity in hippocampo-frontal networks are usually described to decrease as a function 

of learning under normal (i.e., non-stimulated) conditions (Albouy et al., 2008, 2012, 2013a; 

Doyon et al., 2018). Our data therefore suggest that inhibitory cTBS disrupted the usually 

observed pattern of hippocampo-frontal responses during learning. Based on previous work 

proposing that the hippocampus, together with the fronto-parietal networks, supports early 

representations of motor sequences under high control and attentional processes (Hikosaka 

et al., 2002; Doyon et al., 2009, 2018; Albouy et al., 2013a), our connectivity results 

suggest that inhibitory cTBS might have altered these early control processes. Note that this 

interpretation remains hypothetical as the comparison of our results to a no stimulation 

condition is limited to the available literature as no sham condition was included in 

the current study. Interestingly, we showed in previous studies that hippocampal activity 

and connectivity patterns during initial motor sequence learning are critically linked to 

subsequent consolidation processes (Albouy et al., 2008, 2013a). It is therefore tempting to 

speculate that the stimulation-induced modulation of hippocampo-frontal responses might 

influence subsequent motor memory retention. While this remains hypothetical, it is indeed 

in line with earlier behavioral work showing that DLPFC stimulation can influence motor 

memory consolidation (Galea et al., 2010; Tunovic et al., 2014).

Striatal connectivity analyses indicated that facilitatory iTBS and inhibitory cTBS of 

the DLPFC promoted a progressive increase in connectivity within sensorimotor- and 

associative-striatal networks, respectively. Previous research has extensively described 

dynamical activity and connectivity patterns in striatal circuits during sequence learning 

(Hikosaka et al., 2002; Doyon et al., 2009; Albouy et al., 2013a). Task practice is 

usually paralleled by a gradual shift in activity from associative territories of the striatum 

which support slow and variable performance early during learning (Lehéricy et al., 2005; 

Albouy et al., 2012), to sensorimotor areas of the putamen when performance plateaus 

and automatization is reached (Lehéricy et al., 2005). Interestingly, the present results 
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suggest that facilitatory iTBS to the DLPFC further promoted the practice-related shift to 

sensorimotor striatal functioning. In contrast, inhibitory cTBS altered the usually observed 

decrease in associative striatum involvement and induced learning-related increases in 

connectivity between the associative striatum (caudate nucleus) and the putamen. Together 

with the observation of inhibitory-stimulation-induced increases in fronto-hippocampal 

connectivity over the course of learning, the present results indicate that inhibitory prefrontal 

cTBS promoted the progressive engagement of networks involved in early learning and 

control processes. Future research is however warranted to confirm that these effects are 

purely induced by cTBS (as compared to sham stimulation) and not the result of the 

comparison of two active stimulation conditions. It is also worth noting that we did not 

observe any stimulation-induced changes in hippocampo-striatal functional connectivity as 

recently proposed by Freedberg and colleagues (Freedberg et al., 2020).

4.2. DLPFC stimulation altered the relationship between DLPFC GABA+ levels and 
functional responses in the hippocampus and striatum

GABA levels measured in cortical structures are assumed to reflect inhibitory GABAergic 

interneuron activity (Tremblay et al., 2016). Higher GABA levels would therefore result 

from higher GABAergic interneuron activity which in turn reflects lower activity of 

pyramidal neurons and therefore the local inhibition tone (Rae, 2014). In the present 

study, neither stimulation nor task conditions impacted DLPFC GABA+ levels. However, 

exploratory analyses within the facilitatory iTBS condition showed larger GABA+ decreases 

after sequential as compared to random task practice. We speculate that, similar to 

learning-induced decreases in M1 (Floyer-Lea et al., 2006; Sampaio-Baptista et al., 2015; 

Kolasinski et al., 2018), the decrease in DLPFC GABA+ levels might reflect disinhibition 

processes that promote successful learning (Stagg et al., 2011a; Kolasinski et al., 2018). 

This effect was observed under the effect of facilitatory stimulation, which might suggest 

that stimulation potentiated the neural plasticity processes. Although this interpretation is 

speculative given the absence of a stimulation by task interaction, it is in line with previous 

studies describing decreases of M1 GABA levels after facilitatory stimulation of M1 (Stagg 

et al., 2009a; Bachtiar et al., 2015, 2018).

Interestingly, our BOLD/GABA regression analyses showed that the type of stimulation 

applied before motor sequence learning affected the relationship between DLPFC GABA 

changes and (i) activity patterns in the hippocampus and the striatum and (ii) in DLPFC­

striatum-hippocampus connectivity (but see considerations below). These results provide 

direct support for a central role of the DLPFC in orchestrating the interaction between 

hippocampal and striatal systems during motor sequence learning (Albouy et al., 2013a). 

Importantly, the present data offer the first evidence that dynamical activity patterns of the 

hippocampus and striatum as well as fronto-hippocampo-striatal connectivity are related 

to the changes in inhibitory tone of the DLPFC. Our results also highlight the critical 

concept that the relationship between DLPFC GABA changes and functional responses in 

the hippocampus and the striatum can be altered by DLPFC stimulation. The absence of 

a sham condition however limits further interpretation regarding the effect of the different 

stimulation conditions on the relationship between DLPFC GABA and BOLD responses in 

deeper brain regions.
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4.3. DLPFC stimulation did not affect motor performance

Prefrontal stimulation applied before motor sequence learning did not influence motor 

performance. Our findings raise the possibility that prefrontal stimulation might not be an 

effective avenue to modulate motor performance. This explanation is certainly possible, yet 

it is not in line with previous behavioral work showing that disruptive DLPFC stimulation 

applied before or during motor sequence learning can effectively impair motor performance 

and learning processes (Pascual-Leone et al., 1996; Robertson et al., 2001; Burke and Coats, 

2016; Dayan et al., 2018). The discrepancy between these findings and our current results 

could be explained by several factors, including differences in stimulation procedure (e.g., 

TBS vs. 1 Hz, 5 Hz repetitive TMS or single pulse TMS), task complexity (bimanual vs. 

unimanual tasks), awareness of the sequential material to learn (explicit vs. implicit) and 

whether reward was provided or not during learning.

However, it is also possible that the absence of behavioral effects in the current study and 

therefore the disconnect between the effect of stimulation at the behavioral and brain levels 

could be the result of compensatory brain responses. One could have expected that, in the 

inhibitory stimulation condition, the prolonged engagement of associative striatal and fronto­

hippocampal networks – usually observed early during learning when performance is poor 

– would result in slower performance. As no differences in motor behavior were observed 

between stimulation conditions, we propose that the sustained engagement of associative 

striatum-hippocampo-frontal areas during learning under inhibitory cTBS might represent 

a compensatory mechanism allowing performance to be maintained over the course of 

practice. The continued engagement of these regions may have counteracted the disruptive 

effect of stimulation on frontal control processes early during learning and thus may have 

contributed to improvements in performance during task practice despite a progressive 

decrease in connectivity within sensorimotor-striatal territories.

4.4. Considerations

Our results show that DLPFC stimulation did not influence activity patterns in our ROIs 

(but see Supplemental Table S13, Supplemental Fig. S4 and Supplemental Results for 

modulation in fronto-parietal-cerebellar areas). This is partly in line with the available 

literature as there is, to our knowledge, no report of prefrontal-stimulation induced 

modulation of hippocampal activity [but see (Kim et al., 2018; Hermiller et al., 2020; 

Thakral et al., 2020) for parietal-stimulation-induced modulation of hippocampal activity] 

and only a few observations of activity changes in the striatum (Ott et al., 2011; van Holstein 

et al., 2018). This stands in contrast with extensive evidence of prefrontal-stimulation­

induced modulation of functional connectivity, in particular between the cortical target and 

deeper brain regions (van der Werf et al., 2010; Bilek et al., 2013; Esslinger et al., 2014; 

Alkhasli et al., 2019; Shang et al., 2019; Tang et al., 2019). Together with these earlier 

observations, our results suggest that prefrontal stimulation can modulate connectivity 

patterns of the target and deeper brain regions without inducing changes in activity levels.

It is worth acknowledging that the present study did not include a sham stimulation 

condition. We made the methodological choice to compare two active stimulation conditions 

(i.e., iTBS and cTBS) rather than to include a sham stimulation condition as there is ongoing 
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debate in the literature with respect to the appropriateness of sham stimulation for within­

subject TMS protocols (Duecker and Sack, 2015; Bergmann and Hartwigsen, 2020). As a 

result, we decided to prioritize the inclusion of a control task condition rather than a control 

stimulation condition. The design therefore included a random task condition that afforded 

us with the opportunity to test for sequence learning-specific effects and to investigate 

whether the effect of stimulation on brain function depends on the “state” under which 

stimulation was active (i.e., learning vs. control). We are however aware of the limitations 

related to the lack of a sham control condition. Specifically, any significant results in the 

present study are derived from comparisons between two active stimulation conditions and 

not from contrasting each stimulation condition against baseline. A discussion of our results 

in the context of a no stimulation condition was therefore limited to qualitative comparisons 

with the available literature. Future research is therefore warranted to investigate whether the 

effects reported in this study are purely induced by stimulation (as compared to sham) and 

not the result of the comparison of two active stimulation conditions.

While MRS-derived GABA levels have been associated to plasticity processes (Floyer-Lea 

et al., 2006; Stagg et al., 2009b, 2009a, 2011a; Marjańska et al., 2013; Bachtiar et al., 2015, 

2018; Sampaio-Baptista et al., 2015; Kolasinski et al., 2018), there is some ongoing debate 

on what these measures reflect. Previous studies suggest that GABA levels quantified with 

MRS reflect extracellular GABA (Stagg et al., 2011b; Dyke et al., 2017) but it is generally 

accepted that GABA+ levels cannot be clearly assigned to one of the various pools of GABA 

found in the brain [see (Stagg et al., 2011a,b; Stagg, 2014)]. Furthermore, due to issues with 

data quality, we were not able to investigate the effects of our intervention on GABA+ levels 

in the hippocampus. Additionally, we did not include measurements of striatal GABA due 

to time constraints imposed by the experimental design. Given the critical roles of these 

structures in motor sequence learning, it would be of interest for future research to examine 

learning- and stimulation-induced effects on striatal and hippocampal GABA. Last, and 

perhaps most importantly, given our within-subject design and the corresponding statistical 

models necessary to investigate the relationship between BOLD and GABA+ data, it is 

not possible to provide a directional interpretation of the regression results. Specifically, a 

significant effect in such an analysis represents a between stimulation condition difference in 

the relationships between: a) learning-dependent modulations in brain activity/connectivity 

(referred to as differential modulation betas; depicted on the y-axes on Fig. 5); and, b) 

ΔGABA across the stimulation/task interval (i.e., differential ΔGABA; x-axes on Fig. 5). 

As the beta estimates representing the modulation in brain activity/connectivity as well as 

ΔGABA are both bi-directional (i.e., values represent an increase or decrease in activity/

connectivity with learning or an increase or decrease in GABA+ after the intervention), 

the difference between stimulation conditions computed on these parameters could then 

reflect various individual patterns. For example, a large differential modulation beta could 

be attributed to a steeper decrease in activity in iSEQ than cSEQ or to no modulation in 

iSEQ and an increase in activity in cSEQ. A deeper inspection of these various possibilities 

revealed no single pattern that could adequately summarize the reported effects.
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5. Conclusions

In the present proof-of-concept study that employed a multimodal neuroimaging 

approach, we demonstrated that DLPFC stimulation influenced connectivity patterns within 

hippocampo-frontal and striatal networks during motor sequence learning. Our data also 

showed that non-invasive brain stimulation altered the relationship between the levels of 

inhibition, as assessed with MRS of GABA, in the stimulated area and learning-related 

changes in both activity and connectivity in fronto-striato-hippocampal networks. This 

provides the first experimental evidence, to the best of our knowledge, that prefrontal brain 

stimulation can alter functional responses in the striatum and hippocampus during motor 

learning.
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Fig. 1. 
In each experimental session, participants first underwent pre-TMS whole-brain resting­

state (RS) fMRI scans and magnetic resonance spectroscopy (MRS) scans of the 

dorsolateral prefrontal cortex (DLPFC) and the hippocampus (HC) that were followed 

by T1-neuronavigated intermittent or continuous theta-burst stimulation (iTBS or cTBS) 

applied to an individually-defined DLPFC target outside the scanner. Motor evoked 

potentials (MEPs) were measured pre- and post-TBS to probe corticospinal excitability (see 

Supplemental Fig. S2 and Supplemental Results for MEP results). Immediately following 

the end of the TMS session, participants were placed in the MR scanner where they 

were trained on the motor task (sequential [SEQ] or random [RND] versions of the serial 

reaction time task) while BOLD images were acquired. After task completion, post-TBS/

task RS and MRS data of the DLPFC and hippocampus were acquired. The order of the 

four experimental conditions in this within-subject design [cTBS/SEQ (cSEQ), cTBS/RND 

(cRND), iTBS/SEQ (iSEQ), iTBS/RND (iRND)] was counterbalanced across participants. 

Note that the data related to the pre- and post-TBS RS scans are not reported in the present 

manuscript. TMS: transcranial magnetic stimulation.
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Fig. 2. 
Group target identification on an independent RS fMRI dataset. (A) Resting State 

Functional Connectivity (RSFC) maps of the hippocampus (HC, left panel) and the caudate 

nucleus (right panel). The respective seeds are depicted below the connectivity maps. See 

Supplemental Table S5 for the complete list of clusters. (B) Conjunction map between the 

HC and Caudate RSFC maps (displayed within a frontal mask). A 15-mm radius sphere 

(depicted as a black circle) centered around the peak maxima (−30 22 48 mm) was used as 

search area for individualized targeting in the current experiment. See Supplemental Table 

S6 for a list of prefrontal clusters identified in the conjunction analysis and Supplemental 

Table S7 and Supplemental Fig. S1 for individual TMS targets of the current experiment. 

Connectivity maps and RSFC seeds are displayed on a T1-weighted template image with a 

threshold of pFDR < .05 for the connectivity maps. Color bars represent Z values.
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Fig. 3. 
MRS data of the DLPFC voxel. (A) Depiction of DLPFC MRS voxel positioning of a 

randomly selected participant and time point. The MRS voxel is overlaid on the participant- 

and time point-specific T1 structural scan. A glycerin maker was placed at the site of 

stimulation and was used to optimize MRS voxel positioning (marker visible on the coronal 

view). See Supplemental Fig. S3 for heatmaps representing the spatial overlap of voxel 

placement. (B) Spectra of all DLPFC MRS measurements (N = 150), from all participants 

and time points. GABA+ peak is visible at 3 ppm. Pre-TBS and post-TBS/task time points 

are depicted in green and magenta, respectively (mean spectrum across all participants 

and time points depicted in black). (C) ΔGABA in the four experimental conditions. Note 

that a pre- to post-intervention GABA+ increase and decrease are represented by values 

above and below 1 (indicated by the black dashed line), respectively. Exploratory analyses 

indicate that ΔGABA significantly differed between the iSEQ and iRND conditions. See 

Supplemental Table S8 for quality metrics and tissue segmentation, Supplemental Table 

S9 for follow-up tests for significant effects on tissue fractions and Supplemental Table 

S10 for raw GABA+ values. Error bars indicate SEM. Circles represent individual data 

points. Asterisk represents significant paired t-test with p < .05 (uncorrected for multiple 

comparisons). TBS: theta-burst stimulation, i: intermittent, c: continuous, SEQ: sequence, 

RND: random.
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Fig. 4. 
Behavioral results. Upper panel: Performance speed (reaction time, RT) improved over the 

course of training in the sequence task (SEQ) conditions and stayed stable in random task 

(RND) conditions. Lower panel: Performance accuracy remained stable in all conditions 

with overall higher accuracy in the SEQ than in the RND condition. The stimulation 

intervention (c: continuous and i: intermittent) did not affect motor performance nor motor 

learning.

Gann et al. Page 31

Neuroimage. Author manuscript; available in PMC 2021 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Regressions with DLPFC ΔGABA. (A) Hippocampal (HC) dynamical activity during 

learning (30 −16 −18 mm, left panel) was differently related to DLPFC ΔGABA between 

conditions. (B) Learning-related changes in DLPFC-putamen functional connectivity (FC) 

patterns (20 4 −6 mm, left panel) were differently related to DLPFC ΔGABA between 

conditions. Regression maps are displayed on a T1-weighted template image with a 

threshold of p < .005 uncorrected. Color bars represent T values. Circles represent individual 

data, solid lines represent linear regression fits, dashed lines depict 95% prediction intervals 

of the linear function. au: arbitrary units, resp.: response, i: intermittent, c: continuous, SEQ: 

sequence, mod: modulation contrast, GABA = gamma-aminobutyric acid.
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Fig. 6. 
Stimulation effect on sequence (SEQ) task-related connectivity. (A) Functional connectivity 

(FC) between the right putamen and the sensorimotor putamen (28 −8 −2 mm, upper 

panel) increased more as a function of learning after iTBS compared to cTBS. FC with 

the caudate nucleus (10 12 −8 mm, lower panel) showed the opposite pattern. (B) FC of 

the DLPFC TBS target with the hippocampus (HC, 22 −40 0 mm) increased more as a 

function of learning in the cTBS as compared to the iTBS condition. Connectivity maps 

are displayed on a T1-weighted template image with a threshold of p < .005 uncorrected. 

Color bars represent T values. Error bars indicate SEM. au: arbitrary units, TBS: theta-burst 

stimulation, i: intermittent, c: continuous.
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Table 1

Participant characteristics.

N 19 (12 females)

Age (years) 22.42 (±2.36)

Beck Anxiety Inventory 1.68 (±2.43)

Beck Depression Inventory 3.84 (±3.95)

Edinburgh Handedness 85.26 (±14.57)

Pittsburgh Sleep Quality Index 3.52 (±1.54)

St. Mary Quality of sleep 4.04 (±0.8)

St. Mary Quantity of sleep 8h (±1.01)

Stanford Sleepiness Scale 2.11 (±0.76)

Group means ± SD for participant characteristics, standardized questionnaires as well as the vigilance assessments administered at time of testing 
for included participants. Data of Stanford Sleepiness Scale and St. Mary Questionnaire were averaged across conditions (see Supplemental Table 
S1 for within condition data; see Supplemental Tables S2 and S3 for stimulation and task effects on vigilance and sleep).
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Table 2

Functional imaging results for the main effect of stimulation on brain responses modulated by performance 

speed during sequence learning.

Area x mm y mm z mm k voxels T p FWEsvc

Activation

cSEQmod-iSEQmod

No significant responses

iSEQmod-cSEQmod

No significant responses in the ROIs

Regression with ΔGABA

(iSEQmod-cSEQmod) X (ΔGABAiSEQ-ΔGABAcSEQ)

Hippocampus 30 −16 −18 159 4.6 .009

(iSEQmod-cSEQmod) X (ΔGABAcSEQ-ΔGABAiSEQ)

Putamen −22 2 −2 1256 5.82 .002

Right putamen connectivity

cSEQmod-iSEQmod

Caudate 10 12 −8 24 3.62 .033

iSEQmod-cSEQmod

Putamen 28 −8 −2 125 3.99 .019

−18 4 −4 24 3.37 .048

Left putamen connectivity

cSEQmod-iSEQmod

No significant responses

iSEQmod-cSEQmod

Putamen 28 8 16 403 5.01 .003

DLPFC connectivity

cSEQmod-iSEQmod

No significant responses

iSEQmod-cSEQmod

Posterior hippocampus 22 −40 0 42 3.85 .024

Regression between DLPFC connectivity and ΔGABA

(iSEQmod-cSEQmod) X (ΔGABAiSEQ-ΔGABAcSEQ)

DLPFC −30 24 50 69 3.72 .036

(iSEQmod-cSEQmod) X (ΔGABAcSEQ-ΔGABAiSEQ)

Putamen 20 4 −6 829 4.61 .01

30 −10 0 73 4.44 .013

Hippocampus −24 −20 −12 1031 4.77 .008

Brain responses significant (pcorr < .05) after family-wise error (FWE) correction for multiple comparisons over a small volume of interest 

(svc) in the ROIs are reported here. All activations survive Holm-Bonferroni correction for multiple comparisons within each contrast. Voxels of 
these maps not surviving correction for multiple comparisons and which were not of interest were not reported. See Supplemental Table S11 for 
modulation of brain responses by performance speed during practice of the sequential motor task (iSEQmod+ cSEQmod), Supplemental Table 

S12 for coordinates of areas of interest used for spherical small volume corrections, Supplemental Table S13 for whole brain functional imaging 

Neuroimage. Author manuscript; available in PMC 2021 August 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gann et al. Page 36

results for the stimulation by task interaction contrasts, and Supplemental Table S14 for whole brain functional imaging results for the main effect 
of stimulation on brain responses modulated by performance speed during sequence learning.

SEQ = sequence, i = intermittent, c = continuous, mod = modulation contrast, GABA = gamma-aminobutyric acid, DLPFC = dorsolateral 
prefrontal cortex.
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